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Abstract: In the petroleum industry, the casing steel is fixed with a cement sheath to ensure reliable
service in demanding conditions characterized by high temperature, high pressure, and exposure to
multiple types of media. After the hydration of the cement, a porous material is produced with a
highly alkaline solution filling the pores, commonly referred to as the pore solution. The casing will
form a protective passive film when in contact with a highly alkaline pore solution. Nevertheless,
once the cement sheath cracks, chloride ions in the stratum will pass through the cement sheath
to the surface of the casing. When chloride ions accumulate to a certain concentration, the passive
film will be destroyed, without exerting a protective influence on the substrate. After chloride
ions come into direct contact with the casing, the casing is prone to severe failure due to corrosion
perforation. The casing failure can cause a blowout outside the casing and even scrapping of the oil
well. Controlling casing corrosion and ensuring casing integrity relies on understanding the critical
chloride ion concentration that can cause the degradation of the passive film. Therefore, to assess
the electrochemical properties and analyze the damage process of the passive film under varying
chloride ion concentrations, several characterization techniques were employed. These included
potential–time curves (E-t), polarization curves, electrochemical impedance spectroscopy (EIS), and
Mott–Schottky curves. In addition, the composition of the passive film on the surface of the P110
casing steel was qualitatively analyzed using X-ray photoelectron spectroscopy (XPS). To further
understand the surface morphology of the P110 casing steel, scanning electron microscopy (SEM)
was used.

Keywords: casing steel; alkaline simulated pore solution; passive film; chloride ion; electrochemical;
XPS

1. Introduction

The surface of an underground casing is sealed with a cement sheath, and after
hydration and solidification, the cement will present a porous form. Due to the high alkali
solution (pH ≈ 12.5) in the small pores of cement, a dense passive film is formed on the
casing steel surface. This formation contributes to excellent corrosion resistance of the
casing [1–5]. However, in a complex underground environment, with higher temperature
and pressure than on the ground and exposure to different media, and with time or cracking
of the cement, water and chloride ions from outside penetrate the cement sheath and reach
the interface between the cement sheath and the casing steel. This causes a decrease in
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pH in the medium environment, a potential for a negative shift in the casing corrosion,
and a change to an active dissolution state. When the passive film is damaged, it leads to
corrosion or even perforation failure of the casing, causing huge economic losses [6].

Chloride ions can reach the interface between the cement and the casing steel through
the cement protective layer and gradually accumulate at the interface. As the concentration
of chloride ions near the casing surface gradually rises, it eventually reaches a critical
threshold. Chloride ion action may cause local passive film breakdown and corrosion on
the casing steel [7–9]. The chloride threshold level that triggers the corrosion of casing
steel can be defined as the minimum chloride ion content that promotes the decomposition
of local passive film on the casing steel under highly alkaline conditions of the cement
sheath [10–13]. Having an insignificant ionic radius and strong penetrability, chloride
ions can penetrate the produced oxide film and reach the surface of the metal substrate.
Subsequently, this can promote the hydrolysis of Fe3+ to generate H+, thus promoting the
electrochemical corrosion of the metal substrate. Chloride ions can induce and promote
local metal corrosion, such as pitting and crevice corrosion, causing significant damage
to the metal. Khaled et al. [14] studied the corrosion performance of carbon steel with
supersonic flame spray coating in a simulated pore solution containing chloride ions. In
the absence of coating, carbon steel exhibited severe corrosion, mainly pitting corrosion.
Ghods et al. [15] studied the changes in the composition of passive films on carbon steel
in a simulated pore solution containing chloride ions. Nahali et al. [8] investigated the
effect of inhibitors on the chloride threshold in saturated hydroxide solutions. Domestic
studies have also investigated the impact of chloride ions on the passivation of steel in
simulated pore solutions. Ye et al. [7] used electrochemical methods such as electrochemical
impedance spectroscopy (EIS) to discuss the critical concentration of chloride ions resulting
in damage to the passive film in a simulated pore solution. The invasion of chloride ions
disrupts the stability of the passive film and weakens its corrosion resistance. Meanwhile,
the density of the passive film decreases due to the deposition of many loose grains.

