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Abstract: Using molecular dynamics (MD) simulations, the transition of the plastic deformation
mechanism of Ti-Nb alloys during the tensile process was studied, and the effects of temperature, Nb
composition, and strain rate on the deformation mechanism were also investigated. The results show
that the deformation process of Ti-Nb alloys involves defect formation, followed by twinning and
ω-phase transition, and ultimately, dislocation slip occurs. The <111>{112} slip makes the ω-phase
easily overcome the transition energy barrier, inducing the phase transition in the twinning process.
Increasing temperature will enhance the plasticity and reduce the strength of the material, while
increasing Nb composition will have the opposite effect on the deformation. The simulations show a
competition between twinning and dislocation slip mechanisms. With the increase in Nb content,
the plastic deformation mechanism of the alloy will change from twinning to dislocation slip. In
addition, the plastic strain range increases with the increase in the deformation rate in Ti-Nb alloys.
At a higher strain rate, the alloy’s plastic strain range is affected by various deformation mechanisms,
which significantly influence the plasticity of the material. The findings of this study provide further
insights into the design of Ti-Nb-based alloys.

Keywords: Ti-Nb alloy; molecular dynamics (MD); atom simulations; deformation mechanisms

1. Introduction

Titanium-based alloys have attracted much attention across various applications,
particularly in aerospace and biomedical fields.

Significantly, β-titanium alloys have excellent properties, including superelasticity, a
shape memory effect, a low Young’s modulus, resistance to biocorrosion, and biocompat-
ibility [1–3]. For β-titanium alloys, the mechanical properties are related to the complex
plastic deformation mechanism. Intensive research has revealed various plastic defor-
mation modes under the room-temperature deformation of metastable β-titanium alloys.
These plastic deformation modes involve dislocation slip, stress-induced α′′ martensitic-
phase transformation (SIMα′′), and stress-induced ω-phase transformation (SIω), as well
as {112}<111> twinning and {332}<113> twinning [4–7]. Similar results can also be found in
the phase transition processes in pure Ti [8,9]. These deformation mechanisms depend on
factors such as β-phase stability, deformation temperature, deformation rate, and deforma-
tion strain [10–12]. Therefore, explaining the deformation mechanisms of β-titanium alloys
remains a challenge. Considering the intricate nature of these mechanisms, researchers
have developed and formulated strategies to enhance the strength and plasticity of β-type
alloys. For instance, Ren et al. [13] and Zhang et al. [14] attained a tensile strength exceeding
1.1 GPa and an elongation exceeding 25% by inducing nanoscale twinning during tensile
deformation. Similarly, the adjustment of SIMα′′ can optimize the mechanical properties
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of titanium alloys. Researchers have conducted investigations on Ti-10V-2Fe-3Al [15], Ti-
15Nb-5Zr-4Sn-1Fe [16], and Ti-6Al-4V [17] and have determined that the balance between
strength and ductility in these materials can be achieved through the control of marten-
site content within the metastable β-phase. Additionally, Pilz et al. [18] achieved 0.2%
yield strength, reaching approximately 900 MPa, through a prolonged aging process of
108.0 ks. The strengthening effect was attributed to the isothermally precipitated ω-phase.
Zhou et al. [19] found that the tensile ductility of Ti-1Al-8V-5Fe alloys could be restored
by transforming the isothermal ω-phase to a heatless ω-phase by β-annealing and water
quenching. Moreover, in terms of computational simulation, using the DV-Xα molecular
orbital method facilitated a self-consistent calculation of the electronic structure of alloy
clusters [20,21]. Two derived alloying parameters, namely the transition metal d-orbital
energy level (Md) and the bond order (Bo) [22], played a crucial role in predicting alloy
deformation mechanisms. The Bo–Md diagram [23] assumes significance in the design of
β-titanium alloys, indicating a transition in plastic deformation mechanisms from twinning
to dislocation slip. Additionally, the Ti-Nb alloy phase diagram reveals that the stability
of the β-phase increases with the Nb content [24]. This observation suggests that the
deformation mechanism of the alloy changes from twinning to dislocation slip due to the
stability of the β-phase. However, the study of this transformation process remains unclear.

