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Abstract: The primary objective of this paper is to investigate the influence of deformation degree on
the microstructure and properties of a Ni-based superalloy. An upsetting experiment was conducted
using a free-forging hammer to achieve a deformation degree ranging from 60% to 80%. The impact
of the forging deformation degree on the hardness and high-temperature erosion performance was
evaluated using the Rockwell hardness tester (HRC) and high-temperature erosion tester, respectively.
The experimental results indicate that as the deformation degree increased, the hardness of the forged
material progressively increased while the rate of high-temperature erosion gradually decreased. In
order to comprehensively study the mechanism behind the variations in forging performance, optical
microscopy (OM), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), and
transmission electron microscopy (TEM) were employed. The findings reveal that as the deformation
degree increased, the presence of small-angle grain boundaries and an increase in grain boundary
area contributed to enhanced hardness in the alloy forgings. Furthermore, it was discovered that grain
boundaries with twin orientation promoted dynamic recrystallization during deformation, specifically
through a discontinuous dynamic recrystallization mechanism. Additionally, the precipitated γ′

phase in the alloy exhibited particle sizes ranging from 40 to 100 nm. This particle size range resulted
in a higher critical shear stress value and a more pronounced strengthening effect on the alloy.

Keywords: deformation degree; erosion rate; low angle grain boundary; precipitated phase

1. Introduction

Superalloys are alloys that exhibit exceptional resistance to deformation and maintain
their functionality under high external forces and temperatures exceeding 600 ◦C. The
performance of fighter aircraft heavily relies on their cutting-edge aeroengines, which
predominantly utilize superalloys. Consequently, research and development on superalloys
have become globally significant strategic topics. The United Kingdom, the United States,
and the former Soviet Union were the initial pioneers in superalloy production. The
United Kingdom, as the forefather of superalloys, has established two distinct systems:
cast superalloys and wrought superalloys. The primary utilization is focused on nickel-
based wrought superalloys. Simultaneously, the United States played a creative role by
introducing powder superalloys, incorporating elements such as cobalt, molybdenum,
tungsten, and others into nickel-based alloys to produce various grades of superalloys with
different service temperature capabilities. Currently, the United States boasts the widest
variety and highest quality of superalloys worldwide. Following suit, China embarked on
high-temperature alloy research and development [1–4].

In comparison to international efforts, China’s research and development in high-
temperature alloys started relatively later. The first high-temperature alloy brand was a
replica of the Soviet Union’s GH3030. Subsequently, several successful high-temperature al-
loys were developed, including GH3044, GH4033, and GH2036 [5]. Iron-based superalloys
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fail to meet the demands of aerospace development due to their lower service temperature.
With limited cobalt reserves in the natural environment, the development of cobalt-based
superalloys gained prominence. As a result, Chinese researchers shifted their focus to the
creation of nickel-based superalloys, with particular attention given to GH4738, a widely
utilized nickel-based superalloy [6].

This research investigates the influence of deformation degree on the microstructure
and characteristics of nickel-based superalloys, specifically focusing on GH4738 alloy, a
phase precipitation hardening type of deformed nickel-based superalloy. Below 760 ◦C, this
alloy exhibits excellent tensile strength and durability, while below 870 ◦C, it demonstrates
outstanding oxidation resistance. Because of its strong crack propagation resistance and
corrosion resistance, GH4738 alloy is widely used in turbine disk components of aero
engines [7–10]. However, due to the high-volume percentage of the ′ phase (approximately
23.5%), achieving microstructure uniformity during the forging process becomes chal-
lenging. The uniform distribution of grains and dispersed ′ phase in forgings is crucial
for ensuring superior mechanical properties in wrought superalloys [11,12]. Moreover,
GH4738 alloy contains a significant amount of alloy elements, leading to substantial solid
solution and precipitation strengthening effects, which further complicates subsequent pro-
cessing [13]. Thus, reasonable deformation process parameters are essential for achieving a
homogeneous microstructure in alloy forgings [14]. Therefore, optimizing the hot defor-
mation process of this alloy holds great importance in controlling grain size, ′ phase size,
and distribution after deformation. These optimizations can enhance the alloy’s stability,
extend its useful life, and improve its overall mechanical properties, considering its high
service temperature and creep qualities [15].

