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Abstract: High-entropy alloys (HEAs) have attracted worldwide interest due to their excellent
properties and vast compositional space for design. However, obtaining HEAs with low density and
high properties through experimental trial-and-error methods results in low efficiency and high costs.
Although high-throughput calculation (HTC) improves the design efficiency of HEAs, the accuracy
of prediction is limited owing to the indirect correlation between the theoretical calculation values
and performances. Recently, machine learning (ML) from real data has attracted increasing attention
to assist in material design, which is closely related to performance. This review introduces common
and advanced ML models and algorithms which are used in current HEA design. The advantages
and limitations of these ML models and algorithms are analyzed and their potential weaknesses and
corresponding optimization strategies are discussed as well. This review suggests that the acquisition,
utilization, and generation of effective data are the key issues for the development of ML models and
algorithms for future HEA design.
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1. Introduction

The concept of high-entropy alloys (HEAs) has been raised by Cantor [1] and Yeh [2]
since 2004. HEAs usually consist of four or five elements with atomic percentages (at.%)
that are equal or nearly equal. Usually, the atomic fraction of each component is greater
than five percent [3]. Their configurational entropy of mixing is high which is beneficial for
the formation of the solid-solution phase [4]. They mainly possess Face-Centered Cubic
(FCC), Body-Centered Cubic (BCC), and Hexagonal Close-Packed (HCP) structures [5].
Unlike conventional alloys, the complex compositions of HEAs lead to exceptional effects.
HEAs usually exhibit outstanding physical and chemical properties, i.e., high mechanical
properties, superior fatigue and wear resistance, good ferromagnetic and superparam-
agnetic properties, and excellent irradiation and corrosion resistance, etc. [6–10]. Using
optimized composition design, a lighter density and better performance of HEAs can be
obtained to achieve the purpose of lightweight HEAs [7]. However, due to the flexible
compositions and ample performance tuning space, obtaining HEAs with low density and
high properties solely through experimental trial-and-error methods requires a substantial
investment of time and labor, resulting in low efficiency and high costs.

In recent years, the use of a computer-assisted design method has made significant
progress in the field of HEAs. High-throughput calculation (HTC) is one promising
computer-assisted design method, which is characterized by concurrent calculations and an
automated workflow, enabling efficient computations for tasks at a high scale, rather than
sequentially processing multiple tasks [11]. It initially focuses on the quantum scale, effec-
tively meeting the demand for expediting the discovery of new materials and exceptional
performance. In recent years, the concept of HTC has been applied to micro-thermodynamic
scales, becoming a rapid method for obtaining phase information in metal structural mate-
rials [12]. High-throughput first-principles calculations and thermodynamics calculations
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are two main technologies of the HTC methods. High-throughput first-principles calcu-
lations, which do not rely on empirical parameters, can predict material property data
by inputting element types and atomic coordinates [13]. They play an indispensable role
in understanding and designing target materials from a microscopic perspective and en-
able the quantitative prediction of composition optimization, phase composition, and the
structure–property relationship of materials. High-throughput first-principles calculations
demonstrate specific roles and advantages for three aspects of HEAs: (1) the accurate
construction of long-range disordered and short-range ordered structures; (2) the precise
prediction of the stability of HEA phases; (3) the accurate calculation of the mechanical
properties of HEAs [14]. The process of screening HEAs based on high-throughput ther-
modynamics calculations combines equilibrium calculations with non-equilibrium Scheil
solidification calculations [15]. Using high-throughput calculation to predict the melt-
ing point, phase composition, and thermodynamic properties of HEAs after processing,
it rapidly obtains the alloy composition space that satisfies criteria such as the melting
point and phase volume fraction [16]. This assists in the quick analysis of effective alloy
compositions, reducing the frequency of experimental trial and error. High-throughput
thermodynamics calculations demonstrate specific functions and advantages in three ways:
(1) the accurate acquisition of the phase diagrams and thermodynamic properties of HEAs;
(2) the rapid retrieval of key microstructural parameters for HEAs; (3) the implementa-
tion of cross-scale analysis [12]. However, HTC technology mainly uses the theoretical
calculation values such as phases, melting points, and various energies as data sources.
Although the amount of data used in HTC calculation is huge, the direct correlation with
the performance of HEAs and the accuracy of performance prediction are far from satisfac-
tory. Therefore, the current HTC method can only be used as a reference criterion for HEA
design. A certain number of experiments are still needed to verify the accuracy of the HTC
design results.

In the past decade, the rapid ascent of artificial intelligence (AI) has brought a trans-
formative revolution [17]. This revolution has not only fundamentally reshaped various
domains of computer science, including computer vision and natural language processing,
but has also made a significant impact on numerous scientific fields, including materials
science. AI success comes from its ability to comprehend complicated patterns, and these
complicated AI models and algorithms can be systematically refined through learning from
real data, which is closely related to performance [18]. This capability is further enhanced
by the availability of computational resources, efficient algorithms, and substantial data
collected from experiments or simulations. The exponential increase in relevant publica-
tions is indicative of this trend. In essence, with a sufficiently large dataset of high quality,
AI can effectively capture the intricate atomic interactions through standard procedures of
training, validation, and testing [19]. Additionally, AI models and algorithms can identify
non-linear structure–property relationships, which are challenging to determine through
human observation [20]. These attributes position AI as an effective tool to tackle the
challenges associated with the theoretical modeling of materials [21]. Machine learning
(ML) is one of the most important technologies used for the AI design of materials [22].
This method, based on comprehensive experimental and theoretical studies, enables rapid
data mining, revealing underlying information and patterns, and accurately predicting
material properties for target material selection [23]. However, a small number of datasets
becomes a key issue in HEA design, leading to high requirements for accuracy and the
generalization ability of ML models and algorithms. This review aims to provide assistance
for in-depth ML models and algorithms and their optimization strategies for HEA design
by summarizing and sorting out the current research.