Molecular dynamics (MD) is effective in investigating the microstructural evolution
and deformation mechanisms of materials. The choice of potential function is critical in the
molecular dynamic simulation. However, the available potential functions for the Ti-Nb
system are relatively limited. This study utilized the semi-empirical Finnis–Sinclair (FS)
potential, which Qiu et al. [25] employed for V-Ti-Ta-Nb high-entropy alloys. This potential
has demonstrated accurate predictions of properties related to typical radiation defects
and mixing enthalpy, aligning well with theoretical values. It also accurately simulates the
generation and movement of defects in materials. However, although the effectiveness
of the FS potential has been established for the V-Ti-Ta-Nb alloy, further validation is
imperative for its applicability to the Ti-Nb system.

Currently, there is a lack of comprehensive investigations into the specific deformation
mechanisms in titanium–niobium alloys from a simulation point of view. This study uses
MD simulation to investigate the plastic deformation behavior of Ti-Nb single crystals under
uniaxial tension. The transition of the deformation mechanism of alloys under different
deformation processes has been revealed. Significantly, the alloy’s plastic deformation and
mechanical properties are affected by niobium composition, computational cell size, strain
rate, and temperature.

2. Computational Method
2.1. FS Potential Function

In 1984, Finnis and Sinclair [26] proposed a semi-empirical many-body potential
function model based on the tight-binding model, later referred to as the FS potential. The
original FS potential describes the total potential energy E as the sum of two terms:

E =
1
2∑

ij
V
(
rij
)
+ ∑

ij
F(ρi) (1)

The expression involves the pair potential term, denoted as V(rij), which is dependent
on the distance rij between the i atom and the j atom. Additionally, the many-body term
F(ρi), where ρi represents the local electron density, is formulated as:

F(ρi) = −A
√

ρi (2)
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The parameter A in Equation (2) is assigned according to Equation (1). The charge
density φ around atom i undergoes linear superposition, forming the local electron den-
sity ρi:

ρi = ∑
i

φ(ri) (3)

In 1987, Ackland et al. [27] improved the pair potential function V(r) and density
function of pure elements in FS potential by using cubic spline form φ(r):

V(r) =
nk

∑
k=1

dk(rk − r)3Hs(rk − r) (4)

φ(r) =
nk

∑
k=1

Dk(Rk − r)3Hs(Rk − r) (5)

where Hs(x) represents the Heaviside step function, dk and Dk are the coefficients of the
spline curve, while rk and Rk denote the positions of cubic-spline curve knots. Before
fitting the cross-potential functions, we need to use invariant transformation [28,29] to
optimize the pure element potential. Then the pure element pair potential function V(r) is
linearly combined, and the density function φ(r) is defined and adjusted. Finally, a new
cross-potential function is formulated.

In this study, we employed the FS atomic potential developed by Qiu et al. [25] for
the four-element V-Ti-Ta-Nb high-entropy alloy. This potential was fitted based on density
functional theory (DFT) calculations of defect properties, including vacancy formation
energy, vacancy migration energy, and interstitial formation energy. The alloy potential
predicts radiative defect properties, such as binding energies between substitutional solute
atoms, the binding energy between substitutional atoms and vacancies, and the formation
energy of interstitial solute atoms, in agreement with the DFT results. This potential
function appropriately describes the collision cascade process in the four-element V-Ti-
Ta-Nb high-entropy alloy (HEA). However, calculations and validations of mechanical
properties for Ti-Nb alloy systems still need to be improved. In the subsequent section, we
comprehensively validate the pertinent mechanical properties of the potential function for
Ti-Nb alloy systems.

2.2. First-Principles Calculations

This study employed the density functional theory (DFT) method to compute the
lattice constants and cohesive energies of alloys with specific compositions and structures.
The Vienna Ab-initio Simulation Package [30,31] with the Projector Augmented Wave
method [32] was used to perform the DFT calculations. The Perdew–Wang generalized
gradient approximation (GGA) was employed to treat the exchange-correlation density
function [33]. All results in this paper were obtained using a Body-Centered Cubic (BCC)
supercell with 16 atoms (2 × 2 × 2). The Brillouin zone was sampled with KSPACING
= 0.2 using the Monkhorst–Pack scheme, and the plane wave cutoff was set to 520 eV.
Furthermore, the position of the atoms and the volume of the cell were completely relaxed
until the force on each atom was less than 10−3 eV/Å.

