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Abstract: High-entropy alloys (HEAs) attract much attention as possible radiation-resistant materials
due to their several unique properties. In this work, the generation and evolution of the radiation
damage response of an FeNiCrCoCu HEA and bulk Ni in the early stages were explored using
molecular dynamics (MD). The design, concerned with investigating the irradiation tolerance of the
FeNiCrCoCu HEA, encompassed the following: (1) The FeNiCrCoCu HEA structure was obtained
through a hybrid method that combined Monte Carlo (MC) and MD vs. the random distribution
of atoms. (2) Displacement cascades caused by different primary knock-on atom (PKA) energy
levels (500 to 5000 eV) of the FeNiCrCoCu HEA vs. bulk Ni were simulated. There was almost
no element segregation in bulk FeNiCrCoCu obtained with the MD/MC method by analyzing the
Warren–Cowley short-range order (SRO) parameters. In this case, the atom distribution was similar
to the random structure that was selected as a substrate to conduct the damage cascade process. A
mass of defects (interstitials and vacancies) was generated primarily by PKA departure. The number
of adatoms grew, which slightly roughened the surface, and the defects were distributed deeper as
the PKA energy increased for both pure Ni and the FeNiCrCoCu HEA. At the time of thermal spike,
one fascinating phenomenon occurred where the number of Frenkel pairs for HEA was more than
that for pure Ni. However, we obtained the opposite result, that fewer Frenkel pairs survived in
the HEA than in pure Ni in the final state of the damage cascade. The number and size of defect
clusters grew with increasing PKA energy levels for both materials. Defects were suppressed in the
HEA; that is to say, defects were “cowards”, behaving in an introverted manner according to the
anthropomorphic rhetorical method.

Keywords: high-entropy alloys; primary damage; defects; clusters; molecular dynamics simulation

1. Introduction

The structural properties and performances of high-entropy alloys are unique and
interesting issues that have attracted intensive attention [1–10]. HEAs consisting of four or
more elements with equal atomic concentrations are intriguing materials because of their
excellent comprehensive properties as structural materials [2] which contribute to sluggish
diffusion [3,7,9], critical internal lattice distortion [8,11–13], and corrosion resistance [14–16].
More demands for nuclear energy are met using HEAs, which are considered promising
materials for fusion and generation IV fission reactors [17–20].

In general, the materials manifest sharply declining performances in hardening
and swelling under irradiation [12,21–29]. Introducing several defects sinks can effec-
tively enhance the radiation resistance of materials, such as oxide-dispersion-strengthened
steels [30,31] and nanograined polycrystalline alloys [32]. Nevertheless, these structures
almost always behave unstably in extreme radiation environments [33–38]. It has been re-
ported that Ni-containing HEAs are strong at high-temperatures [39,40] and have excellent
microstructural stability [41–43]. In addition, Ni-containing HEAs can reduce structural
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damage under irradiation by adjusting their alloy composition without pre-existing defect
sinks [37,44]. Recent studies (including experiments and simulations) have shown that these
compositional effects reflect the advantages of radiation resistance on Ni-containing [40]
HEAs. In experiments, the various alloy compositions of Ni-containing HEAs can suppress
radiation swelling [45,46]. In simulations, defect accumulation has been suppressed in
NiCoCr [47] and NiCoCrFeMn HEAs [48].

Many studies have shown that these alloys participate in the damage cascade pro-
cesses by which a considerable amount of information—the generation, distribution, and
evolution of defects—is acquired in the mechanism of radiation resistance [49–53]. The
defect clusters (vacancy clusters and interstitial clusters) become independent individu-
als for Ni-containing HEAs that play a vital role in inhibiting swelling [22,24,35,37,44,50].
The generation of dislocation during the process of the damage cascade is beneficial for
reducing the radiation hardening of FeNiMnCr HEAs at room temperature and higher [41].
For Ni-based high entropy alloys, there is a phenomenon of continuous defect generation
compared to pure Ni, and refining grain size is also a means to reduce defect genera-
tion [54,55]. However, investigating the defects and dislocations generated by primary
damage is lacking. Also, it is difficult to accurately research the evolution of atomic-level
defects in experiments.

