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Abstract: A porous Ni50Mn28Ga22 alloy was produced using powder metallurgy, with NaCl serving
as the pore-forming agent. The phase structure, mechanical properties, and magnetic properties of
annealed bulk alloys and porous alloys with different pore sizes were analyzed. Vacuum sintering
for mixed green billets in a tube furnace was employed, which facilitated the direct evaporation of
NaCl, resulting in the formation of porous alloys characterized by a complete sinter neck, uniform
pore distribution, and consistent pore size. The study found that porous alloys within this size range
exhibit a recoverable shape memory performance of 3.5%, as well as a notable decrease in the critical
stress required for martensitic twin shear when compared to that of bulk alloys. Additionally, porous
alloys demonstrated a 2% superelastic strain when exposed to 353 K. Notably, under a 1.5 T magnetic
field, the porous Ni50Mn28Ga22 alloy with a pore size ranging from 20 to 30 µm exhibited a peak
saturation magnetization of 62.60 emu/g and a maximum magnetic entropy of 1.93 J/kg·K.

Keywords: porous alloy; shape memory effect; magnetocaloric effect; superelasticity

1. Introduction

Ni–Mn–Ga alloys have gained significant interest in the field of functional materials
due to their various mechanical, thermal, and magnetic properties, magnetoresistance,
elastic-caloric effect (eCE), and magnetocaloric effect (MCE) [1–7]. The strong superelastic-
ity of the Ni–Mn–Ga alloy is attributed to the stress-induced martensitic transformation.
The one-dimensional Ni–Mn–Ga wire produced using melt spinning reportedly exhibits a
superelasticity of up to 14% [8]. This superelasticity is attributed to its bamboo-like grain
structure, which effectively reduces the obstructive effect of grain boundaries on the marten-
sitic transformation. By reducing the dimensionality, the number of grain boundaries can
be decreased, and the constraint of martensitic transformation can be effectively weakened.
However, stress-induced martensitic transformation in polycrystalline Ni–Mn–Ga alloy is
impeded by grain boundaries, resulting in low macro-superelasticity [9]. To overcome this
problem, researchers have decreased the number of alloy grain boundaries by introducing
pores into the bulk alloy to reduce the resistance to martensitic transformation [10]. The
porous Ni–Mn–Ga alloys prepared using infiltration exhibit a magnetic field-induced strain
of 0.12%, surpassing the limit of the bulk alloy. This is due to the reduction in the hin-
drance to martensitic transformation caused by the addition of pores and subsequent heat
treatment, which results in the formation of a large number of coarse grains in the alloy.
Consequently, unlike one-dimensional materials, porous materials offer another approach
to reducing the dimensionality while also effectively reducing grain boundary constraints.

Ni–Mn–Ga-based alloys exhibit a conventional MCE or eCE in the proximity of
both the first-order martensite transformation (MT) and the second-order magnetic transi-
tion [11,12]. The MCE in Ni–Mn–Ga alloys has been found to be highly contingent on the
alloy’s composition, thereby allowing for the tuning of the MT and magnetic transitions
to overlap through chemical composition adjustments. This facilitates the achievement of
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the transformation entropy during paramagnetic austenite and ferromagnetic martensite,
resulting in an enhancement of the MCE [13]. Furthermore, the tunable transformation
temperature characteristic enables the potential design of a magnetic refrigerator with an
operating temperature closely approximating room temperature [14–17]. The Ni–Mn–Ga
alloy has been designed for use as a temperature sensor or heat accumulator in applications
involving higher temperatures and larger temperature ranges, due to large entropy changes
under a phase transition. Additionally, the porous structure of the alloy can significantly
enhance the heat exchange efficiency between a fluid and a material, owing to its large
specific surface area, which can improve the magnetic cooling effect (MCE) characteristics
of materials. This paper focuses on the mechanical and MCE properties of porous materials
using the cold pressing and sintering method, which differs from the imitation casting
method used in a previous study [18–21].