There are generally two mechanisms in which chloride ions cause damage to the
passive film, as shown in Reactions (1–2). The mechanism expressed in Reaction (1) is that
chloride ions having a small radius and strong permeability easily interact with metals to
form soluble chloride through tiny pores in the film. This leads to damage to the passive
film and pitting corrosion. A sufficient electric field is key in damaging the passive film.
The intensity of the induced electric field depends on the concentration of chloride ions and
the electrode potential. Therefore, the destruction of the membrane requires a minimum
chloride ion concentration (critical concentration) and a minimum potential (pore corrosion
breakdown potential), as well as a longer incubation period. Adsorption theorists believe
that the fundamental reason for the destruction of the passive film by chloride ions is that
chloride ions have a strong ability to be adsorbed by metal, and that the interaction between
chloride ions in solution and dissolved oxygen or OH− occurs. As shown in Reaction (2),
owing to the competitive adsorption on the metal surface, the dissolved oxygen previously
adsorbed on the weak points of the passivation film is replaced by chloride ions, converting
the passivation film with excellent corrosion resistance into a soluble complex, resulting in
damage to the oxide film and local corrosion [16].

Fe3+
pas + 3Cl− → FeCl3 (1)

FeCl3 → Fe3+
sol + 3Cl− (2)

This article mainly conducts in-depth research on the damage of the chloride ion
concentration to the passivation film through electrochemistry and surface analysis. It
explores the decisive role of critical chloride ion concentration in corrosion, providing a
reference for future research.
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2. Experimental
2.1. Materials and Environment

Table 1 presents the chemical composition (wt.%) of the P110 steel used in the experi-
ment. The plate specimens were machined in a length, width, and height of 10 mm, 10 mm,
and 3 mm, respectively. Before testing, all samples were pre-treated. The sample surface
was polished using 1000-mesh silicon carbide paper and thoroughly cleaned with acetone.

Table 1. Chemical composition (wt.%) of P110 steel.

C Si Mn P S Cr Mo Ni V Ti Cu Fe

0.25 0.20 1.40 <0.009 <0.003 0.15 0.01 0.012 0.012 0.030 <0.01 Bal.

Previous studies have shown that pH is less than 13, and the experimental material is
the G-grade Portland cement prepared by China Jiahua Enterprise Co., Ltd. The cement has
the following mineral composition: 64.77% CaO, 22.43% SiO2, 4.76% Al2O3, 4.10% Fe2O3,
1.14% MgO, 0.24% Na2O (K2O), and 1.67% SO3 [17]. The simulated pore solution in this
article was prepared by mixing analytical grade reagents with distilled water to obtain a
solution containing 0.19 M of NaOH and 0.02 M of Ca(OH)2, with a pH of 12.5. Before
the experiment, the solution was completely deoxygenated by injecting N2. NaCl with
different concentrations (0.1 mol/L, 0.15 mol/L, 0.16 mol/L, and 0.2 mol/L) was added to
the simulated pore solution to study passive membrane destruction. The experiment was
conducted in a water bath with a temperature of 65 ◦C.

2.2. Electrochemical Measurements

A three-electrode system, shown in Figure 1, consisting of a working electrode, refer-
ence electrode, and counter electrode, was employed to conduct electrochemical experi-
ments. The experiments could give rise to electrochemical behavior that depends on elec-
trochemical synthesis instruments (Autolab Model PGSTAT302N, Metrohm AG, Herisau,
Switzerland). A steel sample served as the working electrode, with only 10 × 10 mm2 of
the surface exposed to the solution. A circular Pt electrode surrounding the sample was
used as the counter electrode, while the Ag/AgCl electrode in a saturated KCl solution
was the reference electrode. Firstly, an open circuit potential test was conducted at an AC
voltage with an amplitude of ±10 mV. Then, electrochemical impedance spectroscopy (EIS)
measurements were performed based on the open circuit potential, ranging from 10 mHz
to 100 kHz. Finally, polarization tests were conducted sequentially, with a scanning speed
of 1.5 mV/s and a scanning range of ±25 mV. Each group of tests was conducted three
times to reduce errors. In addition, the Mott–Schottky measurements required maintaining
a frequency of 1 kHz and a scanning rate of 10 mV/s.

