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Abstract: The production reality of sheet steels from casting to the end product is such that in the
cases of ultra- and advanced high-strength steels, we have to deal with the segregation of elements
on macro- and microlevels. Both can have a significant impact on the microstructure formation and
resulting properties. There are several production stages where it can influence the transformations,
i.e., casting, hot rolling process and annealing after cold rolling. In the present work, we focus on
the latter, and more specifically, the transformation from ferrite–cementite to austenite, especially
the nucleation process, in cold-rolled material. We vary the levels of two substitutional elements,
Mn and Si, and then look in detail at the microsegregation and nucleation processes. The classical
nucleation theory is used, and both the chemical driving force and strain energy are calculated for
various scenarios. In the case of a high Mn and high Si concentration, the nucleation can thus be
explained. In the cases of high Mn and low Si concentrations as well as low Mn alloys, more research
is needed on the nuclei shapes and strain energy.
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1. Introduction

Advanced and ultrahigh-strength steels (AHSS and UHSS) are used in cars due to their
combination of high ductility and strength. The good balance is attributed to a mixture
of phases [1–3]. Since the constituent phases have different mechanical properties, they
behave differently during deformation [4–6]. Many researchers concluded that the key to
the easier, predictable and isotropic performance of steel is a homogeneous dispersion of
phases on the micro- and mesoscales [7–9]. In the case of steels that are produced in the
form of a strip, microstructural heterogeneities can be observed as alternating bands of
softer and harder phases. An often-cited cause of microstructural banding is microsegrega-
tion [10–12]. The segregation of substitutional elements takes place during solidification,
where partitioning at the meso- and microscales occurs between the newly forming solid
phases, be it austenite or δ-ferrite, and liquid. This is caused by the differences in the
solubilities of alloying elements in the newly formed solid phases and liquid. Hence, the
concentrations of alloying elements in the liquid are higher than in solid phases [13–17].
Microsegregation persists throughout the hot- and cold-rolling downstream processes,
since the time–temperature conditions do not allow substitutional elements to diffuse over
significant distances [13,16,18,19]. Consequently, starting with hot-rolled materials, on a mi-
croscale, a banded segregation profile is observed in the plane of rolling direction (RD) and
normal direction (ND) and, to a lesser degree, in the plane of transversal direction (TD) and
normal direction. As a result, the strip can have a lamellar-like structure of microchemical
bands with locally different transformation temperatures [20–23]. Depending on the degree
of segregation and the added alloying elements, the differences in the thermodynamic
transformation temperatures can be significant [22,24–27].
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In recent years the interest in the influence of microsegregation on the transformation
behavior and resulting properties increased for many types of materials, including AHSS
and UHSS [20,24,25,28–38]. As concluded in the mentioned studies, microsegregation
plays a significant role in not only phase transformations and the resulting phase con-
tents [20,38–40], but also in the recrystallization process and austenite formation during
downstream processing [31,37,41]. This in turn has an effect on the mechanical properties,
e.g., tensile strength [21,36,42]. The above-mentioned studies therefore clearly identified
that there is a correlation between microsegregation and material behaviors. In some cases,
the segregation measurements are used to directly calculate the effect on transformation
temperatures of individual phases, i.e., start of austenite to ferrite (A3), end of austenite to
ferrite/pearlite (A1) transformations and martensite start (MS) or bainite start (BS) temper-
atures. Based on the established relationships between alloying elements, i.e., manganese
(Mn), silicon (Si) and carbon (C), these can be estimated [26,43,44]. As an example, Mn
and C lower the temperature range of the transformation of ferrite/pearlite to austenite
during heating, while Si drives this transformation to higher temperatures [12,26,44–46].
Equilibrium transformation temperatures along with driving forces can be calculated based
on the available data for the local chemical composition as a function of position in the
microstructure using Thermo-Calc [26]. However, the influence of the microsegregation
patterns and levels of individual substitutional elements on the resulting microstructure
has not yet been studied in a systematic way. Hence, in the present study, we investigate the
roles of Si and Mn on the transformation of ferrite/pearlite to austenite and its dependence
on the overall composition, heating rate and presence of microsegregation.

2. Materials and Methods

Materials for the present study were made using a vacuum furnace and were cast
into 23 kg ingots. The compositions were designed to have different Si and Mn contents
with constant C concentrations (Table 1). Other elements, e.g., phosphor (P), sulfur (S)
and nitrogen (N), were kept as low as possible (P and S at levels below 0.01 wt%). Before
further processing, the ingots were rough rolled to 40 mm thickness and then cut into
4 slices of 75 × 100 × 40 mm3. Two of those slices were homogenized at 1300 ◦C for 12 h
in an argon gas atmosphere. The resulting decarburized surface was removed before hot
rolling by milling 5 mm off the top and bottom of the sheets. Both homogenized and
nonhomogenized slices were further hot rolled into sheets of 4 mm thickness and then
reduced by cold rolling to a final gauge of 1 mm. The cold-rolled material was used for
annealing and further testing. The effectiveness of the homogenization treatment was
checked on the hot-rolled sample of 1.9Si2Mn, and the variation in the composition was
found to be within 0.1 wt% for substitutional elements across the scanned area, showing
the homogenization treatment to be effective, considering variations in nonhomogenized
materials typically within 0.1 wt%.

Table 1. Chemical compositions of the investigated materials measured using inductively coupled
plasma–optical emission spectrometry (ICP-OES) (all values are in wt% shown with calculated
measurement error). Also shown are top temperatures to which the samples were heated during
transformation heat treatments for homogenized and nonhomogenized samples (Ttop).

Materials
C Mn Si Ttop

wt% wt% wt% Nonhomog. Homog.

0.1Si2Mn 0.19 ± 0.01 1.95 ± 0.08 0.06 ± 0.01 900 ◦C 900 ◦C
0.4Si2Mn 0.20 ± 0.01 1.96 ± 0.08 0.39 ± 0.02 900 ◦C 900 ◦C
1.0Si2Mn 0.20 ± 0.01 2.03 ± 0.08 0.98 ± 0.04 950 ◦C 950 ◦C
1.5Si2Mn 0.20 ± 0.01 2.01 ± 0.08 1.56 ± 0.07 950/1000 ◦C 1000 ◦C
1.9Si2Mn 0.19 ± 0.01 2.00 ± 0.08 1.92 ± 0.08 1050 ◦C 1000 ◦C

0.4Si0.1Mn 0.20 ± 0.01 0.08 ± 0.01 0.38 ± 0.02 950 ◦C 950 ◦C
1.0Si0.1Mn 0.20 ± 0.01 0.09 ± 0.01 0.94 ± 0.04 1000 ◦C 1000 ◦C
1.5Si0.1Mn 0.20 ± 0.01 0.09 ± 0.01 1.51 ± 0.07 1050 ◦C 1050 ◦C
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Samples for bulk and local chemical analyses were taken from the hot-rolled strips.
The bulk chemical compositions were determined using inductively coupled plasma–
optical emission spectroscopy (ICP-OES). The measured compositions are shown in Table 1.
The reason for using samples from the hot-rolled instead of cold-rolled and annealed
conditions are the limitations of measurement conditions and their influence on the limited
lateral resolution and accuracy that can be achieved for the local chemical composition
in a highly deformed cold-rolled state. For the present study, a Jeol7001 field emission
gun scanning electron microscope (FEG SEM) was used, equipped with two silicon drift
detectors (SDD) energy dispersive X-ray spectrometers (EDS) and the software Pathfinder
vs 1.3 by Thermo Scientific. Using the method mentioned in [47], the detection limits for
both Si and Mn in our measurement conditions are estimated at a 0.1 wt%. The problems
with quantification caused by an overlap of the Mn and Fe peaks and using proper ZAF
(Z—effect of atomic number, A—absorption and F—fluorescence) corrections were solved
by using a standardized analysis, in which each spectrum was compared to a calibration
measurement. The methodology was validated through the comparison of SEM-EDS and
EPMA-WDS line scans at the same location, which showed the same values within the
experimental uncertainty of the two. As a way of comparison, we are using line scans
and peak analysis to determine the degree of segregation as appearing in high-alloyed
(HA) and low-alloyed (LA) concentrations of elements. In some cases, qualitative EDS
maps are determined using the FEG SEM Zeiss Gemini DSM450 equipped with two SDD
EDS detectors and the software Aztek 5.0. The fine features of pearlite cannot be resolved
with the same measurement conditions as the overview maps. The calculations using the
software CASINO vs2 showed the volume, where we obtain the EDS signal using a 5 kV
acceleration voltage, not to exceed 100 nm in depth and 80 nm in width. Quantitative
measurements are carried out with the same microscope but with a 10 kV acceleration
voltage, which increases the penetration depth to ~300 nm. The resulting measurement
accuracies are 0.07 wt% and 0.01 wt% for Mn and Si, respectively.

