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Abstract: Within the large Additive Manufacturing (AM) process family, Directed Energy Deposition
(DED) can be used to create low-cost prototypes and coatings, or to repair cracks. In the case of
M4 HSS (High Speed Steel), a reliable computed temperature field during DED process allows the
optimization of the substrate preheating temperature value and other process parameters. Such
optimization is required to avoid failure during the process, as well as high residual stresses. If
3D DED simulations provide accurate thermal fields, they also induce huge computation time,
which motivates simplifications. This article uses a 2D Finite Element (FE) model that decreases the
computation cost through dividing the CPU time by around 100 in our studied case, but it needs some
calibrations. As described, the identification of a correct data set solely based on local temperature
measurements can lead to various sets of parameters with variations of up to 100%. In this study, the
melt pool depth was used as an additional experimental measurement to identify the input data set,
and a sensitivity analysis was conducted to estimate the impact of each identified parameter on the
cooling rate and the melt pool dimension.

Keywords: directed energy deposition; sensitivity analysis; model parameters; process parameters;
thermal field; cooling rates

1. Introduction

Nowadays, several techniques exist to build metal pieces with high added value; for
instance, it is possible to use subtraction or addition techniques. For high-cost material
or topologically optimized pieces, it is preferable to use additive manufacturing [1]. In
this field, many technologies exist, such as laser powder bed fusion (LPBF) or directed
energy deposition (DED—see norms ASTM F3187-16 [2]). For DED, several techniques are
available through the use of a wire feeding method, i.e., Wire Arc Additive Manufacturing
(WAAM), which is well adapted to big parts at the expense of a low geometrical accu-
racy and surface finish [3], or a powder feeding method which provides a better surface
roughness [4].

DED has high potential in cladding uneven substrates. It reaches high cooling rates
and generates fine microstructures [5]. If optimized, the process can achieve little distortion
and high-quality deposits [6]. The laser cladding process is advantageously used as a
repair technology [7]. Production of functional prototypes is another possibility, alongside
small series production [8,9]. However, some problems still need to be fixed, such as
microstructure monitoring, porosity which can lead to bad mechanical behaviour [10],
geometrical accuracy inducing the need of post-process rectification [11], and crack events
during manufacturing, either at substrate-deposit interface or in the clad [12].

The melt pool size has been identified as a critical parameter for maintaining optimal
building conditions [13]. In microstructure genesis, the melt pool size and the cooling rate
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determine the properties of the future clad as well [14]. However, to accurately model
the melt pool size and shape, and to solve the issues linked to the fluid state in the melt
pool such as balling effect, keyhole, and porosity formation, Computational Fluid Dynamic
(CFD) analysis is required. For L-PBF process, Heeling et al. [15] present an advanced CFD
model taking into account accurate surface tension, the Marangoni effect, recoil pressure
due to melt ejection by vaporization, and buoyancy force. Their validations for different
process parameters using cubic samples of stainless steel 316 L and nickel-based superalloy
IN738LC are quite convincing. For 316L, with a similar type of CFD model, Yao et al. [16]
also present very accurate results about track shape, melt pool morphology, and thermal
field, showing that a quantitative agreement between predictions and experiments can
be reached. However, due to their completeness, these types of simulations are quite
greedy from a CPU point of view. They can only be applied to small samples and academic
problems. Nevertheless, they provide input about the local thermal field for metallurgic
models, such as Phase Field [17,18] or Cellular Automaton [19], that predict microstructure
genesis which includes solidification, grain nucleation and growth, and texture formation.

At a macroscopic scale, numerous Finite Element simulations have been developed to
predict the thermal history of the deposit within DED process [20], focusing on the solid
phases only. Such an approach relies on the strong assumptions that, for instance, neglect
all the internal phenomena at the melt pool scale. Therefore, some corrections are applied to
improve the prediction accuracy. For instance, the experimental conductivity value above
solidus temperature is often multiplied by a coefficient γ defined according to literature
data or just trials and errors (γ = 2.5 in [21], γ = 5 in [22]). These different FE models allow
for one to define the correct melt pool size, and give information on the heat-affected zone
(HAZ) where the material undergoes cycles of temperature variations [23].