Molecular dynamics (MDs) can perform a damage cascade, defect evolution, and
dislocation migration behavior at the atomic level, which is conducive to revealing the
radiation resistance mechanism of HEAs. FeNiCrCoCu HEAs have recently attracted a
lot of attention due to its excellent performance, and further research is needed on the
irradiation displacement cascade process [56–59]. Due to the limited timescale and defect
suppression, the formation of defect clusters is seldom observed in the MD simulation for
FeNiCrCoCu HEAs.

In this work, variable PKA energies at the same temperature (300 K) accompanied
by displacement cascade simulations were studied with MDs for FeNiCrCoCu HEAs and
pure Ni. The generation and evolution of defects, clusters, and dislocations were captured
in both materials. Additionally, it is notable that more defects are generated for the HEA
than for pure Ni under the thermal peak state. However, the opposite results show that
fewer defects are generated for the HEA than for pure Ni in the final state. HEAs have the
effect of suppressing defects, which is beneficial for their nuclear material applications.

2. Methods
2.1. Model and Simulation
2.1.1. Search for Stable Structure

For the equimolar FeNiCrCoCu HEAs and pure Ni samples, the embedded atom
method (EAM) potential [60] used by Deluigi [61] was adopted. Several investigations have
conducted this potential in depth [61] and described this HEA sample successfully [59,62].
In order to reach chemical equilibration, a hybrid method that combines the Metropolis
Monte Carlo (MMC) method and MD was constructed, which is the way to reach the
thermodynamically correct occupation of atomic sites. In the simulation process, the
random distribution atom was chosen as the initial configuration, and the energy of the
system was calculated using MD. The execution steps of MMC/MD, which is a self-
compiled code, are as follows: (1) a new configuration is created by exchanging the position
of two different atom types randomly; (2) the system energy of the exchanged configuration
is calculated by MD after energy minimization; (3) the standard Metropolis method is
used to determine whether a new configuration is accepted. The acceptance probability
as follows: Pnew/Pold = exp {−∆U/kT}, where kT is the Boltzmann factor and ∆U is the
energy difference as a result of comparing the old state (before position exchange) and
the new state (after position exchange). The new state is accepted when Pnew/Pold is
larger than 1.0; otherwise, the new state is accepted within the probability Pnew/Pold [63].
The details of this method are widely used in the structural calculation of high-entropy
alloy structures [63,64]. To identify whether the final configuration obtained from the
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MMC/MD method is realistic, we also created a configuration for the random distribution
(RND) of atoms to contrast it with.

2.1.2. Irradiation Simulations

The whole process of studying the displacement cascade was conducted using a
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS) [65], and all initial
random configuration samples were obtained with ATOMSK [66].

The short-range potential function was needed to describe the interaction in the
radiation cascade process, and the potentials transferred smoothly to the universal screened
Ziegler–Biersack–Littmark (ZBL) potential [67].

The FeNiCrCoCu HEA with random element distribution as the initial structure
existed in a well-defined face-centered cubic (FCC) solid solution structure (which contained
Fe, Ni, Cr, Co, and Cu elements in an equimolar ratio). Primary knock-on atoms (PKAs)
with energy EPKAs of 500 eV, 1000 eV, 3000 eV, and 5000 eV were modeled within each
simulation box; the size of the simulation box was determined by the incident atomic energy.
For PKA energies of 500 eV, 1000 eV, 3000 eV, and 5000 eV, the simulation boxes were
20 a0 × 20 a0 × 25 a0, 25 a0 × 25 a0 × 30 a0, and 30 a0 × 30 a0 × 35 a0, respectively (here,
a0 = 3.56 Å is the lattice parameter of the FCC FeNiCrCoCu HEA matrix). There is a vacuum
space of about 5 a0 above the matrix surface in the simulation box. Thus, the simulation
cells contained 32,000, 62,500, and 108,000 atoms, respectively. The z-direction [001] was
set to the free surface as the incident plane. Furthermore, the x- (the [100] directions) and
y-directions (the [010] directions) were periodic boundary conditions. In order to reach
thermodynamic equilibrium before conducting the displacement cascade simulation, the
NVT ensemble was adopted at approximately 200 ps while the simulation cell relaxes in
the present form (at the temperature of 300 K). Here, the timestep was 1 fs. Then, the
simulation method of impingement was similar to those in [68,69].