2. Machine Learning (ML) in HEA Design

ML is a multidisciplinary field involving probability theory, statistics, approximation
theory, and algorithmic complexity theory [24]. The concept of ML, first introduced by
Samuel in 1959, has evolved into a cross-disciplinary field spanning computer science,
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statistics, and other fields. Due to its efficient computational and predictive capabilities, ML
has been gradually applied in materials science research [25]. In recent years, ML has gained
widespread attention and demonstrated outstanding capabilities in the development of
new materials and the prediction of material properties in the field of materials science [26].
A notable example is the 2016 article published in Nature, titled “Machine-learning-assisted
materials discovery using failed experiments”, which successfully predicted chemical
reactions and the formation of new compounds by mining a large dataset of failed experi-
mental data, further fueling the momentum of research related to the application of ML to
materials [27].

With an in-depth understanding of the concept of materials engineering, ML has
found extensive applications in the design, screening, and performance prediction and
optimization of materials [28]. Data-driven methods significantly expedite the research and
development process, reducing time and computational costs. Whether on the micro or
macro scale, this approach can be applied to new material discovery and the prediction of
material properties in the field of materials science.

The discussion on the rules of phase formation has always accompanied the research
on HEAs. The role of phases has been crucial in the design of HEAs. In the design strategy
of HEAs, predicting the composition and phase stability of unknown alloy components
is an essential aspect [29]. Widely used descriptors for phase prediction include entropy
of mixing, enthalpy of mixing, elastic constants, melting temperature, valence electron
concentration, electronegativity, etc. [30]. As research advances, the development involves
utilizing differentiating alloy elemental contents as inputs or various combinations of
the intrinsic properties of monatomic elements such as their physical and mechanical
features. Examples of these features include atomic radius difference, valence electron
count, configuration entropy, mixing enthalpy, etc. By directly modeling, relationships
between the element combinations and phase formation can be obtained.

Besides phase formation, exploring the relationship between the compositions and
properties of HEAs is also an essential task. By establishing a correlation model between
feature parameters and properties such as strength, it is possible to achieve the rapid
prediction of material performance based on chemical composition. This method, supple-
mented by a substantial amount of experimental data, offers valuable guidance for alloy
composition design.

3. Common ML Models and Algorithms in HEA Design

So far, commonly used ML models and algorithms in HEA design include neu-
ral networks (NNs) [31–43], support vector machine (SVM) [44–54], Gaussian process
(GP) [36,55–61], k-nearest neighbors (KNN) [62–66], and random forests (RFs) models and
algorithms [67,68] etc.

3.1. Neural Networks (NNs)

NNs are computational models and algorithms inspired by the structure of the human
brain [69]. The basic units of a NN are neurons, which simulate the connections and
information transmission between biological neurons [70]. They are organized into layers
such as the input layer, hidden layer, and output layer [71]. Each neuron receives inputs
from neurons in the previous layer, applies weights to these inputs, and then produces an
output through an activation function [72]. This output serves as the input for neurons in the
next layer. By adjusting the weights of connections, the NNs can learn and adapt to patterns
in the input data, enabling it to perform tasks such as learning and prediction. NNs have
achieved significant success in areas such as image recognition, natural language processing,
and speech recognition, demonstrating powerful performance in various applications.
However, the data requirement of NN models and algorithms is huge.

J. Wang et al. [73] developed ensemble NN models and algorithms to test input data in
order to design HEAs with a higher yield strength (YS) and ultimate tensile strength (UTS)
(see Figure 1). They collected 501 data points from previous studies to be used for NN model
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training and validation. The data include the chemical composition, process conditions,
and tensile mechanical properties of HEAs. The basic models and algorithms included in
their experiment are the simple deep neural network (DNN) and the concatenated DNN
and conventional neural network (CNN) model. They performed an inverse prediction
and selected a random search and designed two HEAs, HEA1 and HEA2. The results are
measured using multiple tensile tests. The results show that the combinations of the UTS
and total elongation (T.EL.) of the present HEAs are better than the input data, as well as the
HEAs from previous ML studies. This research demonstrated the effectiveness of the model
in HEA design. This alloy design approach, specialized in finding multiple local optima,
could help researchers design an infinite number of new alloys with interesting properties.

Metals 2024, 14, 235 4 of 26 
 

 

(UTS) (see Figure 1). They collected 501 data points from previous studies to be used for 
NN model training and validation. The data include the chemical composition, process 
conditions, and tensile mechanical properties of HEAs. The basic models and algorithms 
included in their experiment are the simple deep neural network (DNN) and the concate-
nated DNN and conventional neural network (CNN) model. They performed an inverse 
prediction and selected a random search and designed two HEAs, HEA1 and HEA2. The 
results are measured using multiple tensile tests. The results show that the combinations 
of the UTS and total elongation (T.EL.) of the present HEAs are better than the input data, 
as well as the HEAs from previous ML studies. This research demonstrated the effective-
ness of the model in HEA design. This alloy design approach, specialized in finding mul-
tiple local optima, could help researchers design an infinite number of new alloys with 
interesting properties. 

 
Figure 1. (a) R2 and (b) RMSE comparison of NN models and the present model (w/T&C). (c) R2 
and (d) RMSE comparison of ML models other than NN models and the present model. (e) The 
comparison plot for YS data. (f) The comparison plot for UTS data. Reprinted with permission from 
Ref. [73]. Copyright Springer Nature (2023). 