Apart from deformation-related investigations, it is also crucial to examine high-
temperature erosion wear, which refers to the material loss, fracture, or displacement caused
by repetitive impacts of solid particles on a solid surface. Dust ingestion during engine
operation accelerates wear and shortens the engine’s lifespan. Hence, researching the
performance of high-temperature erosion wear is vital for increasing engine longevity [16].

Through quantitative description, Li Wang et al. [17] constructed a thermal processing
map to determine the ideal deformation process parameters based on microstructure
evolution during thermal deformation. In a systematic investigation of the GH4738 alloy’s
dynamic recrystallization microstructure distribution under hot processing factors, Liu
Hui [18] obtained specific results. Additionally, several studies have been conducted on
the rheological mechanical behavior and microstructure evolution of the GH4738 alloy
during hot deformation [19–21]. However, all of the aforementioned researchers utilized
the Gleeble-1500 thermal simulation testing apparatus, which resulted in a slight disparity
between the experimental conditions and actual production. To study the creep behavior
of a Ni-based solid solution-reinforced NiMoCr alloy under different hot rolling and cold
rolling process conditions, T. Kvackaj et al. [22] discovered that the failure process involves
fracture nucleation and crack propagation, both of which are strongly influenced by grain
size. It was found that the fine recrystallized structure exhibits significantly lower creep
resistance compared to the coarse grain size. Therefore, this study focuses on investigating
the hot working process scheme of the GH4738 alloy turbine disk using the free forging
process under identical deformation temperatures and varying degrees of deformation.
Hot deformation tests were performed on GH4738 alloy bars with different levels of
deformation to examine grain refinement behavior and the mechanism of recrystallized
grain nucleation post-deformation. Analyzing the alloy’s strengthening mechanism after
deformation will facilitate the design and optimization of deformation process parameters
for GH4738 alloy bars, based on both experimental and theoretical approaches.

2. Experimental Material and Methods

Vacuum consumable remelting (VAR) and vacuum induction melting (VIM) were
employed to create the GH4738 alloy that was used in this study. The 200 mm billet was
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produced after billet opening and homogenization treatment. The chemical make-up of the
nickel-based superalloy GH4738 is shown in Table 1.

Table 1. Chemical composition table of GH4738 superalloy (mass %).

Element C Cr Co Mo Al Ti Fe Ni

Mass % 0.035 19.41 13.22 4.30 1.35 2.98 1.00 bal

As shown in Figure 1, four small rod blanks, each with a diameter of 45 mm, were
extracted at intervals of 200 mm to ensure consistency in the initial tissue state. The rod
billet was then heated in a stepwise manner to a temperature of 1140 ◦C in the heating
furnace. Immediately after heating, the billets were taken out and subjected to repeated
upsetting using a 1 t free forging hammer. This process transformed the four rod billets
into disk forgings at a height of 80 cm from the material. The undercutting rates employed
were 5 × 10−2 s−1, 6 × 10−2 s−1, 7 × 10−2 s−1, and 8 × 10−2 s−1. Subsequently, the forged
disk forgings were placed in designated positions for cooling, ensuring that they retained
their shape without any deformation. The forged disks exhibited no signs of deformation
cracks. The specific details of the thermal deformation process are outlined in Table 2.

Table 2. Actual thermal processing parameters of the samples.

Scheme Deformation
Temperature (◦C) Billet Size (mm) Finished Size

(mm)
Deformation
Degree (%)

1

1140
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Figure 1. Schematic diagram of the material selection location.