2.3. Molecular Dynamics (MD)

To study the tensile behaviors of Ti-Nb alloys, MD simulations were conducted using
the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [34], following
the verification of potential function. In the simulations, Polyhedral Template Matching
(PTM) [35] implemented in Open Visualization Tool (OVITO) software (version: 3.7.10,
manufacturer: OVITO GmbH, country: Germany) [36] was used to visualize and analyze
the microstructures, including point defects, stacking faults, dislocation, and twins. The
simulation methodology is illustrated in Figure 1.
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Figure 1. Conceptual diagram of the computational methodology.

3. Results
3.1. Potential Function Validation

In order to evaluate the effectiveness of the potential function, the FS potential function
was used to calculate the various fundamental properties of Ti-Nb alloys. The calculation
results were compared with the values obtained from density functional theory (DFT)
calculations and experimental results.

Figure 2 shows the four Body-Centered Cubic (BCC) structures that validate the
correlation between structural energy and lattice constants. The calculation results of these
structures are shown in Table 1; the errors in lattice constants and cohesive energy are all
within 0.06 Å and 0.5 eV. Additionally, we computed the unstable stacking fault energies
in two directions, namely <111>{110} and <111>{112}, as presented in Table 2. The results
were compared with the theoretical values presented by Huang et al. [37], which were
based on DFT calculations. The errors of the unstable stacking fault energies obtained
with the potential function are around 0.1 J/m−2, indicating reasonable agreement with
the DFT-calculated theoretical values. Furthermore, the trend of unstable stacking fault
energies with changing composition was accurately reproduced. The elastic constants of
alloys with three different compositions were also calculated, as shown in Table 3. These
values were compared to other theoretical values from DFT calculations, and the errors
were within acceptable ranges.
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Table 1. Lattice constants and cohesive energies of the alloys in Figure 2.

Ti4Nb12 Ti8Nb8 Ti10Nb6 Ti12Nb4

Lattice
Constant/Å

MD
(This work) 3.317 3.324 3.278 3.265

DFT
(This work) 3.302 3.271 3.267 3.264

[38] 3.289 3.286

Cohesive
Energy/eV

MD
(This work) −6.838 −6.038 −5.739 −5.429

DFT
(This work) −6.554 −6.185 −6.020 −5.855

Table 2. Stacking fault energies of varying compositions.

γus on {110} (J m−2) γus on {112} (J m−2)

Ti-25Nb (at.%) 0.408 0.381

DFT [37] 0.307 0.296

Ti-50Nb (at.%) 0.501 0.459

DFT [37] 0.329 0.371

Ti-75Nb (at.%) 0.581 0.531

DFT [37] 0.494 0.534

Nb 0.657 0.714

DFT [37] 0.678 0.781
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Table 3. Elastic constants of varying compositions.

Content Elastic Constant This Work [39] [40]

Ti-25Nb (at.%)

C11 123.9 128.5 140 ± 11
C12 85.5 115.5 116 ± 13
C44 51.7 14.9 34 ± 10

B 98.3 124 ± 13
G 19.2 22 ± 13

Ti-50Nb (at.%)

C11 167.5 155.4 181 ± 9
C12 88.3 124.7 121 ± 2
C44 52.2 12.8 31 ± 10

B 114.7 141 ± 9
G 39.6 31 ± 10

Ti-75Nb (at.%)

C11 198.1 203.5 208 ± 3
C12 104.0 126.8 130 ± 4
C44 43.7 21.3 15 ± 10

B 135.4 156 ± 4
G 47.1 22 ± 10

Therefore, the potential function aligns well with theoretical values for various funda-
mental properties and is expected to describe the energy and force variations during the
tensile loading well.

3.2. Analysis of Tensile Behavior

The addition of Nb as a stabilizing element to Ti-Nb alloys enhances the stability of
the β-phase at room temperature. Thus, we utilize the example of a Ti-25Nb (at.%) alloy, an
essential alloy for biomedical applications, to elucidate the deformation process of the alloy.
The stress–strain curve during the tensile process (Figure 3) is consistent with the result
calculated by Nagasako et al. [41] using first principles. The initial structure of the tensile
sample includes a complete BCC structure. Following the elastic stage, denoted as point
I in Figure 3, the material undergoes a transition into the plastic stage. Point defects are
generated along with local FCC structures on the stage from point I to point II and release
the tensile stress.