Annealing heat treatments were performed with a Bähr 805A dilatometer on cold-
rolled samples with dimensions of 10 × 5 × 1 mm3. Three different heating rates are used:
0.1 ◦C/s, 1 ◦C/s and 5 ◦C/s. The top temperatures are chosen to be above the equilibrium
Ae3 temperature and are shown in Table 1. With the exception of alloy 1.5Si2Mn, where
we use a lower temperature for the 0.1 ◦C/s heating rate, in all other cases the same top
temperatures are applied for all heating rates. For each condition the dilatometer mea-
surements were performed three times, and the temperature range of the transformation
was determined from the curves. The error is the standard deviation calculated from the
three measurements. The method used for determination of transformation temperatures is
based on the analysis of the 1st derivative of dilatometer curves as described in Refs. [48–52].
In this method, the beginning of transformation is where the derivative starts to deviate
from the constant line. Experimental scatter is removed by employing the LOESS method,
described in Refs. [53,54]. An additional problem for the determination of the start and
finish of transformation is the detection limit of the austenite and ferrite phase fractions
during the transformation. To evaluate the theoretical limits, we use two approaches for the
change in length calculations, described in Refs. [55,56]. To be considered significant, the
change in the length caused by the transformation must exceed the scatter of the dilatation
signal, which was estimated to be ±1 µm. The detection limits for the austenite volume
fraction against temperature derived from the two methods are shown in Figure 1. The
values are similar, irrespective of the method applied. Depending on the temperature, the
detection limit changes from approximately 2.5 to 3.3 vol%. During subsequent analysis,
we assume the observed transformation start temperature to occur when 3 vol% of the
austenite is present. Likewise, the finish temperature is determined at 97 vol%.
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Figure 1. Theoretical change in length detection limit for austenite formation during heating. The
errors are calculated according to two methods described in Refs. [55,56].

For general light optical microscopy characterization, microstructures were revealed
by etching in 10% SMB etchant [57]. More detailed images were obtained using nital-etched
samples with SEM and secondary electrons (SE) and in-lens secondary electron (inLens)
detectors. The ferrite grain structure analysis was performed using Leica software LAS
v4.9 using a specific feature for dual-phase analysis. In both cases of pearlitic ferrite and
proeutectoid ferrite, at least three images are measured to ensure the statistical significance
(with grain count > 1000). Then, the datasets are combined, and arithmetical averages are
calculated with standard deviations.

3. Results
3.1. Characterization of Initial Microstructure

In order to study the microstructure development and the influences of Mn and Si, we
first characterize the starting condition of the materials. This was performed on hot-rolled
(Figure 2) and partially on cold-rolled recrystallized materials. The phases present in the
microstructures are ferrite and pearlite.
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The materials were characterized regarding the second phase content, ferrite structure
and microchemical segregation. Despite having the same overall C content, hot-rolled
materials exhibit a significant variation in their volume fraction of pearlite (see Figure 2 and
Table 2). High-Mn alloys have more than twice the fraction of pearlite found in low-Mn
alloys. This trend is observed for both homogenized and nonhomogenized materials. Based



Metals 2024, 14, 92 5 of 28

on the pearlite (VP) and ferrite (Vα) volume fractions, we calculate the carbon content in
pearlite (CP wt%) using following dependency:

Calloy = VPCP + VαCα → CP =
0.2 wt%

VP
(1)

where Calloy (wt%) is the overall carbon content, and we neglect the carbon content in
ferrite (Cα).

Table 2. Quantification of pearlite fraction (VP) of the hot-rolled microstructures measured on
parallel (RD–ND) sections to rolling directions. Nonhomogenized and homogenized materials are
compared. The carbon content in pearlite (CP) is calculated based on the observed volume fraction of
pearlite and the overall carbon content in the alloy, neglecting the carbon content in ferrite. SD is the
standard deviation.

Alloy
VP CP VP CP

vol% SD wt% SD vol% SD wt% SD

0.1Si2Mn

N
on

ho
m

og
en

iz
ed 42 1 0.46 0.03

H
om

og
en

iz
ed

43 3 0.51 0.04
0.4Si2Mn 34 6 0.6 0.1 40 2 0.53 0.04
1.0Si2Mn 38 5 0.52 0.08 34 2 0.58 0.05
1.5Si2Mn 37 4 0.54 0.06 34 6 0.6 0.1
1.9Si2Mn 38 4 0.50 0.06 35 5 0.55 0.08

0.4Si0.1Mn 15 4 1.4 0.4 14 2 1.5 0.2
1.0Si0.1Mn 17 5 1.2 0.4 18 5 1.1 0.4
1.5Si0.1Mn 17 5 1.2 0.3 17 3 1.2 0.3

There are two possible explanations for this difference between the high- and low-Mn
microstructures: (a) a higher cementite content in pearlite in low-Mn alloys and/or (b)
the presence of grain boundary cementite in low-Mn alloys. In order to confirm either
hypothesis, we analyzed pearlite in both sets of alloys. Examples of pearlite in the alloys
1.0Si2Mn and 1.0Si0.1Mn are shown in Figure 3a,b. Pearlite in the high-Mn alloy (Figure 3a)
has a typical morphology for pearlite with some signs of degeneration, which is not
uncommon in steels containing Mn [58,59]. The low-Mn alloy pearlite (Figure 3b) looks
different, with changing pearlite lamellae thickness from the boundary towards the center
of the colony. In some areas, the plates connect and form continuous boundary cementite.
The qualitative evaluation also points toward a higher fraction of cementite in low-Mn
pearlite than in high-Mn pearlite, therefore confirming both hypotheses as a cause of a
lower fraction of pearlite in low-Mn alloys.

Metals 2024, 14, x FOR PEER REVIEW 5 of 29 
 

 

𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑉𝑉𝑃𝑃𝐶𝐶𝑃𝑃 + 𝑉𝑉𝛼𝛼𝐶𝐶𝛼𝛼   →  𝐶𝐶𝑃𝑃 =
0.2 wt%

𝑉𝑉𝑃𝑃
  (1) 

where Calloy (wt%) is the overall carbon content, and we neglect the carbon content in ferrite 
(Cα). 

Table 2. Quantification of pearlite fraction (VP) of the hot-rolled microstructures measured on par-
allel (RD–ND) sections to rolling directions. Nonhomogenized and homogenized materials are com-
pared. The carbon content in pearlite (CP) is calculated based on the observed volume fraction of 
pearlite and the overall carbon content in the alloy, neglecting the carbon content in ferrite. SD is 
the standard deviation. 