3.2. Support Vector Machine (SVM) Algorithm 
In the ML model, the SVM algorithm has a good decision boundary [74]. The SVM 

algorithm was introduced by VaPnik as a supervised learning method falling under the 
category of binary classification models [75]. Its primary objective is to identify a separa-
tion hyperplane in the feature space that maximizes the margin, ensuring the correct clas-
sification of samples. This process is eventually transformed into a convex optimization 
problem. The segmentation principle of the SVM algorithm revolves around maximizing 

Figure 1. (a) R2 and (b) RMSE comparison of NN models and the present model (w/T&C). (c) R2
and (d) RMSE comparison of ML models other than NN models and the present model. (e) The
comparison plot for YS data. (f) The comparison plot for UTS data. Reprinted with permission from
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3.2. Support Vector Machine (SVM) Algorithm

In the ML model, the SVM algorithm has a good decision boundary [74]. The SVM
algorithm was introduced by VaPnik as a supervised learning method falling under the
category of binary classification models [75]. Its primary objective is to identify a separation
hyperplane in the feature space that maximizes the margin, ensuring the correct classifica-
tion of samples. This process is eventually transformed into a convex optimization problem.
The segmentation principle of the SVM algorithm revolves around maximizing the interval.
The SVM algorithm demonstrates significant advantages in addressing non-linear, high-
dimensional, and small-sample problems [76]. Originally applied to linear classification,
the SVM algorithm was later extended to handle non-linear examples and was further
adapted for high-dimensional spaces [77]. It can also solve the problem of overfitting.
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In the research of W. Zhang et al. [78], to elucidate the varying prediction accuracies of
a singular characteristic parameter within amorphous alloys (AM), solid-solution alloys
(SS), and high-entropy alloys containing intermetallic compounds (IM), three approaches
were introduced. The first involves qualitatively explaining the high or low prediction
accuracies of characteristic parameters in the three types of AM, SS, and HEA-IM alloys
by employing a simple division across the entire range of the characteristic parameter.
They chose the SVM algorithm as a predictive model and used atomic size difference (δ),
mixing enthalpy (∆Hmix), electronegativity difference (∆χ) and mixing entropy (∆Smix) as
descriptors. Figure 2 illustrates the 4 × 4 scatter matrix representing the data distribution,
aiding in comprehending the relationship among various features of the data [28]. In
Figure 2, the correlation degree between 330 data points and four features is depicted.
The diagonal scatter plot reveals the association between a single feature and the phase
distribution, suggesting that a lone feature is insufficient for distinguishing phases. This
is also the reason why the past research on phase prediction with a single feature has
been ineffective. In the scatter plot involving two features, the distinct distribution of
various features indicates their influence on the phase formation. Considering the average
prediction accuracies of the four parameters, δ and ∆Smix exhibit higher accuracies, whereas
∆Hmix and ∆χ show lower accuracies. However, the prediction accuracies of ∆χ in SS and
HEA-IM alloys are the highest, reaching values of 83.1% and 72.0%, respectively, which
are shown in Figure 3. On the other hand, the parameter ∆Hmix demonstrates the lowest
prediction accuracies for AM, SS, and HEA-IM alloys, with values of 73.9%, 66.5%, and
65.3%, respectively.
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In addition to W. Zhang, Nguyen et al. [79] also conducted research on SVM prediction.
They employed the SVM method with hyperparameter tuning and the use of weighted
values for the prediction of the alloy’s phase. They wrote a Python program to create a
multi-principal element alloy (MPEA) and HEA dataset. Search operations are conducted
to optimize the SVM hyperparameters. Finally, cross-validation is used to evaluate the
accuracy of the prediction models utilizing the SVM algorithm with the optimized hyperpa-
rameters. In addition, they compared their SVM solution with the artificial neural networks
(ANN) method, demonstrating that the SVM approach outperforms or is comparable to
alternative methods employing the ANN method. Through experimental validation, they
showed that incorporating the average melting point and standard deviation of melting
point variables into the original dataset can enhance the prediction accuracy for MPEAs and
HEAs. The conclusion drawn is that accurately predicting the structure of alloys contributes
to an efficient search for new materials, providing feasible candidate materials for various
applications that require materials with specific phases. Consequently, combining the SVM
method with other ML algorithms is worthwhile for predicting the phases of MPEAs.
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represents ∆Hm, and green represents Sid. Reprinted with permission from Ref. [78]. Copyright
Elsevier (2023).

The above studies collectively demonstrate the superiority of using the SVM model
for predicting and designing HEAs. In comparison to other ML models and algorithms,
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the SVM model proves to be more effective in handling multi-parameter issues, providing
significant assistance in the design of HEAs.

3.3. Gaussian Process (GP) Model

The Gaussian process (GP) model is a statistical model that defines a distribution over
functions, embodying a collection of random variables where any finite subset exhibits
a joint Gaussian distribution [80]. Within the realm of ML, GP models find extensive
application in regression, classification, and optimization tasks [81]. The fundamental
concept underlying GP models is the representation of functions as random variables,
characterized by a mean function and a covariance function. The mean function delineates
the expected value of the function at each point, while the covariance function captures
interdependencies between distinct points in the input space.

Tancret et al. [36] design HEAs employing GP statistical analysis (see Figure 4). The
datasets include 322 alloys reported in the literature. In the realm of HEA design, the
solitary application of any single method proves insufficient for the dependable prediction
of a singular solid-solution formation. Rather, a robust strategy is introduced, grounded in
a critical evaluation of existing criteria and a statistical analysis leveraging GP models. This
innovative approach concurrently considers a multitude of previously proposed criteria,
providing a comprehensive method for predicting the emergence of a single solid solution.
Thus, it stands as an invaluable guide for the design of novel HEAs.
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from Ref. [36]. Copyright Elsevier (2017).
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3.4. K-Nearest Neighbors (KNN) Model

The k-nearest neighbors (KNN) model is a machine learning model used for classifica-
tion and regression tasks [82]. In the context of this study, the KNN model is employed to
predict mechanical properties, specifically tensile strength and hardness [83]. The KNN
model operates based on the principle of similarity [84]. Given a new data point, the
algorithm identifies the ‘k’ nearest data points from the training dataset in the feature
space. The prediction for the new data point is then determined by the average or weighted
average of the outcomes of its k-nearest neighbors [85].