2. Experimental Procedures

The Ni50Mn28Ga22 (at.%) alloy ingots were prepared using arc-melting high purity
elements of Ni (99.99%), Mn (99.7%), and Ga (99.99%) four times to ensure uniform compo-
sition. After the alloy ingot was broken into powder, the alloy powder of 20–30 µm was
sieved and mixed with NaCl. To control the pore size of the porous Ni50Mn28Ga22 alloy,
the 50 vol.% sieved pure NaCl powders were mixed into the Ni–Mn–Ga powder as the
space holders, where the NaCl powders were sieved into 20–30 µm, 50–75 µm, 112–200 µm,
200–355 µm, respectively. The mixed powder was obtained using ball milling mixtures
consisting of 50 vol.% mechanically ground Ni50Mn28Ga22 powder and 50 vol.% NaCl
powders of various sizes (>99.5% purity) for 5 h. Then, the mixed powder was placed into
a steel mold and a unidirectional pressure of approximately 500 MPa was applied for 1 min.
During the sintering process, the crucible containing the green billets was placed into a
vacuum furnace and heated to 1023 K for 1 h and then heated to 1373 K and kept for 2 h to
make NaCl volatilize from the compact to achieve complete sintering between the powders.
It was then cooled to room temperature with a cooling rate of 5 K/min. The remaining
NaCl was dissolved by immersing the sample into water for 48 h.

The porous alloys were characterized using an SEM (Carl Zeiss, Oberkochen, Ger-
many) equipped with an EDS system to analyze the microstructure, fracture, and composi-
tion. To further examine the grain morphology, the corroded surface was observed using an
optical microscope (Carl Zeiss, Oberkochen, Germany). The sample underwent mechanical
polishing and etching using Kalling’ II solution (100 mL alcohol, 100 mL hydrochloric acid,
and 5 g CuCl2) to prepare the porous surface for analysis. The phase analysis of Cu–Kα

radiation (λ = 1.5406 Å) at room temperature was conducted using an X-ray diffractome-
ter (XRD, Rigaku, Tokyo, Japan). The martensitic transformation was measured with a
heating/cooling rate of 10 K/min using DSC (TA Instruments, New Castle, DE, USA).
Isothermal magnetization M(H) curves within a temperature range of 298–353 K were
obtained using a vibrating sample magnetometer (VSM) of PPMS (Quantum Design, San
Diego, CA, USA) at a heating and cooling rate of 3 K/min, under magnetic fields up to 1.5 T.
Specifically, to measure the M(H) curves, the sample was equilibrated at 353 K to achieve a
full austenite state before being cooled to the test temperature and maintained for 1 min
before starting measurements. Additionally, the magnetic field was applied perpendicular
to the direction of green bodies pressing. The magnetocaloric effect (MCE), characterized
by magnetic entropy change (∆Sm), was then calculated from the M(H) curves based on the
Maxwell relation.

To investigate the mechanical properties of porous alloys, incremental cyclic compres-
sion tests were conducted to assess both their shape memory effect and superelasticity at
room temperature and 353 K. Uniaxial loading and unloading experiments were carried
out using a universal testing machine (DDL-50), with the axial displacement of the sample
being monitored through an extensometer (YUU-25/5). The samples, with a dimension
of diameter 3 × 6 mm, were subjected to a temperature of 353 K (Af + 15 K) for 10 min
during the assessment of the superelasticity effect, ensuring a fully austenitic state and
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complete grain recovery. Additionally, to investigate the dependence of the recoverable
shape memory effect on the pre-strain, the samples were immediately unloaded at the set
strain value upon reaching the specified strain, under the same strain rate.

3. Results and Discussion

The microstructures of NaCl and Ni50Mn28Ga22 alloy powder are depicted in Figure 1a
and Figure 1b, respectively. The NaCl powder displays an irregular shape with a size range
of 20–30 µm after grinding and screening, with a few particles being smaller than 10 µm.
Similarly, the alloy powder exhibits irregularity at a size of 20–30 µm.
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Figure 1. Microstructure of (a) NaCl powder and (b) Ni50Mn28Ga22 alloy powder.