Alloy 

N
on

ho
m

og
en

iz
ed

 

VP CP 

H
om

og
en

iz
ed

 

VP CP 
vol% SD wt% SD vol% SD wt% SD 

0.1Si2Mn 42 1 0.46 0.03 43 3 0.51 0.04 
0.4Si2Mn 34 6 0.6 0.1 40 2 0.53 0.04 
1.0Si2Mn 38 5 0.52 0.08 34 2 0.58 0.05 
1.5Si2Mn 37 4 0.54 0.06 34 6 0.6 0.1 
1.9Si2Mn 38 4 0.50 0.06 35 5 0.55 0.08 

0.4Si0.1Mn 15 4 1.4 0.4 14 2 1.5 0.2 
1.0Si0.1Mn 17 5 1.2 0.4 18 5 1.1 0.4 
1.5Si0.1Mn 17 5 1.2 0.3 17 3 1.2 0.3 

There are two possible explanations for this difference between the high- and low-
Mn microstructures: (a) a higher cementite content in pearlite in low-Mn alloys and/or (b) 
the presence of grain boundary cementite in low-Mn alloys. In order to confirm either 
hypothesis, we analyzed pearlite in both sets of alloys. Examples of pearlite in the alloys 
1.0Si2Mn and 1.0Si0.1Mn are shown in Figure 3a,b. Pearlite in the high-Mn alloy (Figure 
3a) has a typical morphology for pearlite with some signs of degeneration, which is not 
uncommon in steels containing Mn [58,59]. The low-Mn alloy pearlite (Figure 3b) looks 
different, with changing pearlite lamellae thickness from the boundary towards the center 
of the colony. In some areas, the plates connect and form continuous boundary cementite. 
The qualitative evaluation also points toward a higher fraction of cementite in low-Mn 
pearlite than in high-Mn pearlite, therefore confirming both hypotheses as a cause of a 
lower fraction of pearlite in low-Mn alloys. 

  
(a) (b) 

Figure 3. SEM micrographs of pearlite in hot-rolled alloys 1.0Si2Mn (a) and 1.0Si0.1Mn (b). In both 
images, the width is 10 µm. 

An example of the measured microsegregation is shown for the 0.4Si2Mn composi-
tion in Figure 4. The cosegregation of Mn and Si is seen within enriched bands. Figure 4 
also shows the distributions of the equilibrium temperatures for phase transitions, calcu-
lated for ortho- and paraequilibrium. As with previously reported cases, we also observe 

Figure 3. SEM micrographs of pearlite in hot-rolled alloys 1.0Si2Mn (a) and 1.0Si0.1Mn (b). In both
images, the width is 10 µm.



Metals 2024, 14, 92 6 of 28

An example of the measured microsegregation is shown for the 0.4Si2Mn composition
in Figure 4. The cosegregation of Mn and Si is seen within enriched bands. Figure 4 also
shows the distributions of the equilibrium temperatures for phase transitions, calculated
for ortho- and paraequilibrium. As with previously reported cases, we also observe that
high-alloyed bands coincide with pearlite bands, while low-alloyed bands are mostly
ferritic [60,61].
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e1 (c),

AOE
e3 (d) and APE

e1 (e) temperature maps as calculated using Thermo-Calc with orthoequilibrium (OE)
(c,d) and paraequilibrium (PE) (e) based on local chemistry [26]. The images show combined maps
measured at ¼ and ½ thickness together from ND–RD sections. The combined area of the scans is
0.75 mm × 0.47 mm, with a step size of 1 µm.

The measured values for microsegregation are reported in the form of the mean
value (Avg), standard deviation (SD), standard error (SE) and concentration of high- and
low-alloyed (HA and LA) regions in Table 3. The average value is an indication of the
homogeneity on a mesoscale, and since values for combined one-quarter and one-half
thickness areas (Table 3) are close to or the same as the ICP-OES results (Table 1), we
assume they are homogeneous in that respect. Usually, the standard deviation is used
as an indication of the measurement accuracy. In our case, the spread within the dataset
is a feature of the segregation. Therefore, as an indication of the statistical accuracy of
the average value, we use the standard error. The reported values are far lower (range
of 10−4 wt%) than the calculated standard deviations. The error of each point value is
therefore set as a 0.1 wt% for Mn and a 0.02 wt% for Si. The reason we do not report the
segregation values of Si for the 0.1Si2Mn alloy and of Mn for low-Mn alloys is that these
are below the detection limit.

In the analysis, we distinguish between the one-quarter and one-half thickness data
to account for centerline segregation [22]. The segregation of Mn at one-quarter thickness
appears to be lightly influenced by the overall concentration of Si in each alloy. The
difference in the concentration of Mn between the low- (about 1.5 wt% of Mn) and high-
(about 2.6 wt% of Mn) alloyed bands within the same alloy is ∆Mn = 1.1 wt% for all the
studied alloys. At one-half thickness, we observe larger differences, as the ∆Mn varies
between a 1.2 and 1.5 wt%, of which the latter value is measured for the alloys 0.1Si2Mn
and 1.9Si2Mn (Table 3). These differences can be attributed to the higher Mn concentration
in HA regions, since the LA regions are comparable (1.4–1.6 wt% of Mn in Table 3). The Si
segregation, on the other hand, shows some difference in relation to the presence of Mn.
When comparing alloys with a low and high Mn content and the same overall Si level, the
values are only similar in alloys with an overall 0.4 wt% Si content (∆Si = 0.2 wt%). For
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the other alloys, the low-Mn alloys show an ∆Si = 0.3 wt%, while high-Mn alloys have an
∆Si = 0.5 wt% (Table 3). These trends are similar in the cases of one-quarter and one-half
thickness measurements.

Table 3. Summary of microsegregation data analysis (wt%). Due to the detection limit 0.1 wt% of
each element, the measurements for 0.02 wt% of Si and 0.1 wt% of Mn are not available. Low-alloyed
(LA) and high-alloyed (HA) region element concentrations are shown for ¼ and ½ thickness scans.

Alloy Element Avg SD SE
LA HA ∆ LA HA ∆

¼ Thickness ½ Thickness

0.1Si2Mn
Si - - - - - - - - -

Mn 2.1 0.3 4 × 10−4 1.5 2.6 1.1 1.6 3.1 1.5

0.4Si2Mn
Si 0.4 0.1 9 × 10−5 0.28 0.48 0.20 0.30 0.50 0.20

Mn 2.0 0.3 4 × 10−4 1.4 2.5 1.1 1.4 2.6 1.2

1.0Si2Mn
Si 1.0 0.1 1 × 10−4 0.72 1.19 0.47 0.85 1.20 0.35

Mn 2.0 0.4 7 × 10−4 1.5 2.5 1.0 1.4 2.7 1.3

1.5Si2Mn
Si 1.5 0.1 2 × 10−4 1.32 1.86 0.54 1.34 1.77 0.43

Mn 2.0 0.3 3 × 10−4 1.6 2.6 1.0 1.5 2.7 1.2

1.9Si2Mn
Si 1.8 0.1 2 × 10−4 1.68 2.12 0.44 1.68 2.44 0.76

Mn 2.1 0.5 8 × 10−4 1.6 2.7 1.1 1.6 3.1 1.5

0.4Si0.1Mn
Si 0.4 0.1 1 × 10−4 0.28 0.49 0.21 0.26 0.46 0.20

Mn - - - - - - - - -

1.0Si0.1Mn
Si 0.9 0.1 2 × 10−4 0.84 1.11 0.27 0.77 1.13 0.36

Mn - - - - - - - - -

1.5Si0.1Mn
Si 1.5 0.1 2 × 10−4 1.40 1.65 0.25 1.27 1.73 0.46

Mn - - - - - - - - -

The experimental data on segregation are further compared with data obtained from
Thermo-Calc and Sheil solidification simulation with the TCFE11 database [26]. As an indi-
cator of the segregation behavior, the partition coefficients are calculated for experimental
and simulated data (see Figure 5A–C). In the case of the experimental data, the LA regions
are taken as solid (SS wt%) and the HA as liquid (SL wt%) compositions. The following
equation is used from Ref. [16] to calculate the partition coefficients:

kx =
SS,x

SL,x
, (2)

where x = (Mn, Si). The partition coefficients of the simulated data are shown as the
average and standard deviation of the transformation range (i) when δ-ferrite and liquid
are present (kcalc