In the stage from point II to point III in Figure 3, stacking faults are gradually created
and further release stress, causing them to gradually decrease. As strain increases further,
the stacking faults become the preferred region for twinning, and twinning begins at the
edge of the stacking faults region. The twin continues to propagate, leading to dislocations
at the twin-to-twin junction to accommodate the different orientations between the twins,
as shown by the green line in the small diagram at the bottom of the figure.

The microstructure in the plastic deformation range was further analyzed in detail.
Figure 4 shows a gradual increase in the number of FCC and other structures with increasing
strain. Ju et al. [42] found that these close-packed FCC structures produce longer interatomic
distance and space for the other atoms around the local FCC structures, which is beneficial
to make more atoms transform from BCC structures into the undefined type with a lower
energy barrier for stress-relaxing during the tensile process. Furthermore, the local FCC
structures possess the highest coordination number, leading to a relatively larger binding
energy and stronger local arrangement. Consequently, the local FCC structure can still
endure the higher distortion between the yield and ultimate strains. This slows down
the rate of stress increase in the material. After that, the alloy undergoes deformation
through partial slip on the {112} plane in the <111> direction, ultimately culminating in
the formation of the stacking fault structure illustrated in Figure 4d. This arrangement
of stacking faults is consistent with the three-layer stacking faults observed in the BCC
structure calculated by Machová et al. [43] using first principles. Moreover, it is possible for
a three-layer stacking fault (SF) to subsequently transform into multilayer twinning.
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As the strain increases further, the <111>{112} slip system continues to move based
on FCC stacking faults along the boundary, as illustrated in Figure 5a. The stacking
faults ultimately result in the formation of the twin structure depicted in Figure 5b.
This observed twin structure aligns with the {112}<111> twin structure identified by
Zhan et al. [44] during the deformation of Ti-Nb alloys. The process of twinning
formation is shown in Figure 5c. The twinning process can be elucidated through the
twinning dislocation mechanism [45–47]. This mechanism involves the decomposition
of a 1/2[111] perfect dislocation into three 1/6[111] dislocations on a continuous {112}
plane during motion under applied stress, ultimately resulting in the formation of a
three-layer microscopic twin.
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ω-Phase Transformation

The MD simulation revealed that the white atomic portion at the twin boundary
exhibited a multilayered structure during twinning deformation, similar to the interfacial
ω-phase structure discovered by Lai et al. [48] in Ti-36Nb-1.4Ta-2.8Zr-0.3O (wt.%) cold-
rolled samples. To ascertain its nature as an interfacial ω-phase, we initially compared the
experimental results with the standard structure of the ω-phase. The space group of the
ω-phase is P6/mmm (No. 191), and the three radical atoms are located at (0, 0, 0), (1/3,
2/3, 1/2), and (2/3, 1/3, 1/2), respectively [49]. We observed that the conformations of
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the grain boundary structures corresponded with the standard ω-phase structure in all
three directions.

According to Samiee et al. [50], there is a specific orientation relationship between
the ω-phase and the β-matrix, where [111]β//[0001]ω, [110]β//[1120]ω. To further
substantiate the presence of the interfacial ω-phase, additional analysis was conducted on
the grain boundary orientations, as depicted in Figure 6. Substructures c and d in Figure 6a
correspond to those in Figures 6c and 6d, respectively. The orientation relationship between
them is [111]β//[0001]ω, as the coordinate axes indicate. When the viewpoint is turned
in the [110] direction, as depicted in Figure 6b, the partial structure corresponds to that
in Figure 6e. Based on Figure 6a, it can be concluded that [110]β//[1120]ω, and the
correlation between the ω-phase and the BCC matrix provides additional confirmation that
the structural atoms at the boundaries generated during the tensile loading belong to the
ω-phase.
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ulation, the initial relaxation model consisted of the complete Body-Centered Cubic (BCC) 
structure, and no spontaneous formation of the ω-phase was observed. During the defor-
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the ω-phase at the interface of the twining. The associated stress–strain curves exhibit a 
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formation. Plastic deformation arises from the synergistic effect of various deformation 
mechanisms with the simultaneous occurrence of twinning, ω-phase transition, and 

Figure 6. (a) Twin boundary diagram in the [111] direction; (b) Crystal twin boundary diagram in the
[110] direction; (c) BCC atom arrangement in the [111] direction; (d) ω-phase atom arrangement in
the [0001] direction; (e) BCC atom arrangement in the [110] direction.