The layer height is higher in the DED process (close or larger than 1 mm) than in the
L-PBF one (usually a few tens of µm [24,25]) and smaller than that in the case of WAAM
(above 1 mm [26]). Nevertheless, for any real part manufactured by a LPBF, DED, or
WAAM process, the length of the laser path is of a magnitude larger than the equivalent
diameter of the track (for this study, the typical transversal dimensions of a track were about
0.75 mm, while the total path was about 40,000 mm long). So, if the FE model simulates
the total laser path, the computation time can reach days, and even months, and becomes
unaffordable. In order to reduce computation time, many numerical techniques exist, such
as using an artificially elongated heat source (part of a track or even a few layers) to increase
the zone that is printed at once, with the major drawback being that temperature peaks are
lost [27], or data driven models (mostly deep neural network enriched with physical laws)
which need a large amount of data for their training [28,29], or an equivalent mathematical
data driven technique such as the Proper Orthogonal Decomposition (POD). This latter
technique can be applied on parts of the studied volume with low thermal gradients in
order to reduce the total number of degrees of freedom (replacing FE computed thermal
field by thermal modes). However, the limitation of such a method lies in the need to
update these modes to avoid increasing error [30]. For these last two numerical models,
the huge drawback resides in the necessity to have previous FE results in order to exploit
them. Another direction followed in the present article is to decrease CPU time through
the replacement of the 3D thermal field computation with a 2D assumption for thermal
FE simulations. The 2D approach can be used for a 3D bulk sample, considering only the
thermal field of its middle section. Extensive tests on such 2D simulations [31] confirmed
the substrate temperature for parallelepiped bulk samples, as well as the melt pool size
predictions, but also confirmed the different type of carbides precipitation associated
to the thermal histories in different points of interest along the height of the sample
were validated. Ref. [31] has also investigated the impact of thermophysical properties
(conductivity, capacity) and boundary conditions (convection and emissivity coefficient) on
the FE 2D predicted thermal history to conclude on the highest impact of the emissivity on
the substrate temperature.
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The main goal of the present study was to estimate the impact of the identified nu-
merical parameters during the 2D FE simulations, such as the absorption coefficient of the
laser power β, the convection, and radiation coefficients on the melt pool dimensions. The
selected words “numerical parameters” underline the fact that in order to have compen-
sated the thermal flow in the transversal direction, which is not taken into account in the
2D FE simulations, these parameters have lost their physical meaning and need careful
identification to recover the experimental observations, including substrate temperature
at thermocouples and melt pool size at the last layer. Note that further validations of the
2D FE computed temperature fields, such as the heterogeneity of the carbide type along
the height of the bulk sample studied, as well as of the Vickers hardness profile and nano
hardness information, were provided respectively within reference [5]. The present research
highlights the fact that different sets of numerical parameters and associated results could
be identified only if the thermocouple temperature measurements are exploited, or if poor
accuracy is accepted within the identification methodology. Therefore, it is important to
consider various experimental measurements to reach an accurate and robust fitting of the
numerical 2D FE model.

The intensive research field around accurate thermal fields in additive manufacturing
can be understood, as it is the main loading field in the process. As pointed out by
Bayat et al. [32] regarding DED, if thermal simulations are validated, the next steps can
focus on thermomechanical simulations. Let us be reminded that these calculations are not
often totally coupled. Usually, the thermal field is computed for a chosen time increment,
and then the thermal field is imposed to the mechanical FE model. However, a quicker
way has been often applied, which is called the inherent strain method. With the aim
of calculating the residual distortions and stresses at the end of the process, this method
solves a limited number of mechanical equilibrium problems in which the loading field,
known as the inherent strain, is used to compute the stress field, generally in an incremental
way. Developed initially for the welding process, this method is extensively used in LPBF,
and its application in DED can also be found (see, for instance, ref. [33], or recent PhD of
J. Keumo-Tematio [34]).

To conclude this introduction, it should be emphasized that several important mod-
elling results, such as the final microstructure or the field of residual stresses, need a
well-defined thermal field, which leads to the potential of 3D simulations with high com-
puting time. Therefore, 2D simulations that reduce the time-consuming issue are being
investigated. This paper is dedicated to the potentiality of receiving erroneous results in
the case of an incorrect calibration of 2D simulations.