2.3. Material Characterization

X-ray photoelectron spectroscopy (XPS) measurements were carried out through an
XSAM800 XPS instrument (Kratos, Manchester, UK) to analyze the characteristics of the
P110 steel surface films. The specific parameters are as follows: XPS survey spectra: 150 eV
of Pass Energy, and 1.0 eV of Energy Step Size; high-resolution XPS spectra: 50 eV of
Pass Energy, 0.05 eV of Energy Step Size. Calibration: C-C: 285 eV. The microstructure of
the film damaged by chloride ions in this study was observed using a ZEISS EVO MA15
scanning electron microscope (Carl Zeiss AG, Jena, Germany). The method was supported
by electron beams accelerated using a constant potential that excited the specimen surface.
The interactions between these primary electrons and the specimen resulted in the release
of secondary, backscattered X-rays and Auger electrons.
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3. Results and Discussion
3.1. Determination of Steady-State Passivation Time

The stabilizing potential means that the passive film reaches a state of complete
passivation and maintains a dynamic equilibrium. The potential–time relationship of P110
steel in a simulated pore solution is depicted in Figure 2. Overall, the corrosion potential
showed an upward trend over time and the behavior could be categorized into three
distinct stages. The potential increased rapidly in the first stage and slowly in the second
stage, stabilizing in the third stage for 16 h. The oxide film was formed at the interface
between the solution and steel, continuously thickening over time. When the thickness
of the oxide film no longer increased with time, the potential stabilized, increasing the
resistance of the P110 steel dissolution reaction. Therefore, the sample was immersed in a
simulated pore solution for 16 h for chloride ion destruction experiments.

Metals 2024, 14, x FOR PEER REVIEW 5 of 14 
 

 

 
Figure 2. Potential–time curve of P110 steel in simulated pore solution. 

3.2. Electrochemical Behavior of Chloride Ions in Depassivation 
The detrimental effect of chloride ions on the passive film can be attributed to irrep-

arable complete damage. However, before reaching a certain concentration, chloride ions 
can hardly penetrate the passive film to cause corrosion to the metal substrate. At the oxide 
film/solution interface, chloride ions adsorb and interact with the oxide film, thinning the 
passive film. Under a high electric field, the adsorbed chloride ions with a small radius 
can pass through the passive film and migrate towards the interface between the film and 
metal, resulting in oxide film breakdown and matrix dissolution [18]. The dissolution of 
the metal matrix involves the chemical reactions shown in Reactions (3)–(8). The process 
is that the metal loses electrons to form a divalent iron ion. Cl− reacts with OH− and Fe2+ to 
form soluble chlorides and FeOH+, and soluble chlorides and FeOH+ react with OH− and 
Cl− to form Fe(OH)Cl. Under alkaline conditions, Fe(OH)Cl reacts with OH− to form 
Fe(OH)2. As the concentration of Cl− or OH− increases, the corrosion of iron also increases. 

2 2Fe Fe e+ −→ +  (3)

2Fe OH FeOH+ − ++ →  (4)

2Fe Cl FeCl+ − ++ →  (5)

( )FeOH Cl Fe OH Cl+ −+ →  (6)

( )FeCl OH Fe OH Cl+ −+ →  (7)

2( ) ( )Fe OH Cl OH Fe OH Cl− −+ → +  (8)

The [OH−]/[Cl−] ratio can be used to measure whether the passive film is damaged 
[19,20]. Saremi et al. [21] provided a [OH−]/[Cl−] value and found that chloride ions with a 
critical concentration of approximately 0.6 could correspond to it. Provided that this con-
clusion is also applicable to the experiment, the critical concentration of obtained chloride 
ions can reach about 0.138 mol/L. 

