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Abstract: This work aims to improve the surface integrity and LCF life of machined Inconel 718. The
correlation between the LCF life of Inconel 718 and various states of machined surface integrity is
explored. In this paper, the surface integrity of Inconel 718 specimens is enhanced by low-plasticity
burnishing (LPB). The LCF life of specimens with different surface integrity is predicted using a
micro–macro finite element method (FEM). Firstly, the LCF specimens with different surface integrity
are machined by turning (turned specimen), polishing (matrix specimen), and LPB process (LPBed
specimen). Secondly, the LCF experiment is carried out to reveal the effect of surface integrity on
LCF life. Finally, the LCF micro–macro FEM model is proposed to predict the LCF of machined
Inconel 718 specimens. The representative volume element (RVE) model is established based on
the measured surface integrity and microstructure of Inconel 718 specimens. The effect of surface
integrity on LCF life is transformed to equivalent load. The micro–macro FEM model combined
with Tanaka–Mura dislocation crack initiation theory and extended finite element method (XFEM) is
applied to predict the LCF life of the machined specimens. The study results show that the LCF life of
LPBed specimens can be improved by 90.5% and 36.1% compared with that of turned specimens and
polished matrix specimens, respectively. The errors between FEM prediction results and experimental
results are 13.1%, 9.2%, and 12.2%, respectively. The proposed micro–macro FEM model could be
utilized to predict the LCF life of Inconel 718 with different surface integrities, and to apply the LCF
life prediction further in industry.

Keywords: low-plasticity burnishing; surface integrity; fatigue life; superalloy Inconel 718; finite
element simulation

1. Introduction

Inconel 718 is widely used to manufacture aircraft engine turbine disks due to its
excellent mechanical properties. The high mechanical load makes low cycle fatigue (LCF)
failure one of the main failure modes of Inconel 718 parts.

Fatigue cracks tend to initiate at the surface and subsurface of parts [1]. Hence,
the fatigue life of machined parts is significantly affected by machined surface integrity,
especially surface roughness and residual stress [2,3]. The lower surface roughness and
compressive residual stress contribute to improving the fatigue properties of machined
parts [4–6]. Madariaga [7] studied the effect of turned surface integrity on LCF life of
Inconel 718. The effect of surface integrity was normalized as total stress. The fatigue life
of machined specimens was experimentally correlated with the total stress. Suraratchai
et al. [8] proposed an experimental fatigue life prediction model based on Paris’ law and
the Basquin model. By normalizing surface roughness as total stress, the model was
used to predict the fatigue life of aluminum alloy 7010 with different surface roughnesses.
Wu et al. [9] introduced surface stress concentration factor and residual stress into Paris’
law and the Basquin model. The model was used to predict the fatigue life of GH4169
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with different surface integrity. However, the above models are compatible only under
experimental conditions due to regression parameters [10]. In this paper, a LCF prediction
model based on fatigue crack initiation and propagation mechanism was proposed.

Total fatigue life consists of the crack initiation life and crack propagation life. The fa-
tigue crack initiation mechanism of polycrystalline metallic materials is shown in
Figure 1 [11,12]. Firstly, dislocations accumulate within grains under cyclic loading. Subse-
quently, persistent slip bands are formed in the grains. Microcracks are generated from the
persistent bands as cyclic loading proceeds. As cyclic load proceeds further, the microcracks
expand to surrounding grains due to the stress concentration at the crack tips. Finally,
microcracks accumulate and are transformed to a macrocrack [13,14]. The formation of
persistent slip bands and microcracks within Inconel 718 was observed using the replica
method [15].
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where G is the shear modulus, Ws is the specific fracture energy per unit area of the mate-
rial, ν is the Poisson’s ratio, Δτ is the average shear stress range on the slip band, k is the 
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Figure 1. Crack initiation dislocation mechanism of Inconel 718.

Tanaka and Mura proposed a theoretical cyclic slip dislocation pile-up model to
describe crack nucleation in a single-crystal [16], which is expressed as Equation (1).

Ni =
8GWs

π(1 − υ)(∆τ − 2k)2d
(1)

where G is the shear modulus, Ws is the specific fracture energy per unit area of the
material, ν is the Poisson’s ratio, ∆τ is the average shear stress range on the slip band, k is
the frictional stress of dislocations on the slip plane, and d is the length of the slip band.