2. Experimental Aspect

The 5-axis Irepa Laser Cladding system, with a Nd-YAG laser of maximum power ca-
pacity of 2000 W from Sirris Research Centre (Seraing, Belgium), is schematically described
in Figure 1 [35]. The laser has a wavelength of 1064 µm and operates continuously. The
metal powder is injected with an angle of 38 to 45 degrees, while the angle of the nozzle
is 90◦. The laser power has a top-hat energy distribution with a diameter of 1400 µm (it
is considered a constant in the simulations [36]). A home-made protection cap filled with
argon avoids contamination of the melt pool through interstitial elements such as oxygen
or nitrogen [37]. The oxygen concentration within the protective atmosphere is below
10 ppm. The substrate of 50 mm height and 100 mm diameter is made of 42CrMo4 steel
and preheated to 300 ◦C to prevent cracks in the deposit. The substrate top is surrounded
by a 10 mm aluminium plate while, at the bottom, steel and aluminium plates are present,
helping to diffuse heat.
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Figure 1. Scheme of laser cladding equipment used for manufacturing both bulk and thin wall spec-
imens. 

The composition of the HSS M4 commercial powder with particle size ranging from 
50 µm to 150 µm is provided in Table 1, while Table 2 provides the different process pa-
rameters for the additive manufacturing. 

Table 1. Chemical composition of HSS M4 (wt. %). 

C Mn Cr Mo V W Ni Si Fe 
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Table 2. Process parameters for the samples manufactured by laser cladding. 

Laser beam speed [mm/s] 6.67 
Laser power [W] 1100 
Preheating [°C] 300 

Figure 2a shows the 40 × 40 × 27.5 mm3 (length × width × height) built sample made 
with 36 layers. The targeted height per layer was 0.76 mm. Figure 2c describes the position 
of the four thermocouples used: 5 mm deep in the substrate and at 20 mm from the edge 
of the substrate. For the calibration of this study, the thermocouple t3 was used as a refer-
ence (see Figure 3). Each layer consisted of 27 tracks, and the deposit strategy is shown in 
Figure 2b (note that only two layers and seven tracks per layer are shown for simplifica-
tion purpose). 
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Figure 1. Scheme of laser cladding equipment used for manufacturing both bulk and thin wall specimens.

The composition of the HSS M4 commercial powder with particle size ranging from
50 µm to 150 µm is provided in Table 1, while Table 2 provides the different process
parameters for the additive manufacturing.

Table 1. Chemical composition of HSS M4 (wt. %).

C Mn Cr Mo V W Ni Si Fe

1.35 0.34 4.30 4.64 4.10 5.60 0.9 0.33 Balance

Table 2. Process parameters for the samples manufactured by laser cladding.

Laser beam speed [mm/s] 6.67

Laser power [W] 1100

Preheating [◦C] 300

Figure 2a shows the 40 × 40 × 27.5 mm3 (length × width × height) built sample
made with 36 layers. The targeted height per layer was 0.76 mm. Figure 2c describes the
position of the four thermocouples used: 5 mm deep in the substrate and at 20 mm from
the edge of the substrate. For the calibration of this study, the thermocouple t3 was used
as a reference (see Figure 3). Each layer consisted of 27 tracks, and the deposit strategy is
shown in Figure 2b (note that only two layers and seven tracks per layer are shown for
simplification purpose).
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Figure 3. Thermal history at the thermocouple t3. 

To match experimental data with the 2D modelling assumption, a time shrinking fac-
tor had to be used. Indeed, the time to build a layer corresponds to the time to build a 
track in the 2D FE simulation, so one has to post-process the data (a Butterworth filter of 
order 5 was used in this study). As the simulation models the behaviour at the middle of 
the clad, it is necessary to use criteria to neglect oscillations due to tracks out of the middle 
plane. It is not possible for the model to reproduce these oscillations. According to the 
selected criterion, slightly different experimental targeted temperature curves are defined 
even if the whole trend is conserved. It is possible to refer to the extreme temperatures 
(minimum and maximum values) of the central track [38], or to refer to the extreme tem-
peratures of the layer (by considering that these extremes happen when the laser is at the 

Figure 2. (a) Bulk sample. (b) Laser beam strategy for the bulk sample during 2 successive layers
N-1 and N. (c) Top view of the bulk deposit and the substrate. Red points identify the thermocouple
position located in the substrate at a depth of 5 mm.

In Figure 3, the 36 large waves correspond to successive layers of the deposit. For
each layer, in the zoom figure, one can identify the 14 local maxima associated with the
moments when the laser is at the closest position to the thermocouple t3 for each track,
and the 13 local minima that represent moments when the laser is at the opposite side of
the clad.
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Figure 3. Thermal history at the thermocouple t3.