The morphologies of porous alloys with varying pore sizes are presented in Figure 2.
The dual pore structure consisted of a regular pore formed using a pore-forming agent and
small sintered pores (<10 µm). When NaCl with pore sizes of 20–30 µm (a) and 50–75 µm
(b) were added, the porous alloy exhibited an irregular polygonal pore morphology with
sharp corners. Conversely, for larger NaCl pore sizes of 112–200 µm (c) and 200–355 µm (d),
the pore morphology was relatively regular and the shape was similar to the added NaCl.
The magnified view in Figure 2a reveals a complete through-hole structure in the prepared
porous alloy, with well-formed sintering necks between the alloy particles, and a uniform
distribution and relatively consistent size of pores. The pillar of the porous sample, with a
grain size of approximately 25 µm, was composed of multiple martensitic twins arranged
in different directions and formed a well-sintered neck. The illustration in the lower right
corner of Figure 1 shows a microscopic image of a corroded porous alloy pillar captured
using an optical microscope. It can be seen that an obvious lamellar martensite runs
through the entire grain and sintering neck, suggesting that coarse martensite twins were
achieved through pressing sintering without requiring further heat treatment. Moreover,
this structural configuration effectively reduces the number of grain boundaries in the
alloy, while the arrangement of martensitic plates perpendicular to the pillar direction
facilitates the release of individual grain strain. It can be seen from the enlarged image in
Figure 2c that the macropores were caused by the occupation of NaCl particles, but there
were still small pores in the matrix. This is caused by the gaps between alloy particles
during the green billet pressing process, and most of these pores are closed pores. Similarly,
in Figure 2d, the larger pores (red box) in the porous alloy are attributed to the pore-forming
agent, whereas the formation of smaller pores (yellow box) occurred between the alloy
particles during the sintering process.
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Figure 2. Microstructure of Ni50Mn28Ga22 porous alloy with pore sizes of (a) 20–30 µm, (b) 50–75 µm,
(c) 112–200 µm, and (d) 200–355 µm.

Table 1 lists the content and porosity of Ni50Mn28Ga22 porous alloy elements obtained
using sintering at 1373 K. The actual porosity of the porous alloys was calculated using the
following formula:

P = (1 − ρ0/ρ)× 100% (1)

where P represents the porosity, and ρ0 and ρ denote the density of porous Ni50Mn28Ga22
alloy and bulk Ni50Mn28Ga22 alloy, respectively [22]. From the table, it can be seen that the
composition of porous alloys with different sizes was similar, indicating that the pores did
not affect the alloy composition. Compared to the experimental design, the composition
of porous alloys with different pore sizes showed a small amount of Mn volatilization,
which occurred during the sintering. In addition, the porosity was slightly lower than 50%,
which is due to the slight melting of the alloy surface during sintering, causing alloy size
shrinkage.

Table 1. Content and porosity of Ni50Mn28Ga22 porous alloys with different pore forming agent size.

Pore Forming
Agent Size (µm)

Ni
(at.%)

Mn
(at.%)

Ga
(at.%) Porosity (vol.%)

20–30 47.10 26.72 26.18 41.24
50–75 50.20 25.34 24.46 43.94

112–200 47.14 25.66 27.20 46.64
200–355 47.38 26.77 25.85 51.22

The DSC curves and room temperature XRD patterns of the Ni50Mn28Ga22 porous
alloy with different pore sizes are depicted in Figure 3a and Figure 3b, respectively. The DSC
curve reveals a singular endothermic peak during heating and a separate exothermic peak
during cooling for samples with various pore sizes, indicating a one-step transformation
consistent with the as-cast samples [23]. The phase transition start and finish temperatures
(Ms, Mf, As, Af), as well as the Curie point (Tc) of the porous alloy, were determined using
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the tangent method and are presented in Table 2 for evaluation. The thermal hysteresis ∆T
was calculated using ∆T =