δ/L) and (ii) when austenite and liquid are present (kcalc
γ/L). A comparison

between the calculated and experimental values of kSi (Figure 5A,B) shows that they are
quite similar, but in the alloys with 0.1 wt% of Mn, a different trend is found: in the case
of the experimental data, the degree of segregation lessens (so the partitioning coefficient
increases) with the increase in the overall Si content, whereas the calculated values are
almost constant throughout the examined composition range. The calculated parameters
are the same regardless of whether the solid phase formed is δ-ferrite or austenite. The
addition of Mn lowers the Si partition coefficients (Figure 5A,B). Also, the trends in the Si
partition coefficients are changing with increased Mn concentrations: while the Si partition
coefficient between δ-ferrite and liquid is almost constant in alloys with an overall Si content
lower than 1.9 wt%, in the same Si range, it is consistently increasing between austenite and



Metals 2024, 14, 92 8 of 28

liquid. Within alloys with an overall Si content higher than 1.9 wt% of Si, in both cases, there
is a higher variation in the partition coefficients dependent on the temperature (indicated
by the higher standard deviation). The experimental partition coefficients coincide with the
calculated ones in most cases. When considering the trends for the alloys with 2 wt% of Mn,
the Si partition coefficient at one-quarter thickness (kexp

1/4) follows the trend of kcalc
δ/L closely,

while kexp
1/2 follows the trend of kcalc

γ/L, although there are some deviations. This indicates
that in the case of the studied alloys, the center band segregation, typically at one-half
thickness, takes place after the peritectic reaction is finished. An exception is found for the
alloy 1.9Si2Mn, where the partition coefficient at the center is lower than at one-quarter
thickness. The same crossover is seen for the calculated partition coefficients but at a higher
overall Si content (Figure 5B).
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Figure 5. Average partition coefficients kSi (A,B) and kMn (C) during the solidification of 0.1 and
2.0 wt% Mn alloys estimated with Sheil solidification simulation in Thermo-Calc 2020, calculated for
δ-ferrite/liquid (kcalc

δ/L) and austenite/liquid (kcalc
γ/L) during solidification [26], and measured values at

¼ (kexp
1/4) and ½ thickness (kexp

1/2) areas.

The calculated Mn partition coefficient between austenite and liquid (kcalc
γ/L) does not

seem to be affected significantly by the presence of Si (see Figure 5C). In this case, the
only significant change in the Mn partition coefficient can be observed when the overall
Si concentration changes from 0.06 to 0.4 wt% of Si in the alloy (∆kMn = 0.05). Otherwise,
the Mn partition coefficient does not change with the silicon concentration. The partition
coefficient kcalc

δ/L decreases with an increasing Si content. As with the calculated kSi, for
the alloys with an overall content of 1.9 wt% of Si and higher, the kcalc

δ/L depends on the
temperature, as indicated by the quite large standard deviation. A comparison between the
simulated and experimental partition coefficients shows that the experimental segregation
is higher than the calculated, although the trends seem to be consistent. The error bars of the
experimental coefficients are too large to indicate if the experimentally obtained partition
coefficients at one-quarter and one-half thicknesses correspond more to δ-ferrite/liquid or
austenite/liquid partitioning.

Since the transformation is studied in the materials that were cold rolled and after-
wards underwent heat treatment, we cannot assume the hot-rolled ferrite grain structure as
the initial grain structure. Instead, the recrystallized microstructure is considered. Figure 6
shows the microstructure of ferrite and pearlite in the partially recrystallized alloy 1.5Si2Mn
after interrupted heating at 630 ◦C with a rate of 1 ◦C/s. It is a typical pearlite structure
obtained through the recrystallization process, as shown in our previous study on the same
alloys in Ref. [62]. The ferrite grain size within pearlite colonies is found to be between 0.5
and 1.0 µm in diameter (Figure 6a). The cementite morphology was modified during the
heating process and appears to be spheroidized at the end of recrystallization as shown in
Figure 6b.
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Figure 6. Ferrite grain structure within cold-rolled and partially recrystallized 1.5Si2Mn steel after
interrupted heat treatment of heating at a 1 ◦C/s rate with 10% ferrite recrystallized fraction. Within
the field of view is a pearlite colony. Micrographs show (a) crystal orientation contrast and (b) mor-
phology. The image width is 6.7 µm. Arrows are showing ferrite grains in cold-rolled and partially
recrystallized pearlite regions (a) and cementite (b).

The proeutectoid ferrite structure was investigated as well after the recrystallization
finished in the case of a heating rate of 1 ◦C/s. The ferrite grains appear to have a similar
shape and have an average size of ~5 µm (see Table 4). We assume that the ferrite structure
just before transformation is comparable for all alloys and therefore, we will assume that it
is not influencing the transformation temperatures.

Table 4. Grain size analysis of the fully recrystallized proeutectoid ferrite before transformation to
austenite at a heating rate of 1 ◦C/s. Data from previously published experiments in Ref. [62].

Alloy
Avg SD SE

µm µm µm

0.1Si2Mn 4.7 1.7 0.06

0.4Si2Mn 4.7 1.7 0.06

1.0Si2Mn 4.8 1.8 0.05

1.5Si2Mn 4.9 1.7 0.05

0.4Si0.1Mn 5.2 2.1 0.06

1.0Si0.1Mn 4.7 2.1 0.06

1.5Si0.1Mn 5.2 2.0 0.06

3.2. Ferrite/Pearlite-to-Austenite Transformation

The bulk of the research regarding the transformation upon heating was performed using
dilatometry. The results of the measurements are presented in Figure 7 for both homogenized
and nonhomogenized alloys. Thermodynamic calculations are used to aid the understanding
of the roles of Mn, Si and microsegregation on the measured transformations during heat
treatments [24]. In this analysis, orthoequilibrium (OE) as well as paraequilibrium (PE) are
considered. We include measurement errors of the ICP-OES in the OE and PE error values,
although they appear smaller than the symbol sizes in Figure 7. The results are shown as the
transformation temperatures, Ae3 and A−

e1, where A−
1 is defined as the start of the transforma-

tion from ferrite/pearlite to austenite, and A+
1 is the finish of the transformation of cementite

to austenite [20]. In the case of 2 wt% of Mn steels, there is a marked difference between
the experimentally observed A−

c1 and the calculated orthoequilibrium value, with the OE
transformation start temperatures A−

e1 being about 60 ◦C lower than the measured ones. The
gap becomes bigger with an increasing Si content. The difference between the calculated Ae3
and experimentally measured Ac3 becomes larger with an increasing Si content as well, which
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is the case for both the ortho- and paraequilibrium conditions. On the other hand, when the
experimental A−

c1 temperatures are compared to the calculated A−
e1 based on paraequilibrium,

there is quite good agreement for both the homogenized and nonhomogenized materials (see
Figure 7a–c). The low-Mn steels, on the other hand, show quite good agreement between
the calculated A−

e1 based on orthoequilibrium and the A−
c1, irrespective of the heating rate,

with small exceptions. The PE-based A−
e1 temperatures are, on the contrary, lower than the

measured ones, depending on the Si concentration, by about 60–100 ◦C (see Figure 7d–f).
For low-Mn alloys, the differences between calculated and measured A3 temperatures are
more pronounced and increasing with an increasing Si content. An exception is the series of
low-Mn alloys that are heated at a rate of 5 ◦C/s. In that case, the delay in the completion
of the transformation compared to calculated temperatures is rather constant across the Si
concentrations (see Figure 7f).
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equilibrium transition temperature in the case of the 0.1 wt% Mn alloys, whereas the 
measured 𝐴𝐴𝑐𝑐1−  temperature corresponds closely to the paraequilibrium transition temper-
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Figure 7. Transformation temperatures measured using dilatometer with 0.1 ◦C/s (a,d), 1 ◦C/s (b,e)
and 5 ◦C/s (c,f) heating rates. Graphs are showing alloys with 2.0 wt% of Mn (a–c) and 0.1 wt%
of Mn (d–f) and various Si concentrations. Both homogenized and nonhomogenized materials are
measured. Presented as well are equilibrium transformation temperatures calculated under OE and
PE assumptions with Thermo-Calc [26].