To obtain samples of 10 × 10 × 10 mm dimensions, disc forgings with varying degrees
of deformation were cut along the 1/4 diameter direction. Electrolytic polishing, electrolytic
corrosion, and polishing were necessary for metallographic observation. Electrolytic re-
moval of surface scratches resulted in a clearer metallographic image. An etching agent
of 3 g CuCl2 + 20 mL HCl + 30 mL C2H5OH was used, while the voltage and time for
electropolishing, as well as the polishing solution, were both at 20% HCl and 80% CH3OH.
SEM and EBSD were utilized for observations. The electrolytic corrosion solution consisted
of 170 mL H3PO4 + 10 mL H2SO4 + 15 g Cr2O3 at a voltage of 3–5 V and time range
of 5–10 s. The microstructure of the four groups of samples was examined using Zeiss
metallographic and scanning electron microscopes (Oberkochen, Germany) to study the
size, size distribution, and size variation of precipitated phases and grains under varying
degrees of deformation. The nucleation mechanism of recrystallized grains, substructure
changes, and γ′ phase evolution during hot deformation of the alloy were studied using
EBSD and a transmission electron microscope.
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The HR-150A Rockwell hardness tester (Lanzhou Zhongke Kaihua Technology De-
velopment Co. China, Lanzhou, China) was utilized to examine the hardness variations
of the four sample groups. The process involved testing five samples from each group,
eliminating the highest and lowest values, and calculating the average as a representation
of the sample’s hardness. For the high-temperature erosion wear test, the ASTM G76
high-temperature erosion wear test machine was employed. A 50 mm by 50 mm by 10 mm
sample was used for this test. The experimental process entailed the following details: The
abrasive temperature was set at 750 ◦C, with an objective temperature of 750 ◦C. A total of
2 kg of abrasive was used, and the erosion speed was maintained at 88 m/s. The erosion
angle was set to 90◦, and the erosion time was 20 s. Under these conditions, the morphology
of the GH4738 alloy, subjected to various degrees of distortion due to high-temperature
wear, was examined, along with the influence of hardness on high-temperature wear.

To prepare material samples for transmission electron microscopy (TEM) investigation,
a square sheet measuring 8 × 8 × 2 mm was thinned using metallographic sandpaper until
it reached a thickness of under 65 mm. The electrolyte used for the preparation of these
sheet samples in TEM was a mixed solution consisting of 10% HClO4 and 90% C2H5OH.
The preparation was carried out in a current environment ranging from −40 ◦C to −35 ◦C,
with a voltage of 50 V and a current intensity of 40 mA to 45 mA.

3. Results and Discussion
3.1. Effect of Deformation Degree on Microstructure of Ni-Based Alloy

The microstructure of the GH4738 alloy under various degrees of deformation is shown
in Figure 2. The figure illustrates how, following the upsetting deformation experiment,
the sample’s grain size steadily reduced as the degree of distortion increased and there
was no mixed crystal. The image also shows that the samples with the four deformation
degrees had two sizes of grains, with the smaller grains around the bigger grains. This
event shows that recrystallization is essentially finished. At the same time, when the
degree of deformation is very low, the deformation is too slight, and the stored energy
is insufficient to cause recrystallization; thus, the change in grain size is not immediately
apparent. The grains are refined following recrystallization when the deformation exceeds
the critical deformation, and the bigger the deformation is, the finer the grains become.
Because the nucleation rate grows quickly and the stored energy driving nucleation and
growth increases constantly as the deformation size increases, refining occurs as the G/N
ratio decreases.
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The precipitated γ′ phase diagram of GH4738 alloy forgings at various degrees of
deformation is shown in Figure 3. The size of the γ′ phase in forgings steadily reduced
with the increasing deformation amount, as indicated in the figure, although the amount of
γ′ phase precipitation did not significantly increase. The grain border area was expanded
as the grain size was gradually fine-tuned. During the deformation process, this effect
encouraged the diffusion of solute atoms. As a result, the size of the γ′ phase in the sample
was finer and more uniform, and it had a tendency to be spherical. The foundation for the
dispersion distribution of the γ′ phase is laid by the uniform distribution of solute atoms in
the matrix [23,24].
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3.2. Effect of Deformation Degree on Properties of Ni-Based Alloy