The Tanaka–Mura crack initiation cycle slip theory is suitable for single-crystal crack
initiation life prediction. The model needs to be integrated with a finite elements method
(FEM) to predict the crack initiation life of polycrystalline metallic materials. Bruckner
et al. [17] analyzed the crack initiation process of martensitic stainless steel using Tanaka–
Mura theory and FEM. Rahim et al. [18] predicted the crack initiation life of steel P91 at
room temperature. The Tanaka–Mura model has also been utilized in predicting the crack
initiation life of welded structure [19]. However, the Tanaka–Mura model has seldom been
applied to investigate the effect of different surface integrity on crack initiation life [20,21].

Crack propagation life is related to the crack stress intensity factor. Crack propaga-
tion life can be estimated analytically by integrating Paris’ law for simple cracks [9,22].
However, the analytical integrating method is rarely applicable to complicated cracks [23].
The eXtended Finite Element Method (XFEM) was proposed to simulate crack propaga-
tion process [24,25]. The XFEM has already been utilized for simulating fatigue crack
propagation [26,27] and predicting fatigue life [28,29].

In this study, the micro–macro FEM model was established based on Tanaka–Mura
model and XFEM. Firstly, three groups of LCF specimens with different surface integrity
were machined using polishing (matrix LCF specimen), turning (turned LCF specimen), and
LPB process (LPBed LCF specimen). The surface integrity of the specimens was measured
and induced to the representative volume element (RVE) model. Subsequently, the effect of
surface integrity on the Inconel 718 LCF life was investigated using the proposed model.
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The LCF life of the three groups specimens was predicted. Finally, LCF experiments were
conduct to verify the proposed model. The flow diagram of this research is shown in
Figure 2.
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2. Experiments
2.1. Materials

The workpiece material of Inconel 718 was treated with solution and aging treatment.
In order to avoid the error caused by differences in material batches, all specimens were
manufactured from the same batch of material. The mechanical properties of Inconel 718
are shown in Table 1.

Table 1. Mechanical properties of superalloy Inconel 718 [30].

Elastic Modulus Yield Strength Tensile
Strength Elongation Hardness

E (GPa) σs (MPa) σb (MPa) (%) (HBW)

205 1360.5 1502 19.3 439

2.2. Experimental Method and Process

The turning and LPB process is shown in Figure 3. The turning and LPB process
were carried out on CNC turning center PUMA 200 MA (DAEWOO, Incheon, Republic of
Korea). Coated carbide inserts VBMT160404-MF1105 (Sandvik, Sandviken, Sweden) were
utilized for turning. The following turning parameters were applied: turning cutting speed
v = 50 m/min, feed rate f = 0.1 mm/r, turning depth ap = 0.1 mm. The turned specimen
was subjected to LPB process. The following LPB parameters were applied: LPB speed
v = 50 m/min, feed rate f = 0.1 mm/r, LPB pressure P = 15 MPa, LPB times N = 2.
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Figure 3. Turning and LPB process.

The surface morphology and surface roughness of the turned LPBed specimens were
measured using laser confocal microscope VK-X250K (Keyence, Osaka, Japan), as shown in
Figure 4. The surface roughness Ry was measured along feed direction. The surface rough-
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ness was measured three times, and the average values were taken as the measurement
result to reduce the measurement error.
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Figure 4. Surface roughness measurement of machined specimens.