Lai et al. [48] and Ehemann et al. [51] also calculated the energy change from the β-
phase to the ω-phase of Ti-Nb alloys. They determined that the ω-phase structure possesses
lower energy compared to the β-phase. However, the presence of an energy barrier between
the two phases hindered the spontaneous formation of the ω-phase. In this simulation, the
initial relaxation model consisted of the complete Body-Centered Cubic (BCC) structure,
and no spontaneous formation of the ω-phase was observed. During the deformation
process, {112}<111> slip occurs, and the gained energy enables the generation of the ω-
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phase at the interface of the twining. The associated stress–strain curves exhibit a noticeable
decline during the twin-induced phase transition, signifying that the twin-induced ω-phase
transition releases substantial stress and plays a crucial role in plastic deformation. Plastic
deformation arises from the synergistic effect of various deformation mechanisms with
the simultaneous occurrence of twinning, ω-phase transition, and dislocation slip in the
deformation process of alloys with less than 20% strain. The whole deformation process is
consistent with the test results of Ti-22.4Nb-0.73Ta-2Zr-1.34O alloys in Yang et al. [52].

3.3. The Influence of Computational Cell Size on the Tensile Mechanical Properties of Ti-Nb Alloys

With an increase in computational cell size, as shown in Figure 7a, the difference
during the deformation process before the twinning induced ω-phase transition stage was
minimal. This is consistent with the molecular dynamics simulation for the uniaxial loading
of single-crystal Al calculated by Li et al. [53]. As shown in Table 4, the amount of plastic
deformation twins increases with the increase in model size, and the stress released by
twinning accompanied by ω-phase transformation also gradually increases, so the stress in
the stress–strain curve gradually decreases. Compared with other large-scale models, the
twins in the 32,000 atomic-size model are unstable. During the subsequent deformation,
the twins gradually disappear, as shown in Figure 7b. The subsequent deformation is
completely dominated by dislocation slip. In the large-scale model, as shown in Figure 7c,d
at a 0.133 strain, the twin boundary hinders the dislocation slip movement and makes the
stress curve rise continuously. It can be seen that the stress–strain curves for big samples
are smoother compared to those for the small sample, which is similar to the results of
Morkina et al. for Zr-Al alloys [54]. Huang et al. [55] and Lu et al. [56] also studied the
effect of grain size on twins in the research process of a Ti−12Mo alloy and a Ti-4V-2Mo-2Fe
alloy. The results show that the reduction in grain size obviously inhibits the formation of
twins, consistent with the results of this study.
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Figure 7. Tensile behavior of Ti-25Nb (at.%) alloy at different computational cell size, where: (a) Stress–
strain curves during tensile loading at 300 K temperature at 0.001/ps strain rate; (b) Microstructure
of 32,000 atoms cell size at 0.124 and 0.133 strain; (c) Microstructure of 256,000 atoms cell size at 0.124
and 0.133 strain; (d) Microstructure of 2,048,000 atoms cell size at 0.124 and 0.133 strain. (where blue
atoms represent BCC structures, green atoms represent FCC structures, red atoms represent HCP
structures, and white atoms represent other structures).
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Table 4. Twinning fraction at the strain of 0.124 in the alloy at different computational cell size.

Computational Cell Size 32,000 atoms 256,000 atoms 2,048,000 atoms

Twinning fraction (%) 0.109 0.252 0.263

3.4. The Influence of Temperature on the Tensile Mechanical Properties of Ti-Nb Alloys

The tensile results of the Ti-25Nb (at.%) alloy at different temperatures are shown in
Figure 8. The overall deformation process remains consistent regardless of the temperature
variation, from generating defects to twinning and ultimately dislocation slip. During the
plastic deformation stage preceding twinning, the increased temperature leads to more
pronounced atomic thermal motion, facilitating stress relief through atomic motion. As
depicted in Table 5, the defect structure resulting from enhanced atomic thermal motion
increases with rising temperature, leading to a gradual decrease in the ultimate strength of
the alloy. This is consistent with the decrease in tensile strength of single-crystal BCC Fe
nanowires with temperature variation calculated by Li et al. [57] using molecular dynamics.
At the same time, the tendency to form stacking faults increases at higher temperatures,
as shown in Figure 8. This considerable number of stacking faults can accommodate the
stress caused by deformation.
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Figure 8. Tensile behavior of Ti-25Nb (at.%) alloy at 0.001/ps at different temperatures, where:
(a) Stress–strain curves during tensile loading of Ti-25Nb (at.%) alloy; (b) Microstructure at
200 K temperature at 0.113 and 0.117 strain; (c) Microstructure at 300 K at 0.119 and 0.123 strain;
(d) Microstructure at 400 K temperature at 0.124 and 0.128 strain. (where blue atoms represent BCC
structures, green atoms represent FCC structures, red atoms represent HCP structures, and white
atoms represent other structures).