It is surprising that the measured A−
c1 temperature corresponds closely to the orthoequi-

librium transition temperature in the case of the 0.1 wt% Mn alloys, whereas the measured
A−

c1 temperature corresponds closely to the paraequilibrium transition temperature in the
case of the 2 wt% Mn alloys. Therefore, we decide to perform additional examinations of
our alloys with respect to the composition of pearlite and partitioning of elements between
ferrite and cementite. The EDS maps of a pearlite colony in the 1.5Si0.1Mn nonhomoge-
nized hot-rolled material are shown in Figure 8a–c. There is a clear redistribution of Si
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between the cementite and ferrite. The cementite has a very low or zero concentration of Si,
with the signal being in most cases below the detection limit. The ferrite within pearlite
colonies seems to have a slight enrichment of Si when compared with polygonal ferrite.
The same is the case for α/α grain boundaries.
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To further investigate the redistribution of elements in the different materials, we
performed a quantitative analysis of the 1.9Si2Mn and 1.5Si0.1Mn alloys, both homogenized
and nonhomogenized. The results are shown as the average of point measurements in
different phases in Table 5. In all cases, the redistribution of alloying elements between
cementite and ferrite within the pearlite was observed. In the case of the nonhomogenized
samples, it needs to be understood that most pearlite is located in high-alloyed bands, and
therefore, the composition might differ from the average composition. Similarly, in the
case of low-Mn alloys, pearlite is located in low-alloyed bands and therefore will contain
lower concentrations of Si than average. The redistribution of Si and Mn in low-Mn alloys
between the ferrite and cementite is obvious, where cementite contains very little to no
Si. The change in the composition of cementite in the high-Mn alloy, 1.9Si2Mn, is less
severe. In that alloy, cementite contains 1.6 wt% of Si, which is only 0.4 wt% less than the
average concentration. The content of Mn is changing more. It increases to levels above
6 wt% in cementite. Similar distributions are observed in nonhomogenized alloys. When
looking at these results, the reason becomes clear for the better correspondence between
the experimentally observed A−

c1 and the A−
e1 temperature for OE than for PE in the case

of the low-Mn alloys. The pre-existing redistribution of Si between the cementite and
ferrite makes the cementite thermodynamically stable at higher temperatures, setting the
beginning of transformation at a higher temperature than predicted by PE calculations [63].

Table 5. Quantitative results of composition measurement of cementite (θ), pearlitic ferrite (αP) and
ferrite (α). The partitioning coefficients kα/θ are shown for partitioning of Mn and Si between αP

and θ. The measurement error for Mn is 0.07 wt% and Si is 0.01 wt%.

Alloy
θ αP kα/θ α

Mn Si Mn Si Mn Si Mn Si

1.9Si2Mn
Homog. 6.55 1.32 1.87 1.92 0.29 1.45 1.93 1.91

Nonhomog. 6.33 1.45 2.25 2.10 0.36 1.45 2.22 1.94

1.5Si0.1Mn
Homog. 0.40 0.17 - 1.45 - - - 1.46

Nonhomog. 0.47 0.21 - 1.02 - - - 1.63

In order to evaluate the influence of Si and Mn on the start and progress of the trans-
formation, we compare the measured A−

c1 and Ac3 from dilatometer measurements and the
temperatures based on the overall chemical compositions. Previously, we concluded that in
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case of low-Mn alloys, the transformation temperatures match better with the OE-calculated
temperatures, and high-Mn alloys follow the trend of PE-calculated temperatures (Figure 7).
Hence, we use OE- and PE-calculated temperatures in the subsequent comparison with low-
and high-Mn alloys, respectively. The following quantities are defined as a quantification
of the temperature range for the transformation:

∆Tstart = A−
c1 − A−

e1 (3)

∆Tnorm
tr =

Ac3 − A−
c1

Ae3 − A−
e1

(4)

The results of the calculations are shown in Figure 9a–f. The start of the transformation
seems to be matching with the theoretical temperatures quite well, especially when samples
are heated at 0.1 ◦C/s. The only exception is the alloy 0.1Si2Mn, where the transformation
seems to start earlier than indicated by PE calculations. Other alloys are within a ±10 ◦C
range. An increase in the heating rate to 1 ◦C/s delays the start of the transformation,
which is more pronounced in the case of high-Mn alloys. The overall trend remains similar
to the one with heating rate of 0.1 ◦C/s though. The most noticeable difference is with
the increase in the heating rate to 5 ◦C/s. In both low- and high-Mn alloys, in most cases,
the transformation starts later than indicated by thermodynamic calculations. The overall
trends are changing though. This can be an indication of the more important role of
segregation and the kinetics at the start of transformation.

Metals 2024, 14, x FOR PEER REVIEW 12 of 29 
 

 

calculated temperatures, and high-Mn alloys follow the trend of PE-calculated tempera-
tures (Figure 7). Hence, we use OE- and PE-calculated temperatures in the subsequent 
comparison with low- and high-Mn alloys, respectively. The following quantities are de-
fined as a quantification of the temperature range for the transformation: 

∆𝑇𝑇𝑠𝑠𝑠𝑠𝑎𝑎𝑠𝑠𝑠𝑠 = 𝐴𝐴𝑐𝑐1− − 𝐴𝐴𝑒𝑒1−  (3) 

∆𝑇𝑇𝑠𝑠𝑠𝑠𝑛𝑛𝑎𝑎𝑠𝑠𝑛𝑛 =
𝐴𝐴𝑐𝑐3 − 𝐴𝐴𝑐𝑐1−

𝐴𝐴𝑒𝑒3 − 𝐴𝐴𝑒𝑒1−
  (4) 

The results of the calculations are shown in Figure 9a–f. The start of the transfor-
mation seems to be matching with the theoretical temperatures quite well, especially 
when samples are heated at 0.1 °C/s. The only exception is the alloy 0.1Si2Mn, where the 
transformation seems to start earlier than indicated by PE calculations. Other alloys are 
within a ±10 °C range. An increase in the heating rate to 1 °C/s delays the start of the 
transformation, which is more pronounced in the case of high-Mn alloys. The overall trend 
remains similar to the one with heating rate of 0.1 °C/s though. The most noticeable dif-
ference is with the increase in the heating rate to 5 °C/s. In both low- and high-Mn alloys, 
in most cases, the transformation starts later than indicated by thermodynamic calcula-
tions. The overall trends are changing though. This can be an indication of the more im-
portant role of segregation and the kinetics at the start of transformation. 

 
(a) (b) (c) 

 
(d) (e) (f) 

Figure 9. Differences between measured (A−
c1) and calculated (A−

e1) at the beginning of the transforma-
tion upon heating, with difference rates shown as ∆T (a–c). The range of the measured transformation
is shown as normalized values by the calculated transformation range ∆Tnorm

tr (d–f).