Raheleh et al. [65] employed a graph-based KNN approach to predict the phase of
HEAs (see Figure 5). Each HEA compound has its distinct phase, falling into five categories:
FCC, BCC, HCP, multiphase, and amorphous. A composition phase signifies a material state
with a specific energy level. The effectiveness of the phase prediction lies in determining the
practical applications of the material. Within the network, each compound has neighboring
counterparts, and the phase of a new compound can be predicted based on the phase of its
most similar neighbors. The proposed approach was implemented on the HEA network.
The experimental results demonstrate that the accuracy of this method in predicting the
phase of new alloys is 88.88%, surpassing that of other machine learning methods.
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Figure 5. An example of the proposed method for phase prediction in HEAs. We (a) extracted the
related features/descriptors from the HEA database, and then (b) created an interaction network
based on the similarities between HEAs. (c) In this example, the ZrHfTiCuNi alloy is considered
as a phase prediction sample; hence, the related community of this HEA is extracted from the
interaction network. (d) The ZrHfTiCuNi has four neighbors; therefore, three of them were selected,
which are highlighted in dark blue if k is three. (e) Finally, the phase can be predicted by voting
on neighbors’ labels as Amorphous for ZrHfTiCuNi. Reprinted with permission from Ref. [65].
Copyright MDPI (2022).

3.5. Random Forests (RFs) Algorithm

The random forests (RFs) algorithm is a ML algorithm that belongs to the ensemble
learning category, utilized for both classification and regression tasks [86]. It constructs
multiple decision trees during the training phase and aggregates their predictions for
robust and accurate results. The algorithm initiates the process by creating numerous
bootstrap samples from the original dataset. Each sample is then employed to train an
individual decision tree [87]. To introduce diversity and prevent overfitting, a random
subset of features is considered at each node of the decision tree. After training the decision
trees, the algorithm combines their predictions. For regression tasks, the final prediction is
the average of the individual tree predictions [88]. In classification tasks, the mode of the
predictions is considered. The RFs algorithm is renowned for its resilience, adaptability,
and effectiveness in handling high-dimensional datasets [89]. It is particularly valuable
due to its ability to mitigate overfitting compared to individual decision trees, contributing
to enhanced predictive accuracy.

Krishna et al. [90] utilized a ML approach to predict the multiphase alloy system,
characterized by a combination of solid-solution and intermetallic phases (SS + IM), using
a dataset of 636 alloys (see Figure 6). In the investigation of the RF classifier, parameters
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are varied for n estimators, representing the number of trees in the forest, and maximum
depth, ranging from the root node to the leaf node. The range for n estimators is set from
10 to 190 with a 20-unit interval, while the maximum depth varies from three to fourteen.
It is determined that, for the current investigation, the optimal parameter values for n
estimators are 50, with a maximum depth of 13. These parameter values yield an average
cross-validation score of 0.788 based on a set of five cross-validation folds.
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Figure 6. (a) Scatter plot for design parameters used for HEA prediction, (b) heatmap of alloys with
SS + IM phases, (c) radar plot of design parameters considered for the current study for the alloys
with SS + IM phases. Reprinted with permission from Ref. [90]. Copyright Elsevier (2021).

However, every model has both advantages and limitations. Four problems in the
use of NNs in data modelling are overfitting, chance effects, overtraining, and interpre-
tation [91]. Jack V. Tu draws a similar conclusion in his work [92] and depicts the typical
relationship between the network error and training duration, as shown in Figure 7.
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As training progresses, the network error gradually decreases until reaching a min-
imum in the training set. However, the error in the test set may initially decrease and
then begin to rise as the network starts overfitting the training data. It is common practice
among neural network developers to periodically cross-validate the network on the test
set during training and to save the network weight configuration based on either of two
criteria: (1) the network with the minimum error in the training set (point B in Figure 7)
or (2) the network with the minimum error in the test set (point A in Figure 7). The latter
technique is often used to prevent the network from overtraining and overfitting.

The weaknesses of the SVM algorithm include algorithmic complexity, inefficiency in
multi-classification, and imbalanced datasets [93]. J. Cervantes et al. also show some of
the approaches used to improve the training time of the SVM algorithm. Eliminating data
that are less likely to be support vectors is a crucial step. In addition, it is more efficient to
decompose the dataset into multiple chunks and optimize each chunk separately.

The limitation of the GP model is mainly the inefficiency in dealing with high-
dimensional data and non-stationary data. The KNN model shows slow prediction on
large-scale datasets. The RFs algorithm performs well on large-scale datasets but may
perform poorly when dealing with highly correlated features [94]. All the advantages
and limitations of these five models are shown in Table 1. Researchers need to select the
appropriate model or combination of models based on the specific characteristics of the
research subject.

In addition to the five ML models and algorithms above, some other common ML
models and algorithms, such as principal component analysis (PCA) [95,96] and logistic
regression (LR) [97], are used in design of HEAs as well. However, it should be pointed
out that a large amount of high-quality data is still needed for the establishment and
generalizing of the common ML models and algorithms. Advanced ML models and
algorithms should be further explored.
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Table 1. Advantages and limitations of NNs, SVM, GP, KNN, and RFs. Data from Refs. [93,94].

Model Advantages Limitations

NNs

(1) Powerful for complex, non-linear
relationships.
(2) Robust to noisy data.
(3) Ability to learn from large datasets.

(1) Prone to overfitting, especially with
small datasets.
(2) Requires careful tuning of parameters.
(3) Black-box nature makes interpretation
difficult.