The rsidual stress measuring process is shown in Figure 5. The residual stresses
measuring specimens were machined using wire electrical discharge machining, as shown
in Figure 5a. The residual stress was measured along feed direction since its significant
effect on fatigue property [25]. The residual stresses were measured using the X-ray residual
stress analyzer µ-X360n (Pulstec, Shizuoka, Japan). In order to measure residual stresses
at different depths, the specimens were subjected to layer-by-layer stress-free electrolytic
polishing using electrolytic polisher DPF-2 (Zhunquan, Shanghai, China). Saturated NaCl
solution (mass fraction 26.5%) was used for electrolytic polishing. The removal depth was
measured using a micrometer screw. The residual stress measuring process is shown in
Figure 5b.
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Single-factor experiment was conducted to investigate the effect of different surface
integrity on LCF life. The LCF experiment process is shown in Figure 6. The experimental
specimens are shown in Figure 6a. Three groups of LCF specimens were machined using
polishing (polished matrix LCF specimens), turning (turned LCF specimens), and LPB
(LPBed LCF specimens). The LCF experiments were carried out on the electro-hydraulic
servo fatigue testing machine LFV-250HH (Walter+bai, Löhningen, Switzerland), as shown
in Figure 6b. The load formation was tensile–tensile sinusoidal loading with following
loading parameters: maximum load σmax = 1360 MPa, stress ratio R = 0.1. The LCF fatigue
life of the test was recorded when the fatigue specimen fractured. In order to reduce error,
three specimens were tested for each group, and the average value was taken as the LCF
life of the tested group.
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3. Micro–Macro FEM LCF Life Prediction Model for Inconel 718

The LCF life of Inconel 718 was subdivided into crack initiation life and crack propa-
gation life. The crack initiation life was predicted utilizing the micro FEM model based on
Tanaka–Mura theory. The crack propagation life was predicted using macro FEM model
based on an XFEM method.

The micro FEM model was established based on the Tanaka–Mura theoretical cyclic
slip dislocation pile-up model shown in Equation (1). The material parameters of Inconel
718 used in the Tanaka–Mura model are shown in Table 2. The length of the slip band d
and average shear stress range on the slip band ∆τ are parameters to be determined. For
the polycrystalline material Inconel 718, the micro FEM analysis was performed cyclically
to simulate crack initiation process and predict crack initiation life.

Table 2. The Tanaka–Mura model parameters of Inconel 718 [31,32].

Material G (MPa) ν K (MPa) Ws (KJ·m–2)

Inconel 718 78,850 0.3 150 6.5

Firstly, the microstructure and grain size of the specimens were measured using
electron backscatter diffraction (EBSD), as shown in Figure 7. The grain size was measured
within a range of 50 µm from the machined surface excluding poorly identified areas in
order to prevent the errors from the substrate material and poorly identified area. The
microstructure of Inconel 718 was composed of equiaxed grains and crystal twin. The
grain average size in the unmachined area, turned specimen, and LPBed specimen were
measured as 12.27 µm, 12.26 µm, and 13.42 µm, respectively.
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Subsequently, the representative volume element (RVE) model of Inconel 718 was
established based on the observed Inconel 718 microstructure. The Voronoi diagram, a
diagram consistent with the microstructure formation process of metal materials [33], was
employed to simulate the microstructure of Inconel 718 specimens.

Finally, the shear stress internal the grains during LCF loading was calculated using
FEM. The microcracks were set up in grains according to the Tanaka–Mura model. Ac-
cording to the study of Kramberger et al. [20], the crack initiation stage concluded when
the crack expanded to 300 µm. Therefore, the RVE model with 600 grains was established
within a 300 µm by 300 µm square. The crack initiation simulation concluded when the
microcracks penetrated the RVE model. The loading cycles corresponded to the crack
initiation lifetime.

The mechanical properties of the Inconel 718 grains are anisotropic. The elastic or-
thotropic matrix parameters of Inconel 718 are shown in Table 3. Grain principal directions
were assigned using a random number method since the grain directions are randomly
distributed in Inconel 718.

Table 3. The orthotropic elastic matrix constants of Inconel 718 [34].

C11 (GPa) C22 (GPa) C33 (GPa) C12 (GPa) C13 (GPa) C23 (GPa) C44 (GPa) C55 (GPa) C66 (GPa)

230 230 230 170 170 170 100 100 100

According to the Tanaka–Mura crack initiation cycle slip theory, cracks initiate at the
persistent slip bands internal to the grains. Therefore, the slip bands were drawn inside the
grains at an angle of 45◦ to the main direction, as shown in Figure 8. The length of the slip
bands and shear stress amplitude was substituted into the Tanaka–Mura model to calculate
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the crack initiation life of the grain. The RVE model was meshed using CPE4R and CPE3
with the size of 1 µm. The established RVE model of Inconel 718 is shown in Figure 8.
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Figure 8. RVE model of Inconel 718 LCF specimens.