The simulation box can be applied in three parts perpendicular to the surface: in
order to stabilize the center of mass of the substrate, the bottom two layers were fixed and
immobile. To maintain the stability of the temperature source, a Nosé–Hoover thermostat
was used to keep the temperature constant in the middle 3 lattice layers. We put enough
space so that the displacement cascade could not reach the middle part in the top layers
(the remaining portion except the middle and bottom layers) to simulate the impact of
impingement on a free surface. There was no thermostat in this part; it was executed with
standard velocity Verlet integration for both pure Ni and the FeNiCrCoCu HEA matrix,
and the Ni atom was randomly selected from the surface as an incident atom into the free
surface. At least 20 independent impingement events were simulated in order to ensure
the accuracy of the simulation statistics. When simulating the incident events, we switched
the fixed time step of 0.1 fs to a variable time step in the range of 10−6 to 10−1 fs, where the
maximum distance for the movement of an atom in one time step was 0.01 Å. It took 20 ps to
monitor the process of displacement cascade generation to ensure that each defect could be
obtained. Thus, the whole process (the relaxation and cascade processes) took about 500 ps.

For comparison, the pure Ni (FCC crystal) simulation model, in which the lattice pa-
rameter a0 = 3.52 Å, were in the same sizes as well. Additionally, the calculation procedure
was consistent with the above for FeNiCrCoCu HEA.

2.2. Short-Range Order Parameters

In order to research whether there was element enrichment in the HEA, we calculated the
Warren–Cowley short-range order (SRO) parameters [70,71] of bulk FeNiCrCoCu, which can
assess the local order degree. The following formula is the definition of the SRO parameter:

αA−B = 1 − PA−B
CB

(1)

where αA-B is the SRO parameter for the binary A-B system. PA-B is the probability of
finding the B atom from the first nearest neighbor of the A atom. CB is the proportion
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of type B [72]. Equation (1) defines the SRO parameter in a system with two elements.
The system is a fully random state if αA-B is close to zero. A positive value indicates that
A-B pairs are smaller than those in a fully random structure, and a negative one represents
A-B pairs which become more numerous, meaning B atoms precipitate around type A [63].
For a system with N atom types, there exists a set of N(N+1)

2 SRO parameters to describe
the system’s parameter.

The visualization of the irradiation damage process and the defects were analyzed using
the open-source application OVITO (ovito-basic-3.10.3-win64). The software is being developed,
distributed, and supported by OVITO GmbH, a German software company founded by the
original developer of OVITO, Dr. Alexander Stukowski, and other team members [73]. The
vacancies, interstitials, and antisites were distinguished with the Wigner–Seitz method [74].
We denoted vacancies when there were no atoms in Wigner–Seitz cells. The interstitials were
defined as when the Wigner–Seitz cells contained multiple atoms. Antisite defects were labeled
when an atom occupied a site which was previously occupied by another atom type. In this
work, the generation and evolution processes of vacancies and interstitials were mainly
noticed. In addition, more studies should be performed on the generation and evolution
of clusters in the process of displacement cascade generation. We defined clusters as two
or more vacancy and interstitial aggregation behaviors. Here, clusters of different levels
are defined as follows: (1) If the defect number count ranges from 2 to 10, it is called an
intermediate-size cluster. (2) If the defect number count is greater than 10, the large-size
clusters label is applied. This method of defining the sizes of clusters is the same as that
in Ullah and co-workers’ investigation [75]. Finally, the dislocation extraction algorithm
(DXA) was used as a tool for identifying the dislocation loops and dislocation lines [76] and
common neighbor analyses (CNAs) [77,78] were used to resolve atoms within the stacking
fault regions.

3. Results
3.1. Lattice Distortion and Thermodynamic Equilibrium of FeNiCrCoCu

The intrinsic lattice distortions in HEAs, which are caused by different atomic sizes,
are generally regarded as one of the main effects [79]. The full width at half maximum
(FWHM) of the first peak in the radial distribution function g was calculated to evaluate the
degree of the lattice distortions. The radial distribution g as a function of the interatomic
distance r was obtained from Gaussian fitting. The comparison of the FeNiCrCoCu HEA
with Ni allowed for a direct assessment of the thermal displacement magnitude.

In Figure 1, one can see that the first peak of the radial distribution function of Ni
is higher than that of the HEA at 300 K, which implies that, in addition to the thermal
distortion caused by temperature, intrinsic lattice distortions from the atomic radius in
the HEA exist. The first peak representing the order degree of the system g(r) broadens.
The HEA has a large FWHM of the radial distribution function (the FWHM of Ni and
HEA are 0.16 Å and 0.175 Å, respectively, as shown on the right of Figure 1) at the same
temperature (300 K). The finite width is attributed to the different atomic sizes leading
to atomic displacements. This indicates that the atoms do not coincide with the ideal
FCC lattice sites very well.