SVM [93]

(1) Effective in high-dimensional spaces.
(2) Works well with small to
medium-sized datasets.
(3) Versatile due to kernel trick for
non-linear classification.

(1) Can be slow to train on large datasets.
(2) Sensitivity to choice of kernel
parameters.
(3) Memory-intensive for large-scale
problems.

GP

(1) Provides uncertainty estimates for
predictions.
(2) Flexible and interpretable modeling.
(3) Can handle small datasets effectively.

(1) Provides uncertainty estimates for
predictions.
(2) Flexible and interpretable modeling.
(3) Can handle small datasets effectively.

KNN [94]

(1) Simple and easy to understand.
(2) No training phase, making it fast for
inference.
(3) Robust to noisy data and outliers.

(1) Simple and easy to understand.
(2) No training phase, making it fast
for inference.
(3) Robust to noisy data and outliers.

RF

(1) High accuracy and robustness.
(2) Works well with high-dimensional data.
(3) Handles missing values and
maintains accuracy.

(1) Can be slow to predict on
large datasets.
(2) Lack of interpretability due to
ensemble nature.
(3) May overfit noisy datasets if not
tuned properly.

4. Advanced ML Models and Algorithms in HEA Design

Recently, some ML models and algorithms with optimization strategies from under-
lying logical concepts have been raised up due to their high adaptability of small sample
datasets, which are beneficial for HEA design. The active learning (AL) algorithm, the
genetic algorithm (GA), the deep learning (DL) algorithm, and the transfer learning (TL)
algorithm have achieved remarkable results in this field.

4.1. Active Learning (AL) Algorithm

The general idea of the AL algorithm [98] is to employ ML methods to identify sam-
ples that are challenging for classification. These samples are then subjected to human
confirmation and review. Subsequently, the human-annotated data are reintegrated into the
training process using supervised or semi-supervised learning models. This iterative pro-
cess aims to progressively enhance the performance of the model by incorporating human
expertise into the ML model. Compared to other ML methods, the AL algorithm excels
in efficiently reducing data annotation costs [99]. Additionally, in scenarios characterized
by class imbalance or label noise within the dataset, the AL algorithm can enhance data
quality, enabling the model to focus more effectively on crucial samples for performance
improvement, thereby enhancing the generalization capability of the model.

The framework of the AL algorithm has attained significant success in composition
design and the performance prediction of HEAs. With the continuous influx of high-
quality data, the effectiveness of AL models would be better. In addressing the challenge
of simultaneously optimizing competing properties in machine learning-based material
design, a constrained AL loop that incorporates domain knowledge was proposed by Li
et al. [100] (see Figure 8). This approach aims to design high-entropy alloys with optimized
strength and ductility by narrowing down the unexplored space using the valence electron
concentration criterion. The active learning loop underwent six iterations, resulting in
the synthesis of an alloy with an ultimate strength of 1258 MPa and an elongation of
17.3%. To uncover the underlying mechanism for synergistic optimization, the researchers
characterized the phase structure and eutectic microstructure, delving into potential origins
from the perspectives of strain hardening and crack initiation. The proposed framework,
which integrates domain knowledge with machine learning, has the potential to facilitate
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the design of target materials with the coordinated optimization of competing properties.
However, the most significant challenge that AL frameworks still face is the data source.

Metals 2024, 14, 235  12  of  26 
 

 

4.1. Active Learning (AL) Algorithm 

The  general  idea  of  the AL  algorithm  [98]  is  to  employ ML methods  to  identify 

samples that are challenging for classification. These samples are then subjected to human 

confirmation and review. Subsequently, the human-annotated data are reintegrated into 

the training process using supervised or semi-supervised learning models. This iterative 

process aims  to progressively enhance  the performance of  the model by  incorporating 

human expertise into the ML model. Compared to other ML methods, the AL algorithm 

excels  in  efficiently  reducing  data  annotation  costs  [99].  Additionally,  in  scenarios 

characterized by class imbalance or label noise within the dataset, the AL algorithm can 

enhance data quality, enabling the model to focus more effectively on crucial samples for 

performance improvement, thereby enhancing the generalization capability of the model. 

The framework of the AL algorithm has attained significant success in composition 

design  and  the performance prediction of HEAs. With  the  continuous  influx of high-

quality data, the effectiveness of AL models would be better. In addressing the challenge 

of simultaneously optimizing competing properties in machine learning-based material 

design, a constrained AL loop that incorporates domain knowledge was proposed by Li 

et  al.  [100]  (see  Figure  8).  This  approach  aims  to  design  high-entropy  alloys  with 

optimized  strength  and ductility by narrowing down  the unexplored  space using  the 

valence electron concentration criterion. The active learning loop underwent six iterations, 

resulting  in  the  synthesis  of  an  alloy with  an  ultimate  strength  of  1258 MPa  and  an 

elongation of 17.3%. To uncover the underlying mechanism for synergistic optimization, 

the researchers characterized the phase structure and eutectic microstructure, delving into 

potential  origins  from  the  perspectives  of  strain  hardening  and  crack  initiation.  The 

proposed  framework, which  integrates domain knowledge with machine  learning, has 

the potential to facilitate the design of target materials with the coordinated optimization 

of competing properties. However, the most significant challenge that AL frameworks still 

face is the data source. 

 

Figure 8. The valence electron concentration (VEC)-constrained active learning loop for HEA design.
The loop includes dataset establishment, model training, domain knowledge application, alloy
design, experimental validation, and feedback. Adapted with permission from Ref. [100]. UTS means
ultimate tensile strength. Copyright Elsevier (2022).