The average grain size, γ′ phase particle size, and hardness of samples with varying
degrees of deformation are compared in Figure 4. The Image J software 2.3.0 (National
Institutes of Health, Bethesda, MD, USA) was used to measure the diameter of each grain
in the optical microscopy (OM) images, enabling the determination of the average grain
size. Measurements were taken from three different angles and typical orientations for each
grain, and the average value was derived from these three sets of data. The grains in the
images were categorized, and the distribution percentage for each grade was determined
based on the ASTM grade list and the measured values. Thus, the average value of grains
within the same grade was obtained. The average grain size of the material was calculated
by summing the average value and the proportion of grains in each grade. The “phase”
amount in the image, referred to as “phase size,” was determined using the Image Pro Plus
software 6.0 (Media Cybernetics, Rockville, MD, USA) by calculating the percentage of the
pixel area occupied by the brightest “phase” in the image. Each test group was counted
three times, and the average value was calculated. According to the diagram, significant
levels of deformation can result in the formation of fine and uniform grains as well as the
γ′ phase. Furthermore, it leads to an increase in hardness from 38.9 HRC to 44 HRC. Grain
refinement serves to provide a strengthening effect through the presence of fine grains.
Additionally, under substantial degrees of deformation, complete recrystallization may
occur, resulting in the formation of a strong material [25,26].
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Figure 5 presents the morphology of high-temperature erosion observed using various
methods. The image reveals an increased number of craters and a slight cutting effect,
indicating the prevalence of impact deformation mechanisms. Figure 6 illustrates the
impact of deformation degree on the hardness and high-temperature wear rate of GH4738
alloy. It can be observed that as the degree of deformation increased, so did the hardness.
Calculations demonstrate that the hardness at 80% deformation was 14.3% higher than
that at 62% deformation. At a deformation degree of 62%, the sample surface exhibited
low strength, making it vulnerable to erosion and wear. Consequently, the erosion pits
displayed a significant amount of cutting, which limits plastic deformation. Moreover,
through computation and comparison, it was determined that the sample with an 80%
deformation degree exhibited a reduced high-temperature erosion rate, which decreased
by 10.3% compared to the sample with a 62% deformation degree. Furthermore, it is worth
noting that the harder the alloy is, the faster it tends to corrode at high temperatures. The
mechanism of partial dislocation cutting the small size phase of the GH4738 alloy under
various processes undergoes changes during high-temperature erosion at 750 ◦C. This
leads to a decrease in intracrystalline strength to some extent but an increase in plasticity at
high temperature. However, the grain boundary strengthening mechanism provides better
resistance against high-temperature erosion. When the content of the phase is close to or
equal to the grain boundary fraction, grain boundary strengthening becomes the dominant
mechanism in enhancing resistance to high-temperature erosion.

3.3. The Nucleation Mechanism of Recrystallized Grains in the Alloy and the Evolution of
Substructure Inside the Grains

Researchers can utilize Electron Backscatter Diffraction (EBSD) to investigate the
mechanism of dynamic recrystallization in alloys by analyzing orientation, microstrain, and
dislocation density. Dislocation density provides insights into the presence of substructures
within a specific area and can be determined by comparing the cumulative orientation
angle along a designated line. In a study conducted by Azarbarmas et al. [27], the EBSD
technique was employed to analyze the dynamic recrystallization behavior of In718 alloy
during thermal deformation. By examining the cumulative orientation angle within the
deformed grains, it was observed that most subgranular boundaries were still forming
at lower strains, indicating the absence of continuous dynamic recrystallization (CDRX).
However, as dynamic recrystallization (DRX) progressed under higher strains, strain-
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free grains emerged, leading to a gradual decrease in dislocations and a reduction in
the occurrence of small-angle grain boundaries. At this stage, medium to high angular
dislocation boundaries were observed near the original grain boundaries, signifying the
influence of successive progressive subgrain rotations and promoting CDRX at higher
strains. Hence, the primary deformation mechanism identified for the In718 alloy at lower
strains is the dynamic discontinuous recrystallization (DDRX) mechanism. However, as
the strain increases, the prevalence of the CDRX mechanism becomes more pronounced.
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The distribution diagram in Figure 7 shows the grain boundaries of the GH4738 alloy
with different phase differences, while the EBSD diagram displays the alloy’s microstruc-
ture. It can be observed from Figure 7a that the forging had a consistently small grain size.
The presence of carbides inhibited the migration of original grain boundaries, leading to a
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significant increase in the nucleation rate of recrystallized grains. Recrystallization in this
alloy was primarily achieved through dynamic recrystallization (DDRX). Figure 7b reveals
that large angle grain boundaries accounted for 43% of the deformation in GH4738 alloy
forgings, while small-angle grain boundaries accounted for 56%. There were relatively
few medium-angle grain boundaries, and their characteristics were similar. Figure 7c
illustrates the distribution of various phase differences (ranging from 0◦ to 2–5◦) at low-
angle grain boundaries in GH4738 alloy. When the proportion of 2◦ phase differences in
these boundaries reaches around 80%, it indicates the presence of subgrain boundaries and
dislocation substructures in the alloy. During the hot processing of highly deformed alloys,
a large number of dislocations interact with grain boundaries, resulting in dislocation
entanglement and stacking, which contributes to the development of substructures within
the alloy [28]. In metals with low stacking fault energy, complete dislocations tend to
transform into partial dislocations with lower energy, thereby promoting the formation of
twin structures and improving overall performance.
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<2◦and 2–5◦ orientation difference grain boundaries in different states of the alloy.