Figure 2 depicts the atomic volume per atom for the final state of the relaxation process,
through which we could probe and directly compare the features of every different atom.
The atomic volume of each atomic type in the HEA is larger than that in pure Ni. In
addition, there also exist differences in the atomic volumes of Fe, Ni, Cr, Co, and Cu, which
causes the intrinsic lattice distortions in the HEA. Additionally, the average atomic volume
is consistent with the description of the above results, as shown in the inset of Figure 2.
Here, the atomic volume is the Voronoi volume, which is defined as the smallest volume
of a polyhedron enclosed by the vertical bisector of the line between the atom and its
neighboring atoms.

In order to research whether there was atom enrichment in the FeNiCrCoCu alloy,
we calculated the Warren–Cowley short-range order (SRO) parameters [70,71] of bulk
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FeNiCrCoCu, which can assess the local order degree. Figure 3 shows the SRO parameters
between different elements in the bulk HEA. It can be seen that the value of the Cu–Cu pair
is relatively large but is below 0.1 (the values of all pairs are all close to zero), indicating
there is almost no enrichment in bulk FeNiCrCoCu. Therefore, according to the conclusion
of the CSRO, the high-entropy alloy structure calculated by MD/MC is similar to the
random structure. In order to save computational resources and time, we selected the
random-structure high-entropy alloy as the irradiation damage matrix in our work.
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Ni for pure Ni) in the final steady state. The inset on the right is the average atomic volume of pure
Ni and the HEA.

3.2. Frenkel Pair Generation

We compared the number of surviving Frenkel pairs (FPs) produced in the two cases
(an FeNiCrCoCu HEA and pure Ni) under various PKA energies (500 eV, 1000 eV, 3000 eV,
and 5000 eV). In addition, all simulated states were at a 300 K temperature and in the final
state of cascade simulation, as shown in Figure 4a. When the PKA energy is relatively
small, i.e., 500 eV, there are fewer defects in the substrate in the final state. By comparison,
it is interesting to note that there are fewer surviving Frenkel pairs for the FeNiCrCoCu
HEA than for pure Ni at the end state of the simulation for each PKA energy level. This
phenomenon indicates that the retention of point defects (vacancies and interstitials) is
inhibited as compared with pure Ni.
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Figure 4. (a) Number of surviving Frenkel pairs for pure Ni and the FeNiCrCoCu HEA at the end
state of simulation at different PKA energies and (b) the reduction in Frenkel pairs in FeNiCrCoCu at
different PKA energy levels (here, we define the reduction in Frenkel pairs as the number of surviving
Frenkel pairs in pure Ni minus that in HEA).

The reduction in FPs (REFPs) emphasizes the inhibited magnitude. Here, we define
REFPs as the number of surviving FPs in the FeNiCrCoCu HEA minus that in pure Ni. It
can be seen from Figure 4b that there is an upward trend of REFPs with the increasing PKA
energy, which indicates that FP suppression in HEAs is more intense with increasing PKA
energy levels.