4.2. Genetic Algorithm (GA)

The GA, originating from computer-simulated studies of biological systems, is a
stochastic global optimization method that emulates phenomena such as natural selection,
replication, crossover, and mutation observed in genetics [101,102]. Starting from an initial
population, the GA operates through random selection, crossover, and mutation operations
to generate a group of individuals better suited to the environment [103]. This evolutionary
process leads the population to progressively explore and converge toward more favor-
able regions within the search space. Iteration by iteration, the population undergoes
continuous reproduction and evolution until it converges to a group of individuals that
are most adapted to the environment, ultimately providing high-quality solutions to the
problem at hand. This algorithm is widely adopted due to its global search capabilities and
computational efficiency.

Moses et al. [104] conducted research to develop HEA powders with good control of
grain-and-particle sizes (GPSs) for improved flowability (see Figure 9). First, the optimal
process control agent type is determined through experimental exploration. Subsequently,
a Taguchi experimental design is employed to plan and investigate the impact of pa-
rameters on the response variables and GPSs. This is followed by the development of
a regression model to create predictive process models, and finally, the implementation
of multi-objective optimization using a GA. Both grain size and particle size are simul-
taneously treated as optimization objectives. The simultaneous optimization of multiple
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objectives poses a significant challenge in genetic algorithms, as objectives typically con-
flict with each other. Consequently, multi-objective optimization problems often involve
trade-offs. For example, increasing the milling speed to reduce the grain size could con-
currently increase particle size, when finer particle sizes are desirable. The curve showing
this optimal trade-off solution between objectives is recognized as the Pareto front. The
Pareto front is a set of non-dominated solutions where each objective is considered equally
favorable. The results obtained from the genetic algorithm align well with those from the
Taguchi optimization.
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Menou et al. [105] also employed a multi-objective optimization GA to devise HEAs.
This methodology seeks an optimal compromise among factors such as single-phase sta-
bility, solid-solution hardening, and density. Through this approach, thousands of Pareto-
optimal BCC HEAs have been designed. After casting and characterization, the alloy
exhibits a microstructure comprising a singular disordered solid solution, uniquely com-
bining outstanding hardness with moderate density. The GA generated 3155 alloys that
exhibit Pareto optimality or non-domination. This implies that, for each alloy among them,
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there is no other alloy that simultaneously possesses a higher likelihood of forming a single
solid solution, a greater Specific Solvent Heat (SSH), and a lower density. The outcomes are
visually represented on a plot.

4.3. Deep Learning (DL) Algorithm

The deep learning (DL) algorithm is a subset of ML models that involves the use of
deep neural networks (DNNs, a special type of neural network used in deep learning (DL)
models, consist of multiple hidden layers and can more effectively learn and represent
complex features and patterns [106]) to enable machines to learn and make decisions
without explicit programming. It is inspired by the structure and function of the human
brain, with layers of interconnected neurons that process information. The DL algorithm
involves the process of uncovering the inherent patterns and hierarchical representations
within sample data [107]. The information acquired through these learning processes
significantly aids in interpreting data such as text, images, and sounds.

In the study of Zhu et al. [108], a DNN structure utilizing a residual network (RESNET)
was introduced for predicting the phase formation of HEAs. It demonstrated an impressive
overall accuracy of 81.9%. Compared to conventional machine learning models such as
ANNs and standard DNNs, its Micro-F1 score highlighted its superiority in HEA phase
prediction. Notably, this approach effectively mitigated the network degradation and
enhanced the algorithmic accuracy. This work presents a novel avenue for developing phase
formation prediction models using deep learning models, which holds broad relevance
in facilitating the design of HEAs with innovative chemical compositions. The schematic
diagram of the DNN model is shown in Figure 10.
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4.4. Transfer Learning (TL) Algorithm

The TL algorithm is an algorithm that transfers knowledge from a source domain
to a target domain, enabling the target domain to achieve better learning outcomes [109].
Generally, the source domain has an abundant amount of data while the target domain has
limited data; TL aims to migrate the knowledge learned from the data-rich environment to
the new environment with a smaller dataset.

In the study of Feng et al. [110], researchers aimed to utilize CNNs in conjunction
with the TL algorithm to predict the crystalline structures of inorganic substances. The
well-trained CNNs’ feature extractors were repurposed to extract features from a phase
prototypes dataset, which comprised 17,000 inorganic substances and included 170 crystal
structures, as well as two datasets on HEAs. These extracted features were subsequently
fed into a random forest classifier as inputs. Exceptionally high classification accuracy,
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exceeding 0.9, was achieved across all three datasets. The visualization of the extracted
features conclusively demonstrated the effectiveness of transferable feature extractors. This
method presents a straightforward approach to rapidly constructing ML models with
strong performance, eliminating the need for time-consuming manual feature engineering
processes. Figure 11 shows the process of the research.
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Figure 11. (a) Schematic diagram for mapping the chemical formula of a material into a 2D represen-
tation with periodic table structure, i.e., a 2D pseudo-image. (b) The CNN trained on a big dataset
to obtain the transferable feature extractor. (c) The workflow of TL. Conv, FC, OQMD, CNN, SNN,
RF, SVM denote convolutional operation, fully connected layer, open quantum materials database,
convolutional neural network, shallow neural network, random forest, supported vector machine,
respectively. Reprinted with permission from Ref. [110]. Copyright Elsevier (2021).