The distribution of the orientation angle along Figure 7a along straight lines is illus-
trated in Figure 8. According to the analysis of cumulative orientation angles in figures,
the highest cumulative orientation angle of deformed grains in GH4738 alloy forgings was
only 5.8◦. During the heating process prior to forging, the second phase in the alloy and the
majority of primary carbides have completely returned to the matrix [29,30]. Consequently,
there was minimal presence of precipitated phases impeding the grain boundary during
deformation. The primary mechanism for the nucleation of recrystallized grains was the
initial bending of the grain boundary, while the major nucleation process was the discontin-
uous dynamic recrystallization mechanism. The granular M23C6 carbides were dispersed
and precipitated on the recrystallized grain boundaries and twin boundaries during the
cooling process following deformation. This formed the basis for alloy strengthening
through the pinning of recrystallized grain boundaries and twin boundaries.
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The nickel-based superalloy layer exhibited a low fault energy, which enhanced the
likelihood of twin formation during deformation. The dynamic and static recrystallization
processes lead to the creation of different types of stepped grain boundaries due to the
transition from regular crystal to the low refractive index crystal plane. This transition
reduces energy and widens the grain boundary [31]. Twin formation reduces the grain
boundary energy of recrystallized grains, thereby promoting dynamic recrystallization.
In the heat deformation process of alloy GH4738, primary Σ3 twin boundaries with a 60◦

orientation and Σ9 twin boundaries with a 28.9◦ structure were observed. The “coincidence
site lattice” rule [32] states that the interaction of two Σ3 twin boundaries can generate a
Σ9 twin boundary, the interaction of a Σ3 and Σ9 twin boundary can produce a Σ3 twin
boundary, and a Σ27 twin boundary can be formed. Higher-order twin boundaries between
neighboring twins may appear at triple junctions. These twin boundaries contribute to the
material’s hardening effect and lower the average free energy of dislocations.

The pinning effect of the strengthening phase on the grain boundary is determined
by the interfacial energy of the grain boundary when it interacts with the strengthening
phase, as described in Zener’s principle [33]. In nickel-based superalloys, the interfacial
energy of high-angle grain boundaries is typically 0.69 J/m2. In contrast, coherent twin
barriers have a much lower interface energy of only 0.03 J/m2. Consequently, the pinning
effect of the strengthening phase on the twin boundary is relatively weaker. Figure 9 shows
that the forgings contained additional subgrain boundaries and dislocation substructures.
Twin boundaries are usually absent in recrystallized grains of smaller sizes but are more
likely to appear in larger grains, suggesting that they form along with expanding recrystal-
lized grains. The creation of twin boundaries is commonly observed at three-fork grain
boundaries in forgings, as it reduces the system’s interface energy. The majority of the twin
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boundaries in alloy forgings are primary three twin boundaries, with a few high-order Σ9
twin boundaries and scarce high-order Σ27 twin boundaries. The development of twin
boundaries is also influenced by the degree of deformation, which promotes the nucleation
of recrystallized grains. The most notable consequence of twin boundaries is the expansion
of the grain boundary region, leading to enhanced alloy strength [34].
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Figure 9. EBSD diagram of GH4738 alloy forgings with 80% deformation. (a) Angle diagram
of orientation difference between grains (>15◦, 5~15◦, and 2~5◦ black line, green line, and red
line are used in turn); (b) Σ3, Σ9 twin boundary (indicated by blue line and yellow line in turn);
(c) dislocation density diagram between grains (increased from blue to white in turn); (d) distribution
of recrystallized grains (indicated by blue, yellow, and red areas for complete recrystallization,
substructure, and incomplete recrystallization in turn).