Metals 2024, 14, 92 13 of 28

The transformation range normalized by the calculated transformation range is shown
in Figure 9d–f. This representation is more indicative of the growth of austenite. A distinct
influence of Mn is seen. Irrespective of the heating rate, the temperature range over
which the transformation takes place is 2–3× longer for high-Mn alloys than predicted and
1.0–1.5× longer for low-Mn alloys. The content of 2.0 wt% of Mn delays either the austenite
nuclei density or the austenite grain growth. As indicated by the measured recrystallized
ferrite grain size (see Table 4), in the case of low-Mn alloys, we should have a slightly smaller
density of potential nucleation sites. The fraction of pearlite is also smaller (see Table 2)
for low-Mn alloys, so the density of potential nucleation sites at the start of transformation
should be lower than for high-Mn alloys. This seems to be indicative of the strong influence
of Mn on the solute drag during the ferrite/pearlite-to-austenite transformation. Similar
conclusions on the solute drag effect of Mn were drawn in Refs. [33,41,64,65]. To learn more
about the roles of Si, Mn and their interaction on the reverse transformation, we study the
nucleation in more detail in the following sections.

3.3. Nucleation

The classical nucleation theory describes the steady state nucleation rate for each
nucleation type and can be expressed as [66,67]:

.
N = ∑j N j

nZj
(

kT
h

)
exp

(
−QD

kT

)
exp

(
−∆G∗,j

kT

)
[m−3], (5)

where j denominates the type of nucleation site; Nn is the number density of potential
nucleation sites

(
m−3); Z is the Zeldovich factor representing the thermally activated

growth of subcritical nuclei, which is assumed to be constant; T is the temperature (K); k
is the Boltzmann constant

(
1.38 · 10−23 J K−1

)
; h is the Planck constant

(
6.626 · 10−34 J s

)
;

and QD is the activation energy for the iron self-diffusion in ferrite (3.93·10−19 J [18]).
The last parameter is the activation energy for nucleation ∆G∗,j, which can be calculated
by [67–69]:

∆G∗ =
ψ

(∆Gv − Gs)
2 (6)

where the parameter ψ contains information about interface energies and the shape of the
nucleus and is estimated to be 2·10−7 ± 1·10−7 J3/m6 for austenite nucleation, with the
estimated number of special orientation relationships as between austenite and ferrite [68];
∆Gv is the Gibbs free energy for the newly formed phase

(
J mol−1

)
; and Gs is misfit strain

energy between the nuclei and matrix
(
J m−3). The influence of the chemical composition

on the nucleation can be assessed by ∆Gv and Gs. The nucleation is dependent on the
nucleation activation energy and temperature as follows:

dN
dt

∝ exp
(
−QD + ∆G∗

kT

)
(7)

where the total number of activated nuclei is proportional to the driving force and misfit
strain energy.

3.3.1. Nucleation Start Composition

As a first step in determining the influence of segregation on the nucleation, we
determine the Mn–Si compositions for which the nucleation starts, on the basis of the
compositional maps and thermodynamic calculations using the Thermo-Calc TCFE11
database [26]. As with the previous calculations, we assume PE conditions for high-
Mn and OE conditions for low-Mn alloys. We also differentiate between homogenized
and nonhomogenized materials, where we assume that the homogenized materials are
indeed homogeneous in composition. In the case of nonhomogenized materials, we
use the EDS composition maps and calculate the local transformation temperatures (for
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example, see Figure 4). Included in the transformation temperature assessment process
is the changing C content in the austenite during transformation. As a maximum level of
C in the austenite, we assume the carbon concentrations calculated based on the pearlite
content (see Table 2). In the evaluation, this level is used for the A−

e1 estimation until
the overall austenite C concentration is lower. This assumption is based on the fact
that the start of the transformation to austenite will initiate in pearlite, as suggested
by previous research, due to the readily available C from dissolving cementite [70–73].
The resulting temperature maps are used to determine the Mn and Si concentrations at
the start of the transformation. The detection limit of the dilatometer is estimated to be
3 vol% of newly formed austenite (see Figure 1). Hence, in the case of the calculated
A−

e1, we use the same level of 3 vol% to identify the start temperature detected using
dilatometer experiments. The measured transformation temperatures and the estimated
Mn and Si concentrations are used for nucleation modeling. Since we use OE conditions
for low-Mn alloys, we assume the Si to be partitioned between cementite and ferrite in
the pearlite, as confirmed by EDS measurements (see Table 5). The measured Si and
Mn concentrations are compared with calculated OE concentrations and are found to
be within a 0.1 wt% deviation. The Si content in θ is 0 wt% in orthoequilibrium, while
the Mn concentration is 0.40–0.47 wt%. The high-Mn alloys show partitioning of both
Mn and Si. Using the calculated partition coefficients for Mn and Si between α and θ

(Table 5), we estimate the redistribution of elements between the phases in pearlite. The
summary of the parameters for the driving force for nucleation is shown in Table 6.

Table 6. Summary of the input parameters for calculating the driving force (∆Gv) for the trans-
formation based on the overall chemical compositions for homogenized materials, compositions
deduced from individual composition maps for nonhomogenized materials and individual trans-
formation temperatures as measured by dilatometry. The values in grey cells are averages since the
concentrations are too low to measure with EDS.

Alloy

A−
e1 A−

c1 A−
e1 A−

c1

T Mn Si 0.1 ◦C/s 1 ◦C/s 5 ◦C/s T Mn Si 0.1 ◦C/s 1 ◦C/s 5 ◦C/s
◦C wt% wt% ◦C ◦C ◦C ◦C wt% wt% ◦C ◦C ◦C

Nonhomogenized Homogenized

0.1Si2Mn 705 2.8 0.1 688 722 715 678 2.0 0.1 702 698 701

0.4Si2Mn 697 2.6 0.3 702 719 727 657 2.0 0.4 707 712 709

1.0Si2Mn 711 2.6 1.0 714 730 735 604 2.0 1.0 723 732 717

1.5Si2Mn 709 2.5 1.5 730 730 733 549 2.0 1.5 728 728 731

1.9Si2Mn 721 2.7 2.1 729 731 730 497 2.0 1.9 728 734 756

0.4Si0.1Mn 730 0.1 0.3 730 726 744 694 0.1 0.4 731 725 752

1.0Si0.1Mn 737 0.1 0.7 740 744 752 638 0.1 1.0 749 747 752

1.5Si0.1Mn 749 0.1 1.3 752 756 756 580 0.1 1.5 753 753 751

3.3.2. Driving Force for Austenite Nucleation

The Gibbs free energy for all low-Mn alloys is estimated by calculating the chemical
potentials of systems with the same overall chemical compositions by including ferrite,
cementite, austenite or only ferrite and cementite at the temperatures indicated in Table 6.
The chemical potentials for all alloying elements in the system are calculated using Thermo-
Calc with the TCFE11 database [26], and are then used to calculate the Gibbs free energy
with a given composition of austenite by [74]:

∆G =
N

∑
i=1

Xn
i

(
µ

p
i − µn

i

)
(8)
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where ∆G is the driving force for the formation of the new phase
(

J mol−1
)

; µ
p
i are chemical

potentials for parent phases (pearlite), while µn
i

(
J mol−1

)
and Xn

i are chemical potentials
and molar fractions of i = (Fe,Mn,Si,C) in the new phase (austenite). The result is the driving
force for nucleation of austenite formation from pearlite under OE conditions.