To match experimental data with the 2D modelling assumption, a time shrinking factor
had to be used. Indeed, the time to build a layer corresponds to the time to build a track in
the 2D FE simulation, so one has to post-process the data (a Butterworth filter of order 5
was used in this study). As the simulation models the behaviour at the middle of the clad,
it is necessary to use criteria to neglect oscillations due to tracks out of the middle plane.
It is not possible for the model to reproduce these oscillations. According to the selected
criterion, slightly different experimental targeted temperature curves are defined even if
the whole trend is conserved. It is possible to refer to the extreme temperatures (minimum
and maximum values) of the central track [38], or to refer to the extreme temperatures of
the layer (by considering that these extremes happen when the laser is at the closest point
to the thermocouple, or when the layer is finished (maximal distance)). To get a smooth
curve, a spline was used to pass through the local minima and maxima of temperature
values, see Figure 4.
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Figure 4. Thermal history at the thermocouple with 2D assumption.

During the process, the metal that is close in region to the laser melts, which represents
the melt pool. Its dimensions will be largely influenced by the process parameters. Due to
the remelting of the previous clad zone (Figure 5), it is impossible to measure the melt pool
height, except for the last layer [39]. For this 36th layer, an average value of the melt pool depth
measured on different samples manufactured with process parameters of Table 2 was 2.3 mm.
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3. Numerical Methods
3.1. Implementation

In thermal simulations, the governing equation is the heat conservation equation

ρCp
dT
dt

= −
∂
(
qi
(
xj, t

))
∂xi

+ Q(xj, t) (1)

where T is the temperature, ρ the volumic mass, Cp the specific heat, xj the position vector,
qi the heat flux vector, Q the body heat source, and t the time.

The heat conduction is described by the Fourier law

qcond = −k(T, x)
∂T
∂xi

(2)
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where k is the conduction coefficient, which depends on the temperature [40] with a neglected
Marangoni effect within the melt pool [41,42]. However, it is possible to take it into account in
a global way by multiplying the value of k by a factor [43] to artificially recover this effect.

As for boundary conditions, two different contributions are taken into account: heat
loss due to convection, which is described by Newton’s law of cooling

qcond = −k(T, x)
∂T
∂xi

(3)

and heat loss due to radiation. The latter is described by the Stephan-Boltzmann’s law

qrad = ϵσ
(

T4
sur f − T4

∞

)
(4)

where Tsur f is the temperature of the surface, T∞ the temperature of the environment
(supposed constant), σ the Stephan-Boltzmann constant (5.67 × 10−8 W/m2K4). h is the
convection coefficient, and ϵ is the emissivity.

Some analytical models neglect these boundary contributions in AM processes, such
as the well-known simple Rosenthal approach [44], even if their effect is important on the
temperature of the clad. The difficulty of measuring the convection coefficient that evolves
with the geometry explains why this coefficient is often assumed constant, or just with
piecewise constant values [45]. The latter approach leads to a good trade-off, and will be
applied for the present study as in [46]. A different value of the coefficient was used for the
substrate and the clad. The same assumption was applied for the emissivity.

These different equations were implemented in an updated Lagrangian thermomechanical-
metallurgical FE software named Lagamine (http://www.lagamine.uliege.be/dokuwiki/
doku.php, accessed on 26 January 2024), developed in 1986 at the University of Liège. It
was first developed to model continuous casting process, and this FE software has been
applied in several different processes such as 3D printing, centrifugal casting of rolling
mill, deep drawing, and incremental sheet forming, among others. It is also exploited to
model material science phenomena in steels, Aluminium, Titanium, and Copper alloys
like creep-fatigue damage at hot temperature, scale effect, and phase transformation. Its
extensive library of constitutive laws is one of its advantages, as well as its flexibility. Within
a High Performance Computing (HPC) environment, it is used to train Deep Learning
models, or to identify macroscopic behaviour based on Representative Volume Element
(RVE). The development of this software always relies on different experiments to offer
serious validations, and to comparisons with other FE software packages.

The apparition of new added material is made using the birth element technique,
which consists of neglecting a part of the domain during the FE computation, i.e., the
elements that are still not activated. Once the laser passes over one element, it is activated
and taken into account for the rest of the simulation, representing an additional printed
volume of material. One exception concerns the boundary condition elements, which needs
to be turned off once it is no longer on the boundary.