3.3. Defects Aggregate into Clusters

Figure 5 depicts snapshots of the defect distributions in the final state of pure Ni
(a–d) and the FeNiCrCoCu HEA (e–h) with increasing PKA energy levels. In both cases,
the number of defects and defect clusters generally grows with increasing PKA energy
values. The vacancy is exactly in the initial position of the PKA after it departed. It is
interesting to note that the stable defects are composed of self-interstitials in the substrate
and adatoms on the surface. The adatom is hard to recombine with the vacancy due to its
long distance. The release of internal stress after the displacement cascade is attributed to
the adatoms. There are two types of distribution of interstitials; many of the interstitials
beneath the surface migrate upward to form adatoms, and the others are stably located
deeper in the substrate. On the contrary, the distribution of vacancies often gathers, and
the interstitials are always around the periphery of the vacancies for both pure Ni and the
FeNiCrCoCu HEA, which means the interstitials are relatively active, as shown in Figure 5.
Evidently, this behavior is found in pure BCC tungsten (W) [80]. At low PKA energies
(500 eV), interstitials exist in the form of single interstitials and are accompanied by a few
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intermediate-sized interstitial clusters for pure Ni (Figure 5a). However, only a single
interstitial exists for HEAs even at 1000 eV of PKA energy (Figure 5e,f). When the PKA
energy increased to 3000 eV (Figure 5c,g), small interstitial clusters frequently result from
single interstitials starting to aggregate. The formation of interstitial clusters is severed
when the PKA energy further increases (Figure 5d,h).
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Figure 5. Snapshots of defect distributions in the final state of pure Ni and the FeNiCrCoCu HEA
with increasing PKA energy: (a) Ni-500 eV, (b) Ni-1000 eV, (c) Ni-3000 eV, (d) Ni-5000 eV, (e) HEA-500
eV, (f) HEA-1000 eV, (g) HEA-3000 eV, and (h) HEA-5000 eV. Here, the gray, yellow, white, purple,
green, and red circles are Fe, Ni, Cr, Co, Cu, and vacancy atoms, respectively.

As a typical example, Figure 6 describes the cascade damage process for the PKA
energy of 5000 eV at 300 K for Ni. White circles represent other structures that mean
the structure is neither FCC nor BCC nor HCP. Before the PKA departs, all atoms are in
their respective lattice positions, as shown in Figure 6a. The dislocations expressed by
Burgers’ vector, 1/6[1 −1 2] and 1/6[2 −1 −1], first occur at t = 1.42 ps of the system
(labeled with a red circle in Figure 6b), where the total line length is 18.128 Å. During the
defect recombination process, a dislocation moves upward toward the top surface to release
the internal stress and is transformed into adatoms at t = 5.37 ps; the total line length is
8.643 Å and is labeled as 1/6[1 1 −2] (green lines are Shockley−type dislocations). At
approximately 229.93 ps, the dislocations near the surface change to another type (Stair–rod
dislocation type), labeled as 1/6[1 0 −1], 1/6[0 −1 1], 1/6[−1 1 0], and 1/6[−1 1 0], and
the total line length is 35.777 Å. The Stair–rod dislocations always exist in a stable state.
A similar phenomenon is found in the FeNiCrCoCu HEA. The cascade damage process
for the PKA energy of 5000 eV at 300 K for the HEA is shown in Figure 7. Before the
PKA departs, all atoms (Fe, Ni, Cr, Co, and Cu) are in their respective lattice positions,
although there is the internal lattice distortion caused by their different atomic radii, as
shown in Figure 7a. The dislocation expressed by Burgers’ vector, 1/6[1 −1 2], first occurs
at t = 0.25 ps of the system (labeled with a red circle in Figure 7b), which is earlier than
that in pure Ni. The total line length is 9.295 Å. The dislocation moves toward the top
surface to release the internal press over time. More internal stress is released on the further
increasing number of adatoms at t = 0.75 ps; the total line length is 13.441 Å, labeled as
1/6[1 −1 2] (green lines are Shockley-type dislocations). At approximately 229.93 ps, the
dislocations near the surface completely disappear.
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Figure 6. Snapshots of different cascade states for pure Ni: (a) the initial state, (b) the first occurrence of
dislocation, (c) the second occurrence of dislocation, (d) the final state, (i) the only dislocation display of
(b), (ii) the only dislocation display of (c), and (iii) the only dislocation display of (d). (The gray circles
are a Ni atom in (a); the light gray circles represent other structures in (b–d). The green lines and red
lines are Shockley and Stair–rod dislocations expressed in 1/6<1 1 2> and 1/6<1 1 0>, respectively).
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Figure 7. Snapshots of different cascade states for FeNiCrCoCu: (a) the initial state, (b) the first
occurrence of dislocation, (c) the second occurrence of dislocation, (d) the final state, (i) the only
dislocation display of (b), and (ii) the only dislocation display of (c). (The gray, purple, yellow,
white, and green circles are Fe, Ni, Cr, Co, and Cu atoms in (a); the light gray circles represent other
structures in (b–d). The green lines are Shockley dislocations expressed as 1/6<1 1 2>).
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From the snapshots of the defect distribution (Figure 5), we can intuitively see that
both the size and number of interstitial and vacancy clusters in FeNiCrCoCu are smaller
than those in pure Ni for all PKA energy levels. This means the act of defect clustering is
suppressed in HEAs compared with in pure Ni. Nevertheless, the magnitude of restrained
effects on cluster formation for different PKA energies is different. The number of defects
(vacancies and interstitials) in different cluster sizes in the final state of pure Ni and the
FeNiCrCoCu HEA with variable PKA energies (500 eV, 1000 eV, 3000 eV and 5000 eV) are
shown in Figure 8a–d. More cluster numbers and types emerge on further increasing the
PKA energy for pure Ni and the HEA. Both vacancy clusters and interstitial clusters exist
as a single vacancy and interstitial with 500 eV and 1000 eV PKA energy values for the
HEA. The intermediate-size clusters are detected at 3000 eV PKA energy levels and even
the large-size clusters are found when the PKA energy is 5000 eV for the HEA (Figure 8b,d).
Unlike the above results, intermediate-size clusters emerge even if the PKA energy is 500 eV
for pure Ni. Similar to the HEA case, the large defect clusters are only detected for higher
PKA energies such as 5000 eV (Figure 8).
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Figure 8. Number of vacancies for (a) pure Ni, (b) FeNiCrCoCu HEA and number of interstitials for
(c) pure Ni, (d) FeNiCrCoCu HEA in different cluster sizes in the final states with variable PKA ener-
gies (500 eV, 1000 eV, 3000 eV, and 5000 eV).