(
As − M f + A f − Ms

)
/2. It is noteworthy that the positions of

the endothermic and exothermic peaks and the phase transition temperature across various
pore sizes exhibited no significant changes. In addition, as the pore size increased, the
height of the phase transition peak decreased and widened, and this change in peak shape
was caused by lattice distortion, which was caused by stress [24]. The larger pores cause
severe deformation of the alloy powder during the pressing process, resulting in a stress
concentration. The transformation of late heat ∆H calculated using the phase transition
peak was 10.23, 9.62, 9.62, and 9.48 J/g, in order of pore size from small to large, with no
significant difference. This indicates that the pore size does not affect the amount of grains
involved in phase transformation in porous alloys. The XRD pattern in Figure 3b illustrates
that the Ni50Mn28Ga22 porous alloy possesses a non-modulation martensite structure (NM)
with a tetragonal arrangement at room temperature. Furthermore, all diffraction peaks
can be attributed to the NM martensite phase, implying that the porous alloy retains a
uniform composition and does not undergo second-phase precipitation subsequent to
sintering [25–28]. The lattice constants and cell volumes of porous alloys with different
pore sizes were calculated from XRD curves and are listed in Table 3. It can be seen that the
pore size had no significant effect on the lattice constant and cell volume.
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Table 2. The phase transformation temperatures (Ms, Mf, As, Af), Curie point (Tc), and hysteresis ∆T
of the Ni50Mn28Ga22 porous alloy.

Pore-Forming Agent
Size (µm)

Ms
(K)

Mf
(K)

As
(K)

Af
(K)

Tc
(K)

∆T
(K)

20–30 320.93 311.41 321.49 333.16 364.63 14.88
50–75 323.52 307.45 320.37 338.13 365.16 16.08

112–200 320.17 309.14 319.93 333.96 365.04 11.28
200–355 320.74 309.18 318.61 334.29 366.19 13.48

Table 3. Lattice parameters and cell volume of calculated according to the X-ray diffraction data of
Ni50Mn28Ga22 porous alloys.

Pore-Forming Agent Size
(µm)

Lattice Constant (Å)
Cell Volume (Å3)

a b c

20–30 3.83 3.83 6.66 97.89
50–75 3.87 3.87 6.58 99.06

112–200 3.86 3.86 6.59 98.52
200–355 3.88 3.88 6.57 99.16
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3.1. Shape Memory Effect

The mechanical properties of magnetocaloric materials are of crucial importance for
their potential applications. The Af temperature of the samples, as depicted in Figure 3a,
was approximately 340 K. Therefore, shape memory effect tests were conducted at room
temperature (295 K), wherein the samples were in a completely martensitic state. The
comparison between the annealed bulk alloy and porous alloys with different pore sizes
(20–30 µm, 112–200 µm, and 200–355 µm) is illustrated in the compression experiment
results shown in Figure 4. The sample underwent compression experiments using a cyclic
increment method, wherein it was first subjected to a compression recovery of 1%, followed
by heating at 473 K for 10 min to achieve shape memory recovery. Subsequently, after
the sample cooled down, the next compression process was initiated. Each compression
process increased the compression amount by 0.5% compared to the previous one until the
sample eventually collapsed.
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In Figure 4a, the annealed bulk alloy exhibits an observable inflection point during the
compression process, marked by the red arrow, indicating the de-twinning process of the
martensite variant. It is evident from Figure 4b that the porous sample experienced a sig-
nificant reduction in maximum stress when subjected to the same compression force as the
bulk alloy. This reduction can be attributed to the decrease in the equivalent cross-sectional
area resulting from the presence of numerous pores. Simultaneously, the abundance of
pores led to a decrease in the number of grain boundaries, thereby lowering the resistance
of the martensite twin movement. Notably, the 20–30 µm porous alloy demonstrated
an enhanced elastic recovery compared to the bulk material. This enhancement can be
attributed to the pores serving as a buffer layer during the deformation process, absorbing
some strain and augmenting the elastic deformation of the material.
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At the same time, the critical stress of martensite variant detwinning gradually de-
creased with an increase in the compression time. This can be attributed to the path effect
resulting from the repeated compression process, which also exists in bulk alloys [5,29–34].
The process leads to the reorientation of dislocations, causing some disadvantageously
oriented dislocations to move outside the twin motion path [35]. Consequently, this results
in a decreased resistance to twinning motion. Due to the difference in porosity between
porous and block structures, when stress is applied to the porous structure, the actual stress
borne by the structure is greater than that stress. In addition, if the stress is divided by the
relative density of the sample, the actual force acting on the porous alloy pillar node can
be obtained. It is worth noting that under a 1% pre-strain, the equivalent stress of porous
alloys is 24.5 MPa

1−41.24% = 41.69 MPa [36], which is significantly lower than that of bulk alloys
(76.24 MPa), which also confirms that pores, as elastic layers, store some stress. The increase
in twin stress caused by a 3% compression is attributed to work-hardening resulting from
the accumulation of a large number of dislocations due to extensive deformation. During
a 3.5% compression, the sample experienced a partial pillar fracture. As the pore size
increased, the brittleness of samples with pore sizes of 112–200 µm and 200–355 µm also
increased, leading to premature fracture (Figure 4c,d). This is because the larger pores
reduced the overall structural strength of the alloy, causing significant local stress during
the stress process, leading to the early collapse of the specimens.