Additionally, the increase in temperature has little effect on the number of twins. This
aligns with the findings of Veerababu et al. on BCC-Fe [58]; they show that temperature does
not change the inherent twinning property but linearly reduces the energy of stacking faults.
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Table 5. Percentage of atoms with other structures at the strain of 0.1 in the alloy at various temperatures.

Temperature 200 K 300 K 400 K

Other structure
concentration (%) 3.1 7.9 15.1

3.5. The Influence of Composition Variation on the Tensile Mechanical Properties of Ti-Nb Alloy

The tensile deformation behavior of alloys with varying compositions is illustrated
in Figure 9. As the Nb content increases, the alloy is more stable, resulting in a decrease
in the quantity of point defects. At the same time, the stacking fault energy of the alloy
progressively rises, leading to a decrease in the stability of the stacking fault. The increasing
Nb enhances the ultimate strength of the alloy while diminishing the strain range of the
stacking fault.
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Figure 9. Tensile behavior of alloys at 300 K temperature at 0.001/ps strain rate, where: (a) Stress–strain
curve pictures of Ti-xNb (at.%) (x = 25, 30, 50, 75) alloys during tensile loading; (b) Microstructure of
Ti-25Nb (at.%) at 0.119 and 0.123 strain; (c) Microstructure of Ti-50Nb (at.%) at 0.106 and 0.112 strain;
(d) Microstructure of Ti-75Nb (at.%) at 0.105 and 0.107 strain. (where blue atoms represent BCC structures,
green atoms represent FCC structures, red atoms represent HCP structures, and white atoms represent
other structures).

Due to the higher strain rate in molecular dynamics, the energy barrier can be easily
crossed, making it easier to induce twinning accompanied by the ω-phase. As the Nb
element content increases, the transformation range of twins decreases. The number
and size of twins are significantly reduced, as depicted in Figure 8b,c. A few cases of
twinning were observed in the Ti-75Nb (at.%) alloy, as shown in Figure 8d. As the strain
increases, the deformed twins in the alloy gradually disappear, and after a 0.12 strain,
the twins completely disappear and the deformation mechanism completely transforms
into a dislocation slip. This observation aligns with findings on the deformation mode
of a β-Ti alloy studied by Hanada et al. [59]. Due to the β-structure stabilizing effect
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of the Nb element, the deformation mechanism of the alloy changes from twinning to
dislocation slip.

Dislocation and Twinning

In order to study the relationship between twinning and dislocation slip during
deformation, we counted the tensile structure of each compositional alloy at a 0.125 strain.
Statistical assessments were performed to quantify these structures’ twinning fractions and
dislocation densities.

For twinning, as shown in the black line graph in Figure 10, the twinning fraction
gradually decreases in the range of 25% to 75%. The trends of the interfacial ω-phase and
the number of twins are consistent.
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Figure 10. Statistical plots of the number of changes in dislocation density and twin fraction with
alloy composition at 0.125 strain.

Regarding dislocations, they mainly begin to slip during the later stages. The dislo-
cation density is depicted by the red line in Figure 10, and the dislocation density rises
when the Nb content is below 50%. Subsequently, the dislocation density and twinning
fraction diminish as the Nb content is further increased. Notably, twinning vanishes as
the strain is further increased, and the deformation proceeds through dislocation slip.
Furthermore, at Nb contents of 25, 30, 50, and 75 (at.%), the strains at which dislocations
appear after twinning are 0.12, 0.118, 0.11, and 0.108, respectively. These results imply an
earlier tendency for dislocation slip.

Therefore, there is a competitive relationship between twinning and dislocation slip in
the deformation of Ti-Nb alloys. Twinning is the primary deformation method in titanium–
niobium alloys with low niobium content. With the increase in Nb content, the homogeneity
of the twin phase and the interface ω-phase decrease to a lower level, while the dislocation
continues to move. This shift alters the deformation mechanism of the alloy, transitioning
from twinning to dislocation slip.