The method for calculating Gibbs free energy for austenite nucleation under PE condi-
tions for high-Mn alloys at the temperatures indicated in Table 6 [63] is the parallel tangent
method [75]. An example of such a construct is shown in Figure 10, with the maximum driving
force (∆Gmax

ν ) and driving force calculated for the pearlite composition (∆GCP
v ) indicated in the

graph. For Mn–Si combinations at which the nucleation starts, we assume the carbon content
in austenite to be equal to the average carbon concentration in pearlite. While calculating the
driving force, in the case of high-Mn alloys, the maximum appears at a different C content.
The results of this analysis are shown in Figure 11a–c. In the case of high-Mn alloys, the
C content increases significantly above the C content of pearlite. With the 1.9 wt% Si alloy
content, the carbon content of nuclei reaches a value of ~2.6 wt% of C. For low-Mn alloys, the
C content of austenite nuclei is lower than the pearlite content and oscillates around 0.75 wt%
of C, which is closer to the equilibrium C content of pearlite [76].
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Figure 11. Concentrations of carbon in austenite during nucleation as calculated for maximum driv-
ing force for nucleation, shown with carbon concentrations of pearlite as shown in Table 2 (a–c). 

Figure 10. Construction for obtaining the maximum driving force (∆Gmax
υ ) and driving force for carbon

content of pearlite (∆GCP
υ ) for the nucleation of austenite as calculated under paraequilibrium conditions

using molar Gibbs energy obtained from Thermo-Calc [26]. Presented graph shows calculations for
0.4Si2Mn alloy homogenized and heated at 0.1 ◦C/s and therefore calculated at 702 ◦C.
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driving force for nucleation, shown with carbon concentrations of pearlite as shown in Table 2 (a–c).
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The results of the calculations for the maximum driving force (∆Gmax
υ ) are shown in

Figure 12a–f, including, in the case of high-Mn alloys, the driving force calculated for the
pearlite composition. In the case of alloys with a low overall Si content (0.1 and 0.4 wt%
of Si), there is little difference between the calculated driving forces for homogenized
and nonhomogenized materials (see Figure 12a–c). In the case of low-Mn alloys, the
situation is quite different. The driving force is calculated under OE assumption (see
Figure 12d–f). The calculated values are very low, and in many cases, seem to be negative,
which would prevent nucleation. Considering the calculation uncertainty, it is likely that
negative values are due to the inaccuracies in both dilatometry and chemical composition
measurements. Higher accuracy, especially of the former, is needed for better determination
of the transformation start temperature.
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3.3.3. Strain Energy of Austenite Nucleation

The next step in evaluating the influence of Si and Mn on the nucleation is the strain
energy (Gs). The elastic strain energy can be calculated depending on the shape of the nuclei
based on equations from Refs. [75,77,78]. The equation describing the case of ellipsoidal
precipitates is as follows:

Gs = 3µmxδ2E
( c

a

)
(9)

where µmx is the shear modulus of the matrix (GPa); δ is the misfit due to the volumetric
difference between precipitate and matrix; and E(c/a) is a function for elastic energy of
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the precipitate dependent on its shape, with c being polar and an equatorial diameter. The
volumetric misfit can be calculated from the atomic volumes of the precipitate and matrix:

δ =
Vppt − Vmx

3Vmx
, (10)

where Vppt and Vmx are the atomic volumes of the precipitate and matrix, respectively. In
the present study, the precipitate phase is austenite (γ) and there are two matrix phases:
ferrite (α) and cementite (θ). Hence, we calculate misfits γ/α and γ/θ separately. The
atomic volumes for all three phases are calculated, taking into account both the individual
compositions and thermal expansion as well. The parameters for calculating ferrite and
austenite atomic volumes are taken from Refs. [79–81]:

Vat
α =

1
2

{
(0.2863 + 0.00028·XMn − 0.00022·XSi)

[
1 + 17.5·10−6(T − 800)

]}3
(11)

Vat
γ = 1

4{(0.36307 + 0.00027·XMn + 0.00015·XSi + 0.0078·XC)[
1 + (24.9 − 0.51·XC)·10−6(T − 1000)

]}3 (12)

where Xi is atomic fraction of element i with i = (C,Mn,Si); and T is the temperature in K.
The data for the influence of substitutional elements on the lattice parameters of cementite
are limited. Some experimental data are available showing the changes due to Mn [82–85],
but there are no experimental data for the Si substitution of Fe. Since, in the case of high-Mn
alloys, the concentration of Si in cementite is significant, we estimate the effect of Si from the
first-principle calculations [86–90]. Si and Mn affect all three lattice parameters differently,
leading to a combined equation for the atomic volume:

Vat
θ = 1

12 [(0.45234 ∗ 0.50883 ∗ 0.67426)(1 − 0.0005·XMn − 0.0007·XSi)]·{
1 +

[
5.311·10−6 − 1.942·10−9T + 9.655·10−12T2]·(T − 293)

}3 (13)

The C concentrations of both cementite and ferrite are known. We consider two border
cases for the C concentration in the austenite nuclei, the first indicated by the maximum
driving force and the second by the average carbon content of pearlite. As a first step in
calculating the volumes of individual phases, we calculate the atomic fractions of each
phase needed for the formation of an austenite nucleus, with a given chemical composition.
We use, in this case, mass conservation:

A·Xα
C + B·Xθ

C = Xγ
C (14)

where A and B are the atomic volume fractions of cementite and ferrite to be transformed for
the austenite nucleus to form with a given C content; and X j

C are carbon concentrations of
the phases j = (α,θ,γ) (at%). With the given atomic fractions and using the atomic volumes,
we can calculate the actual proportions of the volumes of each phase transformed by:

α/θtrans = A/B, (15)

where the transformation factor (α/θtrans) is calculated as the ratio between the atomic
volume fractions of ferrite (A) and cementite (B) defined in Equation (14). The results are
shown in Figure 13.

The average Si concentration in the alloy affects the transformation factor between
ferrite and cementite (see Figure 13). With the exception of the alloys 0.1Si2Mn and
0.4Si2Mn, the cementite fraction forming the austenite nuclei is higher than expected
from the ferrite/cementite ratio of pearlite (α/θ = 7). The alloys 1.5Si2Mn and 1.9Si2Mn
show values below 1, meaning that more cementite than ferrite transforms to austenite
nuclei. This can be partly explained by the concentration of Si in cementite, which makes
it less thermodynamically stable [89,91–93]. As shown by the composition analysis, the
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concentration of Si in cementite in the high-Mn alloys, although lower than in the matrix,
can still be significant (see Table 5). A slight increase in the Si concentration in ferrite, at the
same time, makes ferrite more stable [77,79–82,94–96].
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Figure 13. Transformation factor α/θtrans calculated based on the C content of γ nuclei, atomic
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As the consequence of the increase in the carbon concentration in austenite nuclei
as well as of the ratios of dissolved matrix phases, volumetric changes depend on the
alloy. The results of the misfit calculations with Equation (10) are shown in Figure 14. In
the case of high-Mn alloys, with the increase in the overall Si content, the misfit between
ferrite and austenite nuclei becomes positive, meaning that the atomic volume of austenite
becomes larger than that of ferrite. At the same time, the atomic volume of cementite is
much larger than that of austenite. The misfit for the low-Mn alloys, on the other hand,
does not depend strongly on the Si concentration due to an almost constant C content in
austenite nuclei. What is different from the case of high-Mn alloys is that δγ/α is much
smaller and has values close to 0, meaning that there is only a small difference in the atomic
volume between ferrite and austenite, especially for the 1.5Si0.1Mn alloy.
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The models for calculating the elastic properties of ferrite and austenite at elevated
temperatures in the current work are taken from Ref. [80]. The model parameters are
adjusted by fitting the model using orthogonal distance regression (Ref. [97]) to the experi-
mental results published in Refs. [98–103]. The influence of the temperature and Mn on the
lattice parameters of cementite are taken from Ref. [104]. There are no experimental data
on the influence of Si on the elastic properties of cementite nor on their temperature depen-
dence. The effect of Si on the elastic properties are therefore based on the first principle
calculation results given in Refs. [87,90]. As for the effect of temperature, we consider the
results presented in Ref. [104]. The authors show that, such as for properties of ferrite, there
is a shift due to change in magnetic properties of cementite [80,101] occurring at the Curie
temperature (TC). In the case of cementite, Mn decreases the TC by ~13 ◦C/at% [83,104].
The results shown in Ref. [105] indicate that Si has a similar influence on TC, both in terms
of direction and magnitude. Therefore, we assume that the Si effect on the elastic properties
of cementite will be the same as for Mn in terms of the temperature dependence.