The boundary conditions were specified based on the surface integrity of the fatigue
specimen and the LCF experiment. The maximum load was σmax=1360 MPa and R=0.1
for stress ratio. The fixed constraint and load were applied to the RVE model as shown in
Figure 9a. The distribution of shear stress in the RVE model is shown in Figure 9b. The
shear stress was uniformly distributed within each grain while varied between different
grains. It was due to the anisotropic mechanical properties of the grains.

Metals 2024, 14, x FOR PEER REVIEW 7 of 18 
 

 

and CPE3 with the size of 1 µm. The established RVE model of Inconel 718 is shown in 
Figure 8. 

 
Figure 8. RVE model of Inconel 718 LCF specimens. 

The boundary conditions were specified based on the surface integrity of the fatigue 
specimen and the LCF experiment. The maximum load was σmax=1360 MPa and R=0.1 for 
stress ratio. The fixed constraint and load were applied to the RVE model as shown in 
Figure 9a. The distribution of shear stress in the RVE model is shown in Figure 9b. The 
shear stress was uniformly distributed within each grain while varied between different 
grains. It was due to the anisotropic mechanical properties of the grains. 

 
Figure 9. Boundary conditions and shear stress of the RVE model. 

The maximum load σmax and minimum load σmin were applied to the RVE model. The 
maximum shear stress τmax and minimum shear stress τmin of each grain were extracted 
using Python and Matlab. The average shear stress range Δτ and the length of the slip 
band d were substituted into Equation (1) to calculate the crack initiation life of each grain. 
The grain with the lowest crack initiation lifetime was marked as the critical grain. The 
critical grain was cracked at the end of a single simulation, and its crack initiation life was 
considered as the lifetime of the simulation. 

The shear stress distribution of the RVE model is shown in Figure 10. The shear stress 
within surrounding grains was changed by the stress concentration at the crack tip. Cyclic 

Figure 9. Boundary conditions and shear stress of the RVE model.

The maximum load σmax and minimum load σmin were applied to the RVE model. The
maximum shear stress τmax and minimum shear stress τmin of each grain were extracted
using Python and Matlab. The average shear stress range ∆τ and the length of the slip
band d were substituted into Equation (1) to calculate the crack initiation life of each grain.
The grain with the lowest crack initiation lifetime was marked as the critical grain. The
critical grain was cracked at the end of a single simulation, and its crack initiation life was
considered as the lifetime of the simulation.

The shear stress distribution of the RVE model is shown in Figure 10. The shear
stress within surrounding grains was changed by the stress concentration at the crack tip.
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Cyclic FEM simulation was used to simulate the crack initiation process and predict the
crack initiation life. The crack was assigned in the critical grain at the end of each single
simulation, and then the FEM process proceeded to the subsequent simulation cycle. The
simulation of the crack initiation cycle stopped when the crack length exceeded the criterion
length (0.3 mm), and the total crack initiation life was then output.
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The surface integrity of the specimens was measured experimentally in Section 2.2. The
surface morphology and surface roughness of the turned specimen and LPBed specimen
are shown in Figure 11. As shown in Figure 11a, tool marks were observed on the turned
surface. The surface roughness of the turned specimen was 4.179 µm. Tool marks were
smoothed after the LPB process as shown in Figure 11b, and the surface roughness was
decreased to 1.079 µm. The LPBed surface roughness was reduced by 77.6% compared to
the turning results.
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The residual stress field of the turned and LPBed specimens is depicted in Figure 12.
Tensile residual stress with the value of 189.5 MPa was induced on the turned surface. The
maximum compressive residual stress of turned specimen was −693.7 MPa. The depth of
the turned residual stress field was 100 µm. The surface compressive residual stress of the
LPBed specimen was −298.7 MPa. The maximum compressive residual stress of LPBed
specimen was measured at 50 µm from the surface with the value of −1093 MPa (57.6%
increasing compared with turned specimen). The depth of the LPBed residual stress field
was 350 µm.
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Figure 12. Residual stress field of turning and LPB specimens.