The potential–time curve aims to preliminarily determine the critical concentration 
of chloride ions. Firstly, the chloride ion concentration was set as 0.1 mol/L, with the test 

Figure 2. Potential–time curve of P110 steel in simulated pore solution.

3.2. Electrochemical Behavior of Chloride Ions in Depassivation

The detrimental effect of chloride ions on the passive film can be attributed to irrepara-
ble complete damage. However, before reaching a certain concentration, chloride ions can
hardly penetrate the passive film to cause corrosion to the metal substrate. At the oxide
film/solution interface, chloride ions adsorb and interact with the oxide film, thinning the
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passive film. Under a high electric field, the adsorbed chloride ions with a small radius
can pass through the passive film and migrate towards the interface between the film and
metal, resulting in oxide film breakdown and matrix dissolution [18]. The dissolution of
the metal matrix involves the chemical reactions shown in Reactions (3)–(8). The process
is that the metal loses electrons to form a divalent iron ion. Cl− reacts with OH− and Fe2+

to form soluble chlorides and FeOH+, and soluble chlorides and FeOH+ react with OH−

and Cl− to form Fe(OH)Cl. Under alkaline conditions, Fe(OH)Cl reacts with OH− to form
Fe(OH)2. As the concentration of Cl− or OH− increases, the corrosion of iron also increases.

Fe → Fe2+ + 2e− (3)

Fe2+ + OH− → FeOH+ (4)

Fe2+ + Cl− → FeCl+ (5)

FeOH+ + Cl− → Fe(OH)Cl (6)

FeCl+ + OH− → Fe(OH)Cl (7)

Fe(OH)Cl + OH− → Fe(OH)2 + Cl− (8)

The [OH−]/[Cl−] ratio can be used to measure whether the passive film is dam-
aged [19,20]. Saremi et al. [21] provided a [OH−]/[Cl−] value and found that chloride ions
with a critical concentration of approximately 0.6 could correspond to it. Provided that
this conclusion is also applicable to the experiment, the critical concentration of obtained
chloride ions can reach about 0.138 mol/L.

The potential–time curve aims to preliminarily determine the critical concentration
of chloride ions. Firstly, the chloride ion concentration was set as 0.1 mol/L, with the
test results shown in Figure 3a. It could be seen that the potential continued to increase
with time and reached stability after 16 h or so, indicating that the passive film was
not damaged at the concentration of 0.1 mol/L. Secondly, the chloride ion concentration
was set as 0.2 mol/L, with the test results shown in Figure 3b. It can be seen that the
potential continued to decrease with time, indicating that the film layer was damaged at
the concentration of 0.2 mol/L. The critical concentration of chloride ions should be less
than or equal to 0.2 mol/L. Therefore, the critical concentration should fall within the range
of 0.1 mol/L to 0.2 mol/L in the simulated pore solution.

Then, the chloride ion concentration was selected as 0.15 mol/L, with the test results
shown in Figure 3c. The potential still increased with time and did not reach the critical
concentration. Subsequently, the chloride ion concentration was selected as 0.16 mol/L
and above, with the test results shown in Figure 3d. It was evident that the entire curve
developed in three stages: in the first stage, the potential decreased sharply with time, and
chloride ions passed through the passive film to reach the surface of the metal substrate;
in the second stage, the potential slowly increased with time, and the passive film began
to self-repair; and in the third stage, chloride ions acted on the metal substrate, peeling
off the film, damaging the passive film, and decreasing the potential. Therefore, a critical
concentration of 0.16 mol/L for chloride ions in the simulated pore solution at 65 ◦C was
determined.

Afterward, electrochemical impedance spectroscopy (EIS) was used to analyze the
concentrations of the four types of chloride ions mentioned above.