4. Discussion
4.1. Atomic Displacement Distribution

To examine how the damage cascade evolves in both pure Ni and HEAs, we selected
the PKA energy of 5000 eV as an example to observe the generation and evolution of the
Frenkel pairs at 300 K, as shown in Figure 9; the inset on the right shows the number of
Frenkel pairs as a function of the damage cascade time in the early state. In both cases,
we can see that the system reaches the state of thermal spike rapidly in a very short time
(0.155 ps and 0.805 ps for the pure Ni and HEA) and then smoothly decreases until it equals
the stable value. Here, a thermal spike is defined as when the number of FPs reaches the
maximum value. Although pure Ni reaches the maximum displacement cascade state
(the so-called thermal spike) earlier than the HEA, there are fewer Frenkel pairs in the
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thermal spike state. It is worth noting that the number of stable defects is relatively high
for pure Ni compared with the HEA in the final state, which indicates that the HEA
can suppress the stable existence of defects and promote the easier binding and higher
recombination rate of displaced atoms with vacancies. Driven by cascading collisions,
the atoms around the PKAs move outward. A disordered, molten atomic-poor region is
formed in a local area with a high deposition energy density, and dislocated atoms are
distributed around the periphery of this molten region. Heat mainly accumulates in this
area and then dissipates outward through thermal conduction. As the heat dissipates,
interstitial atoms and vacancies gradually recombine and eventually achieve stability in
the final state. Thus, we monitored the atomic displacement of each atom in the system at
the end time of the displacement cascades. Figure 10 exhibits the displacement distribution
of each atom in the final steady state after the displacement cascade. The overall atomic
displacement in the HEA system is more severe than that in pure Ni. Additionally, we can
evidently see that atoms with severe displacement tend to aggregate in the core region for
pure Ni (Figure 10a) and, quite the contrary, are more dispersed in the HEA (Figure 10b).
This precisely indicates that atoms in the HEA are so active that they can easily combine
with vacancies to reset the original structure. Atoms in high-entropy alloys are more likely
to overcome the potential barriers brought by surrounding atoms and run further away
through energy transfer. This conclusion is consistent with how the addition of Fe and Cr
elements can better suppress defects caused by irradiation damage [75] and a higher defect
recombination rate in NiCoCrFe HEAs, compared with that in pure Ni [81].
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Figure 9. The variation in the number of Frenkel pairs over simulation steps for pure Ni and the
FeNiCrCoCu at a PKA energy of 5000 eV (the inset on the right shows the number of Frenkel pairs as
a function of the damage cascade time in the early state).