Surface integrity affects the LCF life by altering the actual stress applied on the LCF
specimens [3,35]. Stress concentration, caused by surface roughness, increases the surface
stress, which in turn reduces the LCF life of specimen [36]. The stress concentration field
depth of the turned specimen was calculated using FEM, as shown in Figure 13. The
multi-notch model was established according to the turning surface topography. Material
mechanical parameters of Inconel 718 are shown in Table 1. The model was meshed
using CPE4R. The size of fine meshes was 0.01 mm. A fixed constraint was applied to the
right side of the model, and load was applied to the left side. Microscopic morphology
of the turned surface could not be replicated by FEM, so the surface roughness stress
concentration coefficient was corrected using Arola’s model [37], as shown in Equation (2).

Kt = 1 + n
(

Ra

ρ

)(
Rz

Ry

)
(2)

where Ra is the arithmetic mean deviation, ρ is the radius of the arc at notch bottom, and
Rz is the maximum height. The surface roughness parameters of the turning process are
shown in Table 4. The stress concentration coefficient of the turned surface roughness was
1.72, and the depth of the stress concentration field was 40 µm.
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Table 4. Stress concentration factor of turned surface.

Ra (µm) Ry (µm) Rz (µm) P (mm) Kt dt (µm)

0.942 4.179 5.078 3.179 1.72 40

The actual stress of specimens considering surface integrity is expressed as Equation (3).

σreal = Ktσapplied + σres (3)

The actual stress on the turned specimen surface was 1645.5 MPa and 1360 MPa inter-
nally in the specimen. The compressive residual stress was applied to the LPBed specimen
according to the measurement result shown in Figure 12. The boundary conditions for
polished matrix, turned, and LPBed RVE models are shown in Figure 14.
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Figure 14. Boundary conditions of polished matrix, turned, and LPBed RVE model.

The crack propagation life of the specimens was predicted using the XFEM finite
method. The 3D XFEM model was established based on the fatigue specimen structure, as
shown in Figure 15. The initial crack with a smooth curved front was formed after the crack
initiation stage [38]. A semi-circular crack with the radius of 0.3 mm was set up in middle
of the model. Hexahedral meshes are the only suitable mesh for XFEM. The model was
meshed using C3D8R with a size of 0.15 mm to ensure convergence of XFEM simulation.
The material parameters of Inconel 718 crack extension finite element analysis are shown in
Table 5. The cyclic loading analysis step was used to simulate LCF cyclic loading process.
A fixed constraint was set on the bottom of the model. The freedom of the upper surface
was constrained, except the z-direction displacement. A sinusoidal load was applied to
the model. The maximum load σmax = 1360 MPa, the stress ratio R = 0.1. The LCF load
spectrum is shown in Figure 16.



Metals 2024, 14, 178 11 of 18

Metals 2024, 14, x FOR PEER REVIEW 11 of 18 
 

 

process. A fixed constraint was set on the bottom of the model. The freedom of the upper 
surface was constrained, except the z-direction displacement. A sinusoidal load was ap-
plied to the model. The maximum load σmax = 1360 MPa, the stress ratio R = 0.1. The LCF 
load spectrum is shown in Figure 16. 

 
Figure 15. Crack propagation XFEM model. 

Table 5. Crack propagation XFEM model parameters of Inconel 718 [39]. 

Material G (GPa) ν 
Paris Model Parameters 

C m 
Inconel 718 210 0.3 1.13×10−11 2.74 

 
Figure 16. LCF load spectrum of Inconel 718 specimens. 

4. Result and discussion 
The crack initiation process of the polished matrix specimen simulated using FEM is 

shown in Figure 17. Microcracks were initiated in subsurface grains when loaded after 
1505 cycles, as shown in Figure 17a. This was attributed to the absence of the surface stress 
concentration on the polished matrix specimen surface. The microcracks gathered and 
propagated to the surface with load proceeding, as shown in Figure 17b. The microcracks 
penetrated the RVE model after 12,910 cycles, as shown in Figure 17c. The predicted crack 
initiation life for the polished matrix specimen was 9718 cycles. 

The crack initiation process in the turned specimen simulated using FEM is shown 
in Figure 18. As shown in Figure 18a, microcracks initiated in the surface grains of the 

Figure 15. Crack propagation XFEM model.

Table 5. Crack propagation XFEM model parameters of Inconel 718 [39].