EIS measurement aims to obtain electrode interface structure information and analyze
the damage process of passive film induced by chloride ions. The EIS measurement results
could be fitted through equivalent circuits to obtain relevant electrochemical parameters
and fitting curves. In equivalent circuits, the electrochemical parameters generally in-
clude Rs (solution resistance), Rf (film resistance), Rct (charge transfer resistance at the
metal/solution interface), Qdl (double-layer capacitance at the metal/solution interface),
and Qf (film capacitance). A higher transfer resistance value indicates improved film
stability on the metal surface.
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Figure 4 displays the impedance spectrum in Nyquist plots, showcasing the impact
of different concentrations of chloride ions on the degradation of passive films in the
simulated pore solution. The Nyquist plots under the corrosion of chloride ions with
four concentrations are all double capacitive arcs. Additionally, Figure 5 illustrates the
equivalent circuits. The calculated values of the corresponding electrochemical parameters
are documented in Table 2. When the concentration of chloride ions was 0.1 mol/L, Rct was
2.426 × 104 Ω, and Rf was 2.302 × 106 Ω. The passive film remained stable without leading
to damage. When the concentration of chloride ions was 0.15 mol/L, the electrochemical
reaction rate accelerated and the Rct decreased. Nevertheless, the critical chloride ion
concentration was not reached, so the Rf value remained significantly high. When the
concentration of chloride ions increased to 0.16 mol/L, which could cause damage to the
passive film, the Rf decreased to 1.364 × 103 Ω.

Table 2. Fitted electrochemical parameters through equivalent circuits about chloride ions’ damage
to passive film in EIS.

Concentration (mol·L−1) Rs (Ω) Rct (Ω) Rf (Ω) χ

0.00 8.860 ± 0.08 7.334 × 103 ± 0.22 5.429 × 106 ± 0.09 0.029 ± 0.02
0.10 6.400 ± 0.12 2.426 × 104 ± 0.19 2.302 × 106 ± 0.12 0.023 ± 0.03
0.15 10.050 ± 0.23 3.933 × 102 ± 0.13 4.960 × 104 ± 0.17 0.005 ± 0.01
0.16 6.150 ± 0.08 3.601 × 103 ± 0.25 1.364 × 103 ± 0.21 0.019 ± 0.03
0.20 4.850 ± 0.21 7.967 × 102 ± 0.31 1.834 × 103 ± 0.23 0.002 ± 0.05
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Polarization curves were used to verify the critical chloride ion concentration. Anode
polarization curves for chloride ions at four concentrations are shown in Figure 6. It was
evident that all four curves exhibited an absence of notable passivated zones. The lack of the
passivated zone at the chloride ion concentrations below the critical threshold was due to
the ability of low-concentration chloride ions to pass through the passive film and damage
the substrate under the action of an external electric field. Table 3 shows that the self-
corrosion current density (Icorr) was 7.9433 × 10−9 A/cm2 at a chloride ion concentration
of 0.1 mol/L. The effect demonstrated that the passive film retained a certain level of
protective capability, albeit relatively minor. With the progressive increase in chloride ion
concentration, Icorr gradually increased. Additionally, with the escalating concentration
of chloride ions, the self-corrosion potential (Ecorr) shifted towards the negative direction,
making corrosion more likely to occur.
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Table 3. Polarization curve parameters—passive film destruction by chloride ions at varying concentrations.

Concentration (mol·L−1) Icorr (A·cm−2) Ecorr (V)

0.10 7.9433 × 10−9 −0.2800
0.15 1.0000 × 10−7 −0.2500
0.16 1.6596 × 10−7 −0.3450
0.20 1.7579 × 10−7 −0.3563

The Mott–Schottky measurement is widely employed to investigate semiconductor
properties, especially for evaluating the semiconductor properties of passive films [17,21–24].
In accordance with the band theory of solids, the film’s characteristics determine its semi-
conductor type. When donors dominate the film, it becomes an n-type semiconductor,
exhibiting an abundance of electrons in the conduction band compared to holes in the
valence band. Conversely, when acceptors dominate the film, it becomes a p-type semi-
conductor, with more holes in the valence band than electrons in the conduction band.
As per the well-known Mott–Schottky theory [25], Equation (9) is applicable to n-type
semiconductors, while Equation (10) is appropriate for p-type semiconductors:

1
Csc2 =

2
eNDεε0

[
E − E f b −

KT
e

]
(9)

1
Csc2 = − 2

eNAεε0

[
E − E f b −

KT
e

]
(10)

In the given equation, ε represents the relative dielectric constant of the specimen, esti-
mated to be approximately [26]. ε0 denotes the dielectric constant of free space, which has a
value of 8.854 × 10−14 F cm−1. e represents the electron charge, equal to 1.602189 × 10−19 C.
ND and NA represent the donor density (cm−3) and acceptor density (cm−3), respectively.
E f b represents the flat band potential (V). T represents the absolute temperature (K), and K
indicates the Boltzmann constant with a value of 1.38066 × 10−23 J·K−1.

When the NaCl concentration is 1 mol/L, significant passivation occurs, and the
composition of the film layer can better reflect the characteristics, such as the characteristic
product M-O-Cl. In order to accurately characterize the semiconductor performance of
chloride ion damage to the passivation film, a concentration of 1 mol/L was chosen. Based
on the relationship between the horizontal axis E and the vertical axis C−2, the Mott–



Metals 2024, 14, 93 9 of 13

Schottky curve provides valuable insights into electron conduction behavior. In Figure 7,
a positive slope can be observed, indicating the presence of n-type semiconductor films
in both the simulated pore solution and the solution containing 1 mol/L chloride ions.
It is inferred from n-type semiconductors that the passive film primarily consists of iron
oxide and iron hydrate compositions [27,28]. The formation of the passive film in n-type
semiconductors is due to the doping of interstitial cations or anionic vacancies.
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The widely recognized point defect model (PDM) is a suitable analytical tool for study-
ing the localized corrosion behavior of metal. Extensive on-site experience and empirical
evidence from experimental simulations consistently demonstrate the effectiveness of this
model in elucidating the properties and structure of the passive film. Moreover, it provides
a comprehensive understanding of both general and localized corrosion damage resulting
from the presence of the passive film [29–33]. A dynamic equilibrium exists between the
formation of the passive film at the metal substrate/film interface and its dissolution at
the film/solution interface. According to the PDM model, when the solution contains
chloride ions, chloride ions form a hydrate with water in the solution (Cl−·nH2O). At the
film/solution interface, the presence of oxygen vacancies (V ′′

o ) leads to the adsorption of
the hydrate, which subsequently reacts with it through Mott–Schottky pair formation. This
process generates pairs of oxygen vacancy/metal ion vacancy (V′

M). Reaction (11) can be
used to show that this process produces a p-oxygen/metal ion vacancy as follows:

V ′′
o + Cl−•nH2O ↔ Cl−o + nH2O

Mott−Schottky pair→ Vχ′

M +
χ

2
V ′′

o (11)

The presence of oxygen vacancies promotes the adsorption of chloride ion hydrates,
leading to the generation of additional metal ion vacancies. These excess metal ion vacancies
accumulate at the metal substrate/film interface, causing the separation of the passive
film from the substrate. As a result, the growth of the passive film is hindered, and the
original dynamic equilibrium is disrupted. Consequently, the passive film solely undergoes
dissolution, ultimately resulting in destruction. Hence, an increased presence of oxygen
and metal ion vacancies within the passive film corresponds to a higher concentration of
donors or acceptors. Consequently, the passive film becomes more vulnerable to damage.
Equation (9) provides a means of calculating the donor density (ND) and flat band potential
(Efb), with results listed in Table 4. The donor density and flat band potential increased, and
the corrosion resistance of the passive film decreased with 1 mol/L chloride ions added to
the simulated pore solution.
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Table 4. Electrochemical parameters calculated from the Mott–Schottky plots.