To better analyze the phase transition process during the sample recovery stage, the
recovery rate of each strain component of the annealed bulk and 20–30 µm porous alloy
specimen are illustrated in Figure 5. The compression strain during each load–unload–heat
recovery cycle comprises four components: elastic recovery strain εel, superelastic recovery
strain εse, shape memory effect (SME) strain εsme, and irrecoverable strain εir, where the
total strain εsum is the sum of these individual components, as shown in Figure 5a [18] and
the following formula:

εsum = εel + εse + εsme + εir (2)

Figure 5b shows the shape memory strain variation with pre-strain of bulk alloys
and porous alloys with pore sizes of 20–30 µm. It can be seen that the shape memory
strain of the bulk alloys gradually increased with the increase in pre-strain, while the shape
memory strain of porous alloys remained constant. This is because the Ni50Mn28Ga22
bulk alloy can conduct stress between adjacent grains without loss during deformation.
However, due to the addition of pores, stress can only be transmitted along the pillars
or nodes, and pores act as elastic layers, absorbing a large amount of strain, resulting in
fewer grains in porous alloys where stress reaches the critical stress of martensitic twin
reorientation, resulting in lower shape memory strain and higher elastic recovery. It is
worth noting from Figure 5c,d that the presence of superelastic strains in both bulk and
porous alloys can be attributed to the austenitic phases in the alloys. Notably, the porous
alloy exhibited a markedly higher elastic strain than the bulk alloy due to the abundance of
pores in the former, effectively serving as a buffer layer. Despite this difference, both types
of alloys displayed the same proportion of shape memory strain. However, it is important
to highlight that the pores lead to a significant reduction in the irrecoverable strain of the
alloy. This phenomenon is attributed to the presence of a large number of dislocations in
bulk alloys, which tend to concentrate stress and form cracks at their sites. Conversely,
the introduction of pores in porous alloys substantially decreases the number of grain
boundaries, making it challenging for stress to concentrate in dislocations, and thereby
minimizing the occurrence of grain boundary fractures. Nevertheless, the incorporation of
pores also introduces structural drawbacks to the alloy. Owing to the reduced strength of
the sintered neck area, the sample is unable to withstand considerable stress, resulting in a
lower maximum deformation capacity for the porous alloy compared to the bulk alloy [37].
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To further analyze the fracture process of the alloy, the fracture of the annealed bulk
alloy and the 20–30 µm porous alloy were examined. Due to the inherent brittleness of the
bulk NiMnGa alloy, most of the fracture surface was an intergranular fracture (Figure 6a),
which aligned along the stress direction. There was also a small amount of transgranular
fracture. In contrast, Figure 6b reveals a combination of intergranular and transgranular
fractures on the porous alloy’s fracture surface. Notably, most of the intergranular frac-
tures resulted from weak sintering necks, while well-sintered sintering necks exhibited
transgranular fractures. It is obvious that the stress threshold for an intergranular fracture
is lower than that for a transgranular fracture. Consequently, stress initially triggers the
fracture of weak sintering necks in porous alloys and then concentrates on the grain of
the alloy pillar, causing a transgranular fracture. Therefore, enhancing the strength of the
sintering neck in porous alloys can significantly enhance their overall strength.
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3.2. Superelastic Effect

The specimens of the Ni50Mn28Ga22 bulk and porous alloys displayed distinct mechan-
ical properties in the martensitic and austenitic states as a result of the shape memory effect
and superelastic effect exhibited in these two states, respectively. Testing the mechanical
properties of the samples at various temperatures was therefore imperative. Based on
the DSC curve of the Ni50Mn28Ga22 alloy, the Af point was approximately 340 K. Conse-
quently, the samples were heated to 353 K to guarantee the complete transformation of the
alloy into the austenitic phase, followed by conducting a superelastic mechanical test on
the specimens.