Material G (GPa) ν
Paris Model Parameters

C m

Inconel 718 210 0.3 1.13×10−11 2.74
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4. Result and discussion

The crack initiation process of the polished matrix specimen simulated using FEM
is shown in Figure 17. Microcracks were initiated in subsurface grains when loaded after
1505 cycles, as shown in Figure 17a. This was attributed to the absence of the surface stress
concentration on the polished matrix specimen surface. The microcracks gathered and
propagated to the surface with load proceeding, as shown in Figure 17b. The microcracks
penetrated the RVE model after 12,910 cycles, as shown in Figure 17c. The predicted crack
initiation life for the polished matrix specimen was 9718 cycles.
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Figure 17. Crack initiation process of the polished matrix RVE model. Figure 17. Crack initiation process of the polished matrix RVE model.

The crack initiation process in the turned specimen simulated using FEM is shown in
Figure 18. As shown in Figure 18a, microcracks initiated in the surface grains of the turned
specimen at 1554 cycles. The rapid crack initiation at the turned surface was attributed to the
stress concentration induced by surface roughness. The actual stress on turned surface was
much higher than the stress in the substrate. As shown in Figure 18b, microcracks initiated
in both the surface and the subsurface, indicating that the compressive residual stress of the
turned specimen was not sufficient to inhibit crack initiation inside the specimen. The two
microcracks merged and penetrated the RVE model at 9718 cycles, as depicted in Figure 18c.
The predicted crack initiation life of the turned specimen was 9718 cycles.
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The crack initiation process in the LPBed specimen was simulated using FEM, as
shown in Figure 19. Microcracks were initiated in the subsurface layer of the LPBed
specimen at 2355 cycles, as shown in Figure 19a. This was attributed to the low surface
roughness and compressive residual stress field induced by the LPB process. The microc-
racks extended slowly within the LPBed specimen. The compressive residual stress delayed
microcrack propagation to the surrounding grains by mitigating the stress at the microcrack
tips. The surface microcracks merged into the main crack penetrating the RVE model at
18,787 cycles. The predicted crack initiation life of the LPBed specimen was 18,787 cycles.
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Figure 19. Crack initiation process of the LPBed RVE model.

The XFEM model predicted crack propagation life is shown in Figure 20. The crack
extended slowly perpendicular to the load at the beginning of the crack propagation
stage. This was due to the lower intensity factor. As the crack length increased, the crack
propagation accelerated as the stress intensity factor increased. The shear lip formed at the
end of the crack propagation was attributed to ductile fracture. The XFEM-predicted crack
propagation life Np of Inconel 718 was 477.

The experimental and FEM predicted results of Inconel 718 LCF life are shown
in Figure 21. The average experimental LCF life of the polished matrix specimen was
12,264 cycles. The turned specimen exhibited the lowest average experimental LCF life
(9013 cycles), which decreased by 26.5% compared with the polished matrix specimen. It
was due to the surface stress concentration induced by turned surface roughness. The
average experimental LCF life of the LPBed specimen was the highest (17,174 cycles), which
was increased by 40.0% and 90.5% compared with the polished matrix and turned specimen,
respectively. It was attributed to the deep compressive residual stress field and low surface
roughness induced by the LPB process, which reduced the stress on the specimen surface.
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Figure 21. Experimental and FEM prediction results for Inconel 718 specimens.

The LCF life of Inconel 718 with different surface integrity was predicted by the
proposed micro–macro FEM model, as shown in Figure 21. The model predicted LCF
life of Inconel 718 was all located within the range experimental results. The respective
errors between the prediction and experimental results of the turned specimen, polished
matrix specimen, and LPBed specimen were 13.1%, 9.2%, and 12.2%. It suggested that the
micro–macro FEM method based on crack initiation and propagation mechanisms can be
used to predict the LCF life of Inconel 718 with different surface integrity. Compared with
the experimental result, the predicted LCF life by micromacro FEM model was slightly
higher. The overestimation of the LCF life was due to the fact that the grain boundary crack
was not considered in FEM model.