3.2. Identification Method

Based on the temperature measured by the thermocouple t3 (see Figure 3), an op-
timization was made with the iterative algorithm of Levenberg-Marquardt (LM) [47,48].
This method allows the identification of the parameters by minimizing the sum of the
squares of the errors between the experimental and numerical curves through a sequence
of updates to the set of parameter values. This objective function is often nonlinear and
depends on several variables. This algorithm is based on two methods: the gradient descent
method and the Gauss-Newton method. It has been implemented into a module specifically
designed to allow the exploitation of multiple experiments [49], see Figure 6.

http://www.lagamine.uliege.be/dokuwiki/doku.php
http://www.lagamine.uliege.be/dokuwiki/doku.php
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4. Numerical Results
4.1. Identification Results

The use of this LM optimization module permits one to identify three different sets
of numerical parameters that could be considered as optimal (see Table 3, where grey
cells represent parameters that were chosen as a fixed value for the current identification),
demonstrating the non-unicity of the solution for this 2D FE model. The optimal data sets
generate quite a close temperature evolution at the thermocouple position (see Figure 7).
The optimized parameters are β, h, and ϵ, which are the absorption, the convection, and
the emissivity coefficients, respectively. For Set 1, the five parameters were mathematically
tuned without any constraint. For Set 2, emissivity coefficients were fixed to physical
values [50], and for Set 3, both emissivity and substrate convection coefficients were
imposed. The mean error column corresponds to the average of the absolute difference
between experimental data and simulation temperature.

Table 3. Sets of parameters obtained with the Levenberg-Marquardt algorithm.

β [/] hclad
[W/m2K] εclad [/] hsubstrate

[W/m2K]
εsubstrate

[/]
Mean Error

[K]

Set 1 0.03955 479.93 1.83 72.23 0.95 4.66
Set 2 0.04097 823.47 0.8 82.49 0.8 4.27
Set 3 0.04172 707.6 0.9 120 0.9 4.39
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As expected, the 2D FE model cannot accurately predict the oscillations, but it can
simulate the thermal trends in a quantitative way. In Figure 7, the predicted oscillations are
larger for the first layers than for the next layers, and disappear at the end of the simulation.
Experimentally, the corresponding large oscillations are related to successive layers (see
Figure 3). The larger oscillations at the start of the process are due to the small distance
between the laser and the thermocouple, which reduces the effect of the thermal diffusion.
This effect also explains why the model does not reproduce oscillations after a certain
number of layers. The post treatment of the experimental curve itself, discussed at the end
of Section 2, justifies why one should not focus on the exact match of the temperature at
the substrate level. A more important validation is the melt pool depth that confirms the
accuracy of the local thermal field.

4.2. Validation of the Predicted Results

The melt pool depth was computed over the entire simulation with the three different
sets, as shown in Figure 8. Its value has been estimated as the middle of the track to
minimize edge effects.
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A first observation can be made on the predicted temperature at the thermocouple
compared to the computed melt pool of the different sets, even if the predicted temperature
is the lowest during the first 80 seconds for Set 2 (see Figure 7), the smallest computed
melt pool belongs to the Set 1 (see Figure 8).This can be related to the fact that the different
parameters do not have the same effect. An increase in the values of the substrate convection
and radiation parameters will decrease the temperature of the substrate more efficiently
(close to the thermocouple), but will change melt pool dimensions less. This also explains
why those sets provide close melt pool depths until the fifth layer. Indeed, the clad
temperature and the clad height at this moment are not high enough to generate any
difference between the three cases. Conversely, the increased β value of the Set 2 compared
to Set 1 brings more heat, close to the melt pool, which tends to increase its size. For
the Set 3, the same approach can be applied, where an increase of the heat loss flux is
compensated by an increase of β, leading to a similar temperature at the position of the
thermocouple. However, closer to the melt pool, the quantity of heat received is increased,
which conducts to a deeper melt pool.

4.3. Sensitivity of the Simulation Results to the Boundary Conditions

To evaluate the impact of these boundary parameters, some perturbed sets have been
defined using the set 2 as a validated reference. The value of the perturbation is about 0.1%
of the identified parameter, which gives the new sets of Table 4, the perturbed parameter is
represented with a grey cell.
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Table 4. Sets selected used to evaluate the sensitivity of simulations results.