3.6. The Influence of Strain Rate on the Tensile Mechanical Properties of Ti-Nb Alloy

As shown in Figure 11a, the effect of strain rate on the stress–strain curve of the alloy
is not significant until twin deformation occurs. In the tensile process of single-crystal
BCC Fe nanowires, simulated by Li et al. [57], it was similarly observed that the tensile
rate has a minimal impact on the tensile curve before reaching the peak. With an increase
in strain rate, the strain gradually decreases at the onset of twinning, and the number of
twins also significantly increases. This phenomenon enhances the material’s plasticity,
aligning with findings from compression experiments on Ti-25Nb-3Zr-3Mo-2Sn alloys
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conducted by Zhan [44]. As illustrated in Figure 11a, the transition strain stage from
stacking faults to twin dislocation slip progressively widens with increased strain rate.
Notably, at a strain rate of 0.01 ps−1, a significantly wider transition range is observed.
When the tensile strain rate of the alloy is 0.0001 ps−1, the quantity of twins is exceedingly
limited, as shown in Figure 11b. When the strain reaches 0.125, the twins disappear, and the
deformation mechanism completely changes to a dislocation slip. Moreover, the dislocation
slip continues in the following deformation.
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Figure 11. Tensile behavior of Ti-25Nb (at.%) alloy at 300 K at different strain rates, where:
(a) Tensile stress–strain curves of Ti-25Nb (at.%) alloy at strain rates of 0.0001 ps−1, 0.001 ps−1,
0.01 ps−1; (b) Microstructures of 0.0001 ps−1 strain rate at 0.116 and 0.125 strains; (c) Microstruc-
tures of 0.001 ps−1 strain rate at 0.125 and 0.2 strains; (d) Microstructures of 0.01 ps−1 strain rate at
0.175 and 0.2 strains. (where blue atoms represent BCC structures, green atoms represent FCC
structures, red atoms represent HCP structures, and white atoms represent other structures).

Nevertheless, under higher tensile strain rates, there remains a high level of twinning
during the deformation process, evident in Figure 11c,d. At the strain rate of 0.01 ps−1, the
microstructure within the transformation interval exhibits greater disorder, characterized
by the significant presence of twinning, point defects, and dislocations. The synergistic
effect of various deformation mechanisms significantly improves the plasticity of the alloy.

Ahmed et al. [12] observed that the increase in twinning content with increasing strain
rate is attributed to increased dislocation density at high strain rates. This theory has been
considered in other studies [60].
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4. Conclusions

In this study, we used molecular dynamics to study the effects of strain rate, Nb
composition, and temperature on the deformation mechanisms of Ti-Nb single crystals
during uniaxial tensile deformation. The conclusions derived from the simulations are
as follows:

1. The overall deformation process of Ti-Nb alloys involves point-defect generation,
followed by twinning and ω-phase transition, and ultimately, dislocation slip occurs.
With the increase in the simulation model’s size, the deformed twins’ stability in-
creases, and the strength of the material reduces. In addition, increasing temperature
enhances the plasticity and reduces the strength of the material, while increasing
composition has the opposite effect on the deformation.

2. The elevated stresses resulting from molecular dynamics at higher strain rates cause
the <111>{112} slip system to become more pronounced compared to experimental
conditions. The interfacial ω-phase induced by the <111>{112} slip system also
makes it easier to pass through the energy barrier of the phase transition, making its
formation in the matrix easier.

3. The predominant deformation mechanisms in Ti-Nb alloys involve twinning and
dislocation slip, exhibiting a certain degree of competitiveness. At low Nb content,
the number of twins increases with the increase in Nb content, making twinning
the dominant mechanism in the overall deformation process. At high Nb content,
dislocation slip is still active, but the addition of β-stability elements suppresses
twinning deformation. The proportion of twinning decreases, leading to a shift in the
plastic deformation mode from twinning to dislocation slip.

4. At low strain rates, the twins disappear at a slight strain, while higher strain rates
result in an increased number of twins. Moreover, the transition strain interval from
stacking faults to twin dislocation slip significantly increases. Various deformation
mechanisms work synergistically to enhance the material’s plasticity.
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