Solution State ND (cm−3) Efb (V) Type

Simulated pore solution passivated 2.9051 × 1021 0.4860 n
Simulated pore solution with 1 mol/L chloride ions depassivated 1.9796 × 1022 0.7287 n

As the donor density of the passivated film gradually increases, the probability of
damage or pitting corrosion of the oxide film increases. As the flat band potential of the
passivated film decreases, its corrosion resistance increases.

3.3. Analysis of the Film Components

The components of the film can be obtained using XPS measurement. XPS spectra of
the passive film in the simulated pore solution are shown in Figure 8. Two peaks (Fe 2p3/2)
of Fe 2p in the spectrum were Fe (OH)2 (Fe2+) and FeOOH (or Fe2O3), with binding energy
of 709.7 eV and 711.45 eV, respectively. Four peaks of O 1s spectrum were Fe2O3, FeOOH,
Fe(OH)2 (OH−), and H2O, with binding energy of 529.5 eV, 529.9 eV, 531.3 eV, and 532.9 eV,
respectively. Therefore, the passive film in the simulated pore solution consisted of Fe(OH)2,
FeOOH, and Fe2O3 compositions.
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The passive film subjected to the destruction of 1 mol/L chloride ions (Cl−) was
analyzed by XPS, as shown in Figure 9. The characteristic peaks (2p1) of Cl were 199.1 eV
and 200.5 eV, the Cl− on the surface had the binding energy of 199.1 eV, and another peak
was that of M-O-Cl. Concentration gradient generation will promote the diffusion of Cl−

toward the inner of the passive film when Cl− exists on the passive film surface [34]. O
had three characteristic peaks (1s), Fe2O3 had the binding energy of 529.4 eV, 531.3 eV
corresponded to OH−, and H2O left on the surface of the film had the binding energy of
535.8 eV. Fe had two characteristic peaks (2p3/2). That at 707 eV was a track of the iron
matrix, and another peak was the overlap of the peaks of Fe2+ and Fe3+, with the binding
energy of about 710.3 eV~710.4 eV. Thus, the composition of the film was M-O-Cl, Fe2O3,
and Fe(OH)2.
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3.4. Surface Morphology of Passive Film

Figure 10 shows SEM images of steel in different chloride ion concentrations. It
can be seen from Figure 10a–c that steel does not corrode after passivation at chloride
ion concentrations below 0.15 mol/L, but pitting occurs when the concentration rises to
0.16 mol/L (Figure 10d). The critical concentration of 0.16 mol/L chloride ion can be
considered. Because 0.2 mol /L chloride ion concentration is greater than the critical
concentration, the passivation film on the casing surface can be effectively destroyed, and
the morphology of the passivation film on the casing surface after damage can be observed.
Figure 10e shows that pitting often occurs on metal with passivated film surfaces. When
a certain point of the steel is damaged, the matrix of the damaged and undamaged areas
forms a metastable corrosion battery. The passivation surface is the cathode, and has
an area much larger than the activation area. Corrosion develops more deeply, forming
corrosion pits.
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4. Conclusions

1. Here, we propose a method to determine the critical concentration of chloride ions for
the destruction of the passive film. The critical chloride ion concentration can be de-
termined using a potential–time curve, anode polarization curve, and electrochemical
impedance spectroscopy testing.

2. The critical concentration of chloride ions for the destruction of the passive film in a
simulated pore solution was determined to be 0.16 mol/L at a temperature of 65 ◦C
and a pH value of 12.5.

3. The passive film subjected to chloride ion damage was the n-type semiconductor, just
like the steady-state passive film in equilibrium. The passive film contained more
oxygen vacancies and metal ion vacancies. In the passive film, an increase in the
concentration of donors or acceptors made the film more susceptible to damage.

4. The components of the passive film eroded by chloride ions were M-O-Cl, Fe2O3, and
Fe(OH)2. Compared with the steady-state passive film, the characteristic product
was M-O-Cl.

5. Under the five chloride ion concentrations used in the experiment, only 0.16 mol/L
and 0.20 mol/L chloride ion conditions resulted in pitting corrosion on the surface of
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P110 casing steel, which could correspond to the conclusions obtained from electro-
chemical experiments.
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