Perturbed
Parameter Sets β [/] hclad

[W/m2K] εclad [/] hsubstrate
[W/m2K] εsubstrate [/]

Set 2 0.04097 823.5 0.8 82.49 0.8
Perturbed β 0.04101 823.5 0.8 82.49 0.8

Perturbed hclad 0.04097 824.3 0.8 82.49 0.8
Perturbed εclad 0.04097 823.5 0.801 82.49 0.8

Perturbed hsubstr 0.04097 823.5 0.8 82.57 0.8
Perturbed εsubstr 0.04097 823.5 0.8 82.49 0.801

From these perturbed sets of parameters, the sensitivity of the depth of the melt pool
and the cooling rates were estimated at three different point of interest (POI) positions
(Figure 9). Their positions are defined by taking the upper surface as a reference. The
height of these POI is sufficiently different enough to represent the material heterogeneity
of the DED processed part proved by their hardness profile (see [31]). A measure of the
result sensitivity to the perturbed parameter is defined in Equation (5):

S f =

 f ( BC(x ∗))− f (BC(x))
f (BC(x))

x∗−x
x

 (5)

S f is the sensitivity to the parameter x, which belongs to a set of values that represents
the boundary conditions BC, x the identified value, x∗ is the perturbed condition, and f
defines the FE prediction values. This definition of the sensitivity is quite similar to the one
used in the LM algorithm to define the Jacobian matrix.
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Figure 9. Positions of the POI in the clad.

As shown in Figure 10, increasing the power of the laser leads to an increase in the
melt pool depth. Substrate parameters have nearly no impact on the melt pool dimension,
as they do not influence the local thermal field in a region close to the laser. Conversely,
an increase in the clad parameters (convection and radiation) tends to decrease the melt
pool depth.
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Figure 10. Sensitivity of the melt pool depth prediction to the different boundary conditions.

Concerning the cooling rates, two different values can be estimated based on the
temperature history (see Figure 11). The average cooling rate between peak max and min
temperature (corresponding to the red crosses in Figure 11) and the average cooling rate
in the liquidus-solidus zone (zone between red dashed lines), if liquidus or solidus is not
reached, the maxima are taken to get the average slope (green crosses in Figure 11). For
POI3, there is no third peak (process is over), so the minimum is taken after a certain time
that is equal to the time between the maximum and the minimum of the first peak. This
assumption is made for consistency.
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Figure 11. Temperature variation of the 3 POI.

In Figures 12 and 13, the sensitivity is evaluated on the four first peaks of temperature,
except for POI3 which undergoes only 2 peaks. It is important to consider melt pool
dimensions (see Figure 8), which shows that the three first peaks happen when the POI
is in the melt pool (each layer of the clad is modelled with a height of 0.75 mm which
corresponds to the experimental mean height), which explains why the sensitivity of the
fourth peak does not always follow the same trend as others. For instance, in Figure 12
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for POI1 with the set Perturbed β, for the three first peaks, increasing β will lead to an
increase in the cooling rate (higher local temperature which leads to higher gradients and
consequently to higher cooling rates). While, for the fourth peak, the cooling rate will
decrease due to an increase of the amount of heat provided to the clad.
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5. Conclusions

Within the large amount of models applied to DED, this article is focused on how a 2D
FE simulation can be reliable, as saving CPU time must not prevent accuracy. Using a bulk
sample (with a size of 40 × 40 × 27 mm3) in M4 high speed steel, it is demonstrated that a 2D
FE model requires the use of several virtual parameters for the boundary conditions, indeed,
avoiding the recognition that the thermal flow in the out of plane directions decreases the
physical meaning of the parameters. The correct prediction of the temperature measured
at a substrate thermocouple is considered to be global information, which is not sufficient
enough to reach an accurate local temperature field. The article demonstrates the need of an
improved fitting procedure including the melt pool size, which represents a local measure.

A sensitivity study was made to determine the impact of the accuracy of the fitted
boundary conditions on the melt pool depth and the cooling rate, which are two quantities
determining the clad microstructure.

The main conclusion of this study is that the laser power and the clad boundary
parameters (convection and radiation) are critical in defining the melt pool dimensions.
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However, the sensitivity values highly depend on the reference peak of temperature and
the positions that are considered.

This study was based on the 2D assumption, which is a rough approximation as it
considers that transversal heat fluxes are negligible. This hypothesis can be applied on
a bulk clad with low surface-volume ratio but, to our knowledge, it has not yet been
investigated on thin parts.

Some future work will be done about the influence of the thickness of the deposit on
the temperature field for 3D cases compared to their 2D model. These interactions will be
analyzed, thanks to artificial intelligence, as it has already been done previously in [51] to
reproduce the different results with a surrogate model that can be rapidly trained thanks to
the 2D assumption.
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