The fracture morphology of the polished matrix specimen, turned specimen, and
LPBed specimen is shown in Figure 22. The fracture morphology of the polished matrix
specimen is shown in Figure 22a–c. The fatigue crack initiated on the surface of the polished
matrix specimen as shown in Figure 22a. The transgranular fracture was observed at the
crack initiation area, which was consistent with the macro–micro FEM model prediction.
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This is due to the lower surface stress concentration of the polished surface. The transgran-
ular fracture and fatigue striation were observed at 150 µm from the surface, as shown in
Figure 22b. Fatigue striations perpendicular to the direction of crack propagation were
observed in the crack propagation region. Each striation corresponds to one stress cycle,
and the width of two adjacent striations represented the advancement of the crack tip in
one cycle [40]. The crack propagation rate was calculated by counting fatigue striations
per micrometer [41]. The crack propagation rate was calculated as 0.43 µm per cycle by
measuring fatigue striation per micron. The propagation rate increased to 0.80 µm per cycle
at 300 µm from the surface, as shown in Figure 22c. This was due to the increment of the
stress intensity factor with the crack propagating.
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Figure 22. Fracture surface morphology (a) Polished specimen at surface; (b) Polished specimen at
150 µm from surface. (c) Polished specimen at 300 µm from surface. (d) Turned specimen at surface;
(e) Turned specimen at 150 µm from surface. (f) Turned specimen at 300 µm from surface. (g) LPBed
specimen at surface; (h) LPBed specimen at 150 µm from surface. (i) LPBed specimen at 300 µm
from surface.

The fracture morphology of the turned specimen is shown in Figure 22d–f. As shown
in Figure 22d, the fatigue cracks initiated at the surface tool marks, which is consistent with
micro FEM simulation results. It was attributed to the high surface stress induced by stress
concentration. The stress at tool marks was greater than the stress inside the specimen,
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which resulted in subsurface crack initiation. As shown in Figure 22e, fatigue streaks were
observed at 150 µm from turned surface. The crack propagation rate at 150 µm from the
turned specimen was measured at 0.57 µm per cycle. The propagation rate increased to
0.67 µm per cycle when the crack length grew to 300 µm as shown in Figure 22f.

The fracture morphology of the LPBed specimen is shown in Figure 22g–i. As shown
in Figure 22g, the crack was initiated at the subsurface of the LPBed specimen, which is
consistent with model prediction. The finished surface and compressive residual stress
field were induced by the LPB process. The finished surface prevented surface stress
concentration, and the compressive residual stress field offset the fatigue load. This resulted
in the subsurface crack initiation. The transgranular fracture and fatigue striation was
observed at 150 µm from the surface, as shown in Figure 22h. The LPBed specimens showed
the densest fatigue striation compared with the other groups, and the crack propagation
rate was calculated as 0.32 µm per cycle. The surface crack initiation and propagation
were delayed by the lower surface roughness and compressive residual stress field induced
by LPB processing. The crack propagation rate at 300 µm from surface was measured as
0.76 µm per cycle as shown in Figure 22i, which was similar to the other groups. This was
because the crack propagation at 300 µm was seldom affected by the surface integrity since
the crack propagated beyond the surface integrity influence field.

5. Conclusions

In this study, the LCF life of Inconel 718 with different surface integrity was researched
using theoretical and experimental methods. The micro–macro FEM model was established
based on the fatigue crack initiation and propagation mechanisms. The LCF life of the
turned specimen, polished matrix specimen, and LPBed specimen was predicted using the
proposed model. The LCF experiment was conducted to validate the proposed model. The
conclusions are emphasized as follows:

(1) Compared with the turned specimen, the surface roughness Ry of the LPBed
specimen was 77.6% lower, and the maximum compressive residual stress was increased
by 57.1%. The compressive residual stress field depth was increased by 2.5 times af-
ter LPB processing. LPB process can significantly improve surface integrity after the
turning process.

(2) The LCF life of specimens was improved after the LPB process. The LCF life of the
LPBed specimens increased by 36.1% compared with the polished matrix specimen, and
increased by 90.5% compared with the turned specimen. This was attributed to the low
surface roughness and compressive residual stress field induced by the LPB process.

(3) The LCF micro–macro FEM model was combined with Tanaka–Mura dislocation
crack initiation theory and XFEM. The established model was applied to predict the LCF
life of Inconel 718 specimens with different surface integrity. The LCF life of Inconel 718
specimens with different surface integrity was predicted by the proposed model. The error
between the prediction results and the experimental results was 13.1%.
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