When developers aim for accurate property prediction through the creation of DL
models, it is sometimes overlooked that certain physical properties of materials exhibit
insensitivity to the local atomic environment. In response to this, Elemental Convolution
Neural Networks (ECNets) were introduced by Wang et al. [111] to derive more generalized
and globally applicable element-wise representations for the precise modeling of material
properties. ECNets demonstrate improved prediction capabilities for properties such as
band gaps, refractive indices, and elastic moduli in crystals. In its application to HEAs,
the focus is specifically on the FeNiCoCrMn/Pd systems using data derived from Density
Functional Theory (DFT) calculations. Leveraging knowledge gained from less-principal
element alloys, performance in HEAs is enhanced through the TL technique. Additionally,
the element-wise features extracted from the parent model, serving as universal descrip-
tors, maintain accuracy even under limited data conditions. Employing this framework,
concentration-dependent formation energy, magnetic moment, and local displacement are
successfully obtained, thereby enriching the understanding of the physics behind these
HEAs. Figure 12 shows the architecture for the ECNet model. This framework has the
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ability to acquire material representations from elemental embeddings trained on its own
dataset. Through elemental convolution operations, the element-wise features serve as
intermediary and final descriptors, extracting knowledge related to both atomic informa-
tion and crystal structures, while being adaptable through the learning process of target
material properties.
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The advantages and limitations are shown in Table 2.

Table 2. Advantages and limitations of AL, GA, DL, and TL.

Models Advantages Limitations

AL

(1) Reduces labeling effort
(2) Improves model performance
with limited data
(3) Allows for adaptive training

(1) Requires expert query strategies
(2) Can be computationally expensive
(3) Depends on query strategy quality

GA [112]
(1) Optimizes complex problems
(2) Searches across wide spaces
(3) Handles multi-objective tasks

(1) No guaranteed global optimum
(2) Complexity increases with
dimensions
(3) Sensitive to noisy objectives

DL [113–115]
(1) Learns complex patterns
(2) Automatically extracts features
(3) Excels in various tasks

(1) Needs large, labeled data
(2) Prone to overfitting
(3) Requires powerful hardware

TL [116,117]

(1) Leverages related knowledge
(2) Reduces data need for new tasks
(3) Speeds up training, improves
performance

(1) Performance depends on domain
similarity
(2) Domain shift may affect
transferability
(3) Fine-tuning may still be necessary
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To sum up, although these advanced ML models and algorithms possess a high adapt-
ability to small sample datasets, which are beneficial for HEA design, nevertheless, these
ML models and algorithms have higher requirements for data quality and discreteness.

5. Potential Weakness of ML Models and Optimization Strategies

However, the ML models used in HEA design have potential weaknesses such as
data dependence, model complexity, generalization, interpretability, etc. For these weak-
nesses, some researchers have raised corresponding countermeasures and conducted
optimization strategies.

5.1. Data Dependence and Generalization

The performance of ML models in HEA design is greatly influenced by both the quality
and quantity of data. Limited or biased datasets can constrain the accuracy and applica-
bility of predictions. Researchers usually use date pre-processing and data augmentation
techniques to weaken the negative impact of data dependence.

Raw data are vulnerable to noisy, corrupted, missing, and inconsistent data; it is
necessary to perform pre-processing steps, which is performed using classification, clus-
tering, association and many other pre-processing techniques. This makes the knowledge
extraction from the dataset much easier with cleaning, integration, transformation, and
reduction methods [118]. The most common steps are data cleaning and noise handling.

Data cleansing is a process of identifying and correcting incorrect data or removing
them from the dataset. It typically involves detecting and replacing incomplete, inaccurate,
irrelevant, or noisy data and records. Generally, it follows these steps: (1) removing
irrelevant or duplicate data; (2) correcting structural errors; (3) filling missing values using
interpolation methods; and (4) assessing the consistency of the data. Various methods
exist for handling noisy data. One option is to ignore the noise if the model can handle
overfitting. Alternatively, the noise can be filtered, modified, or relabeled. Techniques
like filtering erroneous values, removing them, or imputation can help clean noisy data.
Additionally, binning can reduce minor errors by replacing values with general values
derived for each bin, lowering overfitting risks, especially in shorter datasets. Binning
methods include equal frequency or equal width binning.

Data pre-processing is crucial for the generalization performance of supervised ML
algorithms. As the dimensionality of the input space increases, the quantity of training data
grows exponentially. It is estimated that pre-processing may consume 50% to 80% of the
entire classification process, underscoring its significance in model construction. Enhancing
data quality is equally imperative.

Many global scholars have made progress in image data augmentation, discovering
several methods for expanding sample size, thereby enhancing the generalization capability
of neural networks in use. Utilizing the AlexNet model based on CNN architecture, several
authors evaluated and compared various augmentation strategies. ImageNet and CIFAR10
datasets were employed by these authors. Several studies also assessed the effectiveness of
different augmentation processes, such as flipping, rotating, adding noise, shifting, and
cropping. Additionally, investigations have been conducted on the semantic segmentation
of images and videos using deep learning techniques [119].

Additionally, the models may have a limited capability to generalize to novel alloys,
especially when the training data do not encompass a diverse range of material proper-
ties and compositions. The generalization ability of models is mainly influenced by the
quality and variety of data. Therefore, data augmentation also enhances the generalization
capability of models.

5.2. Model Complexity

Advanced ML models, although potent, often come with complexity and high compu-
tational demands. These characteristics can restrict their applicability in practical scenarios
where computational resources are limited or constrained. Additionally, the complexity
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of a model directly influences its generalization capability. Overly complex models may
perform well on training data but poorly on unseen data because they may overfit noise
and specific patterns in the training data.

Model simplification is a method aimed at enhancing interpretability by reducing
the complexity of a model. It can be achieved through various approaches: (1) Reducing
the number of model parameters. By eliminating certain parameters from the model,
its complexity can be reduced. This approach is commonly referred to as “Model Com-
pression”. (2) Reducing the structure of the model. By removing certain layers or nodes
from the model, its structural complexity can be reduced. This approach is often called
“Model Pruning”.

Model simplification can aid in better understanding the functioning of the model
but may also lead to a decrease in performance. Therefore, when undertaking model
simplification, it is essential to strike a balance between interpretability and performance.