4.2. Threshold Displacement Energy (Ed)

Compared with pure Ni, HEAs exhibit varying degrees of chemical disorder and
lattice distortion effects, depending on the type and quantity of elements. Due to the fact
that HEAs are lattice structures formed by random combinations of multiple elements
occupying positions, each atom in them may be in a unique chemical environment, and
their lattice sites may deviate slightly from the neatly arranged lattice. Generally speaking,
the more types of elements in HEAs, the stronger the lattice distortion effect and the lower
the interstitial formation energy [82]. Therefore, atoms deviating from the lattice position
are more likely to leave to become interstitial atoms compared with atoms on a perfect
lattice. In order to deeply reveal the dependence of the phenomenon that suppressing
defects in HEAs on the Ed, we plotted the graph of the two models’ Ed (Ni and HEA) as
shown in Figure 11. It can be seen that the Ed value has the highest frequency distribution
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near the recoil energies of 20 eV and 22 eV for the HEA and Ni, respectively, and its
frequency gradually decreases until it reaches 0 as the energy increases. The peak position
of Ed frequency distribution for Ni has a rightward shift relative to the HEA, and the more
types of elements in the HEA, the more leftward the peak position distribution is [82]. It can
be seen that, compared with the HEA, the highest proportion of Ed in the pure Ni model is
higher, and so is the average Ed, as shown in Table 1. We can see that the Cu atom has the
highest mass result, and its Ed value is significantly higher than that of the other four atoms
for the HEA. Both the atomic masses of Fe, Ni, Cr, and Co and the chemical environments in
the same material are similar; therefore, they also have similar Ed values. However, even if
Cu atoms have higher Ed values, the average Ed value of Cu containing HEAs is still lower
than that of pure Ni. It can be seen that, compared with the HEA, the highest proportion of
Ed in the pure Ni model is higher, and so is the average Ed, as shown in Table 1. We observe
that the Cu atom has the highest mass result, and its Ed value is significantly higher than
that of the other four atoms for the HEA. Both the atomic masses of Fe, Ni, Cr, and Co
and the chemical environments in the same material are similar; therefore, they also have
similar Ed values. However, even if Cu atoms have higher Ed values, the average Ed value
of Cu containing HEAs is still lower than that of pure Ni. Ed can indirectly explain the
radiation strengthening mechanism of high entropy alloys. The smaller Ed, the easier it is
for atoms to leave their original positions and form defects, which is reflected in the fact
that high entropy alloys produce more defects during the thermal peak. Similarly, due to
its lower Ed, atoms leave their original positions and form defects are more likely to recover
at lattice positions, which is reflected in the fact that at the final moment, the defect atoms
in the high entropy alloy system are smaller than those in the pure Ni. Therefore, from the
perspective of Ed, it can be reflected that having Ed is one of the factors that suppress defect
generation in high entropy alloys.
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Table 1. The average value of Ed (eV) for each element in Ni and FeNiCrCoCu.

Fe Ni Cr Co Cu Average

Ni – 67.4 ± 35.5 – – – 67.4 ± 35.5
FeNiCrCoCu 30.8 ± 11.8 29.0 ± 13.3 31.7 ± 12.5 30.3 ± 15.1 34.1 ± 15.7 31.2 ± 13.7

5. Conclusions

In this study, we researched the steady-state structure of FeNiCrCoCu HEA using
hybrid MC/MD to explore as a substrate to radiation damage. It was found that there
is almost no segregation phenomenon in bulk HEAs via CSRO analysis, which is almost
consistent with the random structure. The defect behaviors of individual recoil for the HEA
and unary Ni were investigated. A significant difference in irradiation defect performance
between the complex alloys and the pure Ni was observed. It was found that more
defects were produced in pure Ni than in the HEA after irradiation in the final state. The
retention of point defects (vacancies and interstitials) is inhibited in the HEA. However,
in the damage cascade process, the thermal peak appears earlier for pure Ni than for the
HEA, and, at the same time, there are fewer Frenkel pairs for pure Ni than for the HEA.
The larger lattice distortion in the HEA causes displaced defects to feature localized and
concentrated distributions. The HEA presents a higher recombination rate and there exist
fewer surviving defects than the elemental Ni under primary damage. In general, these
defect features and low energy dissipation are due to a low displacement energy threshold.
The increase in recoil atom energy further magnifies the difference in the defect numbers
and morphology between the HEA and pure Ni. All the above events are sufficient to
demonstrate that the residual defects are suppressed after irradiation in the HEA compared
with those in pure Ni; the events have shown that the radiation tolerance of HEA is derived
from the intrinsic distortion of the material, which provides theoretical guidance for the
application of equiatomic ratio high-entropy alloys.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/met14030264/s1, Figure S1: Flowchart for calculating
threshold displacement energy. References [83,84] are cited in Supplementary Materials.
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