The experimental method was similar to the shape memory testing process, excluding
the heating recovery process. For clarity, the stress–strain curve was translated along the
X-axis direction. The cyclic stress–strain curve of the bulk alloy is shown in Figure 7a. The
bulk alloy exhibited a stress plateau at 42 MPa under a 1.5% pre-strain, while significant
work hardening occurred at a 3% pre-strain. Compared with the stress–strain curve at room
temperature, the bulk alloy at high temperature exhibited a significant recovery process
during the stress release stage, but there was still a large amount of irrecoverable strain,
which may be due to part of martensite undergoing reverse transformation during the stress
release stage. Due to the accumulation of dislocations caused by a stress concentration, there
was still some residual martensite in it [31,38]. As for the Ni50Mn28Ga22 alloy in Figure 7b,
the recovery stage at high temperatures displayed significant recovery compared to room
temperature, indicating that most of the grains were austenite and the sample underwent
superelastic strain. Upon reaching a certain stress level, a noticeable inflection point is
evident in the 1.5% and 2% compression curves, denoting a stress-induced martensitic
transformation. Martensitic transformation occurs in austenite once the deformation of
austenite reaches a specific value, resulting in a sudden change in the slope of the curve.
During the initial loading stage, there was no significant change in the slope of each
compression curve, suggesting elastic deformation. The presence of numerous pores
enhances the activation of a dislocation slip or accumulation faults at high stress levels. The
porous alloy collapsed at a preset strain of 2.5%, indicating that its ultimate compressive
strain was approximately 2% at 353 K, and it could withstand a maximum stress of 100 MPa.
The critical stress for martensitic transformation in the sample was approximately 83 MPa,
significantly lower than that of polycrystalline bulk alloys (200 MPa) [18].
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In order to better compare the stress conditions of bulk and porous alloys, the stress–
strain curves were decomposed to obtain Figure 7c,d. Due to the collapse of porous alloys
under a 2.5% pre-strain, only the 1–2% pre-strain curve was analyzed. It can be seen that
compared with bulk alloys, porous alloys had a significantly lower irreversible deformation
and a higher elastic deformation. This is because the addition of pores allows dislocations
to only develop along a fixed path, reducing the accumulation of dislocations. Furthermore,
a large number of pores act as buffer layers, absorbing some of the strain, leading to an
increase in elastic deformation. It is worth noting that during the 1% and 2% pre-strain
compression processes, the superelastic strain of porous alloys was significantly higher
than that of bulk alloys, indicating once again that the addition of pores is beneficial in
reducing the hindrance of grain boundaries to the phase transformation process. The
porous structure reduces the number of grain boundaries, lowering the resistance of phase
transformation and aligning the critical stress of stress-induced phase transformation of
the porous alloy with that of the wire [9]. In addition, the red line in Figure 7c,d represents
the energy absorption of the corresponding stress–strain curve. The energy absorption
was obtained by calculating the area enclosed by the stress–strain curve and the X-axis in
Figure 7a and Figure 7b, respectively. It can be seen that due to the lower critical stress of
phase transformation, the energy absorption of porous alloys was significantly lower than
that of the bulk alloys. A lower critical stress for phase transformation is advantageous in
reducing the energy loss of the sample during cyclic compression.

3.3. Magnetocaloric Effect

The isothermal magnetization curves M(H) were measured to assess the magnetic
properties and magnetocaloric effect (MCE) of the Ni50Mn28Ga22 porous alloy. Prior to the
measurements, the sample was heated to the austenitic state and subsequently cooled to the
measurement temperature without the influence of a magnetic field, following the method
of zero field cooling (ZFC). After completing the measurement at a specific temperature,
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the sample was directly cooled down to the next temperature for the continuation of the
measurements. The test involved the application of a vertical magnetic field ranging from
0 to 1.5 T, with a temperature interval of 5 K, as shown in Figure 8.