5.3. Interpretability

Model interpretability refers to the ability of a model to explain its predictions or
decision-making process in a simple and intuitive manner. In the field of deep learning,
models are often considered black boxes because their internal workings are typically
complex and difficult to understand. The improvement of model interpretability means
that we can better understand how the model makes predictions or decisions based on
input data, thereby enhancing trust and an understanding of the behavior of the model.

For models with weak interpretability, techniques such as feature importance analysis,
local interpretability methods, and visualization can be used to enhance model interpretabil-
ity. Local interpretable model-agnostic explanation (LIME) is a commonly used method.

The basic idea of LIME is to generate a set of local samples around a specific data
point, and then use a simple interpretable model to explain the predictions of the original
model on these local samples. By analyzing these explanatory models, one can understand
how the original model makes decisions about specific predictions, thereby enhancing
the understanding of the behavior of the model. The main advantage of LIME is that it
is model-agnostic, allowing it to be applied to various types of models, including deep
learning models and black-box models.

By improving the interpretability of the model, we can better understand its behavior,
thereby increasing trust in the model and making it more actionable in practical applications.

5.4. Integration of Computational Theory and Experiment

Using experimental data to validate ML models helps determine the effectiveness
of the model in practical applications and identify potential shortcomings. Additionally,
based on the results of experimental validation, improvements can be made to the ML
model. This may involve adjusting model parameters, optimizing algorithms, or adding
new features to enhance the predictive performance of the model. Establishing a feedback
loop is essential to continuously improve and iterate on a model, thereby enhancing its
accuracy and reliability over time.

The research of Lee et al. [29] is a great example. It encompasses optimization, gener-
ation, and interpretation; the aim is to enhance performance and identify crucial design
parameters for predicting phases of HEAs. Initially, a regularized deep neural network is
established to predict HEA phases, optimizing model architecture, training, and regulariza-
tion hyperparameters. To address the data scarcity issue in HEAs, the focus then shifts to
the development of a conditional generative adversarial network for generating additional
HEA samples. A significant improvement in model performance is observed through aug-
mentation from the generative model, achieving a prediction accuracy of 93.17%. Finally,
concentration is placed on understanding the contribution of design parameters to identify-
ing the solid-solution phase. The work not only provides guidance for developing a reliable
deep learning-based phase prediction model but also offers insights into explaining crucial
design parameters to facilitate the design of novel HEAs. In particular, researchers have
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employed several regularization methods to optimize the DNN model. Regularization is a
strategy that fine-tunes the balance of complexity in the neural network between trained
and untrained cases. The DNN model is illustrated in Figure 13.
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6. Prospect

With the deepening of research on HEAs and the exploration of potential applica-
tions, advanced tools used in HEA discovery and mechanistic exploration will be fully
utilized in future studies. However, the methods of using ML to design HEAs still face
some challenges.

The first challenge is related to data acquisition. Data are the foundation for the ML
method. The greatest challenge for the entire field of ML is high-quality data. Currently,
various research groups obtain data under different experimental conditions, necessitating
careful calibration when merging the data. The acquisition of this data is time-consuming,
and in the case of HEA issues, typically only small datasets are available for use. Meanwhile,
computer simulation can generate a large amount of data, but these data are not directly
related to performance. Thus, how to effectively extract these simulation data and combine
them with experimental data is one of the key issues for the development of ML models
and algorithms.

The second challenge is related to data compatibility. The results of ML predictions
cannot be blindly trusted when the quantity, quality, and discreteness of data are not
desirable. Uncertainty quantification is necessary in such research. In practice, there
are different methods to assess the uncertainty of models, including Dempster–Shafer
theory, fuzzy sets, interval methods, probability methods, Bayesian methods, etc. Using
uncertainty quantification, it is possible to derive the model confidence intervals. This not
only helps in understanding the reliability of predictions but also enables ML by adding
data in regions with high uncertainty. With the optimization of methods, model accuracy
has been significantly improved. For example, using adaptive design can enhance the
accuracy of the model. Improving the data compatibility of ML models and algorithms can
be beneficial for the future of HEA design.

The third challenge is related to data generation. In addition to the existing methods,
other cutting-edge ML approaches may also potentially assist in the future design of HEAs.
For example, self-supervised learning [120] models can address issues of small datasets.
Meta-learning [121] models can achieve more advanced generalization capabilities. Quan-
tum ML [122] models have the potential to address complex issues in HEAs. The efficient
verification, iteration, and generation of data are essential to the future of ML methods.
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7. Conclusions

ML has been an efficient and effective tool to assist in HEA design and is considered a
promising approach. Commonly used ML models and algorithms in HEA design include
ANN, SVM, GP, KNN, PCA, RFs, etc. These models and algorithms are trained using previ-
ous data to learn patterns and correlations and can then be used to predict or classify new
data. Such models and algorithms can automatically make decisions by learning features
and patterns in the data, facilitating the design of HEA compositions and performance
predictions. The common ML models and algorithms have a high dependence on the
quantity of data. However, a small number of datasets becomes a key issue in HEA design,
leading to high requirements in accuracy and the generalization ability of ML models
and algorithms.

Recently, some advanced ML models and algorithms with optimization strategies
have been raised up due to their high adaptability of small-sample datasets, which are
beneficial for HEA design. Nevertheless, these ML models and algorithms have higher
requirements for data quality and discreteness. In addition, the ML models used in HEA
design have potential weaknesses as well, such as data dependence, model complexity,
generalization, interpretability, etc. For these weaknesses, some researchers have raised
corresponding countermeasures and introduced optimized strategies.

Overall, the effective acquisition of experimental data and computer simulation data,
the high compatibility in data quantity, quality, and discreteness, and the efficient verifica-
tion, iteration, and generation of data are three development directions for ML models and
algorithms in the future of HEA design.
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