3.4. γ′ Phase Evolution in Nickel-Based Superalloys

The alloy was enriched with approximately 4.5 wt% of Al and Ti elements, which
combined to form the γ′ phase. The γ′ phase adopted a face-centered cubic ordered
structure and could only exist in the matrix due to its compatibility with the matrix.
The primary component of the γ′ phase is Ni3(Al, Ti), and the content and dissolution
temperature of the γ′ phase vary based on the Al and Ti content. In this study, the
dissolution temperature of the Al + Ti element was approximately 1040 ◦C [35,36]. The
main method of strengthening the alloy was through the precipitation strengthening of the
γ′ phase. The performance of the alloy is heavily influenced by the quantity, distribution,
and size of the γ′ phase within it. In the research on strengthening GH4720Li alloy [37–39],
two types of coupling cutting relationships were observed between the γ′ phase and
dislocations: strong coupling dislocation cutting and weak coupling cutting, depending on
whether the particle size of the γ′ phase was greater than or equal to 40 nm. It has been
found that the optimum particle size for the γ′ phase in the best precipitation strengthening
state is 40 nm. Within this range, the critical shear stress value ranges from 70% to 100% of
the peak value, indicating a significant strengthening effect. Even in the range of 30–100 nm,
the particle size of the γ′ phase still contributes to a notable strengthening impact. Although
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there may be differences in composition and shape, the essential shear stress and particle
size discussed above are also applicable to the γ′ phase in the GH4738 alloy, as it differs
from the γ′ phase in the GH4720Li alloy primarily in terms of quantity.

The TEM image of the GH4738 alloy forgings in Figure 10 reveals a dislocation spacing
of approximately 40 nm. The most effective strengthening occurred when the initial
dislocation cut into the γ′ phase, while the subsequent dislocation simply sheared off the
γ′ phase. This observation further confirms that 40 nm is the optimal particle size for the
γ′ phase, and this size significantly influences the precipitation strengthening of the alloy.
Consequently, as the level of deformation increased, the size of the γ′ phase particles and
the spacing between them decreased, eventually converging toward 40 nm. This reduction
in particle size and spacing enhanced the performance of the alloy.
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Figure 10. TEM image of GH4738 alloy forgings with an 80% deformation degree.

4. Conclusions

(1) The grain size of nickel-based superalloys and the particle size of the “phase” steadily
shrunk as the degree of deformation increased, and the hardness gradually rose. At
80% deformation, the hardness was 14.3% greater than it was at 62% distortion.

(2) Chiseling and a limited amount of cutting were the major characteristics of high-
temperature erosion at 750 ◦C, which was mostly dependent on the impact defor-
mation mechanism. The sample with an 80% deformation degree had a lower high-
temperature erosion rate, which was decreased by 10.3% when compared to the
sample with a 62% deformation degree. Furthermore, the harder the alloy was, the
faster it corroded at high temperatures.

(3) The method of grain recrystallization used in Ni-based alloy forgings is known as
discontinuous dynamic recrystallization, and it is characterized by a high dislocation
density at the recrystallized grain boundaries. As a result, the sample’s microstructure
frequently had numerous substructures and twin borders. This structure effectively
refined the grains and increased the grain boundary area, which increased the alloy’s
functionality even more.

(4) As the degree of deformation increased during the hot working of the Ni-based alloy,
the particle size and dislocation spacing of the phase decreased. According to studies,
the ‘phase’s critical shear stress value is high, and its particle size ranges from 40 to
100 nm, which has a favorable strengthening impact on the alloy.
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