The saturation magnetization of the Ni50Mn28Ga22 alloy gradually increased with
decreasing temperatures between 298 K and 353 K, as evidenced in Figure 8a,c,e,g, regard-
less of whether it was a bulk or a porous alloy. The magnetization curves exhibit distinct
characteristics, with some belonging to martensite and others to austenite. It is important
to note that both the low-temperature martensite and high-temperature austenite phases
are ferromagnetic. The introduction of a porous structure into the alloy has a negligible
effect on the saturation magnetization. At a magnetic field of 1.5 T, the magnetization of
the annealed bulk and porous alloys with different pore size structures was approximately
49.30, 62.60, 61.99, and 59.93 emu/g, respectively. However, the varying pore sizes had a
minimal impact on the saturation magnetization of the alloy, and any slight differences
observed could be attributed to composition deviations.
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The magnetic field-induced entropy change ∆SM can be calculated using the Maxwell
relation, where the partial derivative is replaced by finite differences and integration
numerically [26,39–45]:

∆SM = SM(T, H2)− SM(T, H1) =
∫ H2

H1

(
∂M
∂T

)
H

dH (3)

The temperature-dependent ∆SM for annealed bulk and porous alloys with different
porous sizes is shown in Figure 8b,d,f,g, respectively. A common characteristic of the sam-
ples was that the magnetic entropy change ∆SM value of the alloy increased gradually with
the increase in the magnetic field, and there was a peak in the transformation temperature
region. The origin of the large ∆SM peak in Ni50Mn28Ga22 could be attributed to the con-
siderable magnetization jump caused by the phase transformation between martensite and
austenite during heating. This is due to the large difference in magnetization between the
high temperature austenite phase and the low temperature martensite phase, resulting in
the alloy having the largest magnetic entropy change near the transformation temperature.
Moreover, the magnetic entropy of alloys with a pore structure in the same magnetic field
was larger than that of bulk alloys. Specifically, the magnetic entropy changes in the ∆SM of
bulk and porous alloys with different pore sizes obtained under a 1.5 T magnetic field were
1.68, 1.93, 1.35, and 1.89 J/kg·K, respectively. This indicates that the porous alloy exhibited
a better magnetocaloric effect under the same conditions. This may be attributed to the
fact that the porous structure reduces the number of grain boundaries, thereby reducing
the resistance to domain movement. Additionally, as a magnetic cooling material, the
existence of a large number of through-holes can also increase the internal and external heat
exchange efficiency of the material, thereby improving the magnetothermal refrigeration
efficiency [46,47].

Porous alloys based on Ni–Mn–Ga exhibit various properties and possess an interest-
ing characteristic—the capability to tune the martensitic–austenitic transition over a broad
temperature range through adjustments in the Ni, Mn, and Ga content, or the addition of
substitute elements [48–50]. Therefore, these alloys with porous structures have low costs,
high magnetic entropy changes under relatively low external fields, easy-to-control transi-
tion temperatures, and significant surface areas that facilitate effective thermal medium
conduction and heat exchange, making them powerful candidates for magnetic refrigerants.
However, the current limitations in the application of these alloys stem from their low
structural strength and the unclear impact of the pore structure on performance. Adjusting
the heat treatment and composition to improve structural strength will further enhance the
mechanical and magnetic properties of porous alloys.
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4. Conclusions

This paper presents the successful preparation of a porous Ni50Mn28Ga22 alloy with
a three-dimensional pore structure and approximately 50% porosity through a process
involving cold pressing and sintering, using NaCl as a pore-forming agent. The preparation
method is simple to implement and offers flexibility in adjusting the pore diameter and
the morphology and porosity of the porous alloy. The resulting porous alloy, characterized
by a pore size of 20–30 µm, demonstrated the capability to achieve a 3.5% recoverable
strain at room temperature and 2% superelastic strain at 353 K. Notably, the introduction
of pores in the Ni50Mn28Ga22 alloy significantly reduced the critical stress of the phase
transformation, as observed at only 80 MPa, in comparison to polycrystalline bulk alloys.
This reduction is advantageous for diminishing energy loss during the cycling process.
Moreover, the introduction of pores into the alloy led to an improvement in its saturation
magnetization and magnetocaloric effect. Specifically, under a 1.5 T magnetic field, the
porous Ni50Mn28Ga22 alloy with a pore size of 20–30 µm exhibited a maximum saturation
magnetization of 62.60 emu/g and a maximum magnetic entropy of 1.93 J/kg·K.
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