Using the presented parameters, we calculate the γ/α and γ/θ strain energies with the
assumption that E(c/a) = 1, which is valid for spherical precipitates (Figure 15). There are
some variations in the γ/α strain energies ranging between 106 and 108 J/m3, which are in
the correct order of magnitude when compared to reported values in the literature [68,106].
The influence of the chemical composition on the strain energies seems to be clear. High-
Mn alloys show a minimum in the case of alloys containing between 0.4 to 1.0 wt% of
Si (see Figure 15a–c). The alloys with 0.1 wt% of Mn show a constant decrease in the
strain energy with the increase of Si (see Figure 15d–f). The overall values are an order of
magnitude lower when compared to high-Mn alloys. As with the driving force, there are
small differences between the homogenized and nonhomogenized materials. In low-Mn
alloys, the γ/θ strain energy is rather constant and much higher than the strain energy
between ferrite and austenite. The values for γ/θ can be 100–300× higher than those for
γ/α. The strain energy between the cementite and austenite nuclei in the case of high-Mn
alloys is decreasing with increasing overall Si content, which can be directly correlated
with the increase in the C concentration of austenite nuclei. In the case of alloys with Si
concentrations of 0.1–1.0 wt%, the strain energy of γ/θ is still much higher than the strain
energy of γ/α, which can be between 30–100× higher. In the case of alloys with 1.5 and
1.9 wt% of Si, the differences between the strain energy of austenite with the two matrix
phases decreases to 1.5–5×. With the exceptions of these two alloys, the strain energy
causes a very high barrier for the cementite-to-austenite transformation considering the
driving force magnitude (see Figures 12 and 15). The main reason for these high strain
energies are the calculated misfits (see Figure 14). The volumetric misfits of austenite and
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ferrite are rather small compared with misfits of austenite and cementite. All considered,
it is plausible that the change in the austenite volume would rather be accommodated by
ferrite than by cementite due to lower energetic barriers. Therefore, to evaluate the extreme
values, we consider two scenarios: (1) Gθ

S = 0 due to δγ/α=0 and the volume change from
θ→γ transformation which is accommodated by ferrite; (2) the strain is dependent on
the fraction of each phase dissolved as calculated by Equation (15) and individual misfits
between the γ and matrix phases. The misfits in α under conditions of case 1 are shown in
Figure 14 as δγ/α exc. The change in the volume due to transformation is always negative
in ferrite, although it becomes quite small with an increasing Si concentration. It influences
the resulting strain energy, which in case 1 is Gα exc

S and in case 2 is Gsum
S . The comparison

of the two extremes of strain energy and driving force for nucleation is shown in Figure 16.
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Figure 15. Strain energy calculated for high-Mn alloys (a–c,g–i) and low-Mn alloys (d–i) showing
strain energy between the newly formed austenite nuclei and dissolving phases, ferrite (Gα

S (a–f)) and
cementite (Gθ

S (g–i)).

The condition that needs to be met for nucleation to take place is ∆Gυ > GS. The
values shown in Figure 16 indicate that this is the case for high-Mn alloys with an Si content
higher than 1.0 wt% for all heating rates. In the case of alloy 0.4Si2Mn, the nucleation
can take place if we assume the volume change is accommodated by ferrite, minimizing
the strain energy. The same condition makes the nucleation possible for low-Mn alloys,
where the ∆Gmax

υ values are similar to the Gαexc
S values considering their uncertainty. For

the alloys with a strain energy higher than the driving force for nucleation, we reconsider
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our assumptions for the parameters used here: (1) the shape of the nuclei, and therefore,
the value of E(c/a); (2) possible difference in the carbon content of austenite nuclei.
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Figure 16. Comparison of driving force for austenite nucleation (∆Gmax
υ ) and strain energy (GS). Alloys

with 2.0 wt% of Mn are shown in graphs (a–c) and alloys with 0.1 wt% of Mn are shown in graphs (d–f).

Previously, we assumed the nuclei shape to be spherical, for which E(c/a) = 1. As
shown in previous studies, the value of E(c/a) strongly depends on the properties of the
nuclei versus the matrix [75,78,107–109]. In order to evaluate which alloys in our case are
more sensitive to the nuclei shape and its influence on strain energy, we first calculate the
minimum value of E(c/a) for the following condition to be met:

∆Gmax
υ − GS·E

( c
a

)
> 0 → ∆Gmax

υ

GS
> E

( c
a

)
(16)

The results are shown in Figure 17. For all heating rates, the low-Mn alloys have
values in the range of 0.02–0.15, but considering large uncertainties, it is difficult to estimate
the nuclei shape. The values of E(c/a) for the high-Mn alloys with 0.1, 0.4 and 1.0 wt%
of Si are below or close to 1, indicating that a disk shape is preferable in those cases. The
nucleus shape in the alloy 1.0Si2Mn should be more disk-like if we consider the mix of the
strain energy. In the case of volume change being accommodated by ferrite, the GS is small
enough to allow for any shape of the nuclei.

Recent work by Böhm et al. [108,109] defines a shape factor H(c/a) based on the
work of Eshelby [110], which in essence is the E(c/a) function in our work. Using the
methodology presented in Ref. [108], we calculate the values of this function for γ/α and
γ/θ using the elastic properties of all phases at elevated temperature. The resulting values
are shown in Figure 18. In all cases, the E(c/a) function for γ/α indicates a slight preference
for disk-shaped nuclei, unlike γ/θ (Figure 18d,e). The shape of the nuclei formed from
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cementite shows a shift from spherical to disk shaped (Figure 18e). This shift occurs at an
overall 1.0 wt% of Si content, where the value of the function for any shape is close to 1.
The increase in the overall Si content seems to be decreasing the minima of the E(c/a) when
ferrite is the matrix phase (Figure 18d). The minimum decrease from 0.97 for the 0.1Si2Mn
alloy to 0.87 for the 1.9Si2Mn alloy. When compared with the values that are needed for the
nucleation to start as shown in Figure 17, the E(c/a) calculated for our alloys are not enough
to explain the occurrence of the nucleation, especially in the alloy 0.1Si2Mn.
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The second scenario we are testing to explain the occurrence of the nucleation is the
variation of the C concentration in the newly formed austenite nuclei. The C content
of austenite nuclei is initially derived from the maximum of the chemical driving force
(∆Gmax

υ ). It influences the lattice parameter of austenite and its elastic properties. Therefore,
in the case of high-Mn alloys with 0.1–1.0 wt% of Si heated at 0.1 ◦C/s, by varying the C
content in austenite, we determine if the nucleation is possible with given conditions. The
results are shown in Figure 19.
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The changes in the chemical driving force and strain energy due to change in the
nuclei C content in the alloys 0.1Si2Mn and 0.4Si2Mn at a 0.1 ◦C/s heating rate are still
insufficient to explain the start of transformation. In contrast, the energies calculated for the
alloy 1.0Si2Mn shows the nucleation is possible to start with a relatively large range of C
concentrations (0.02–2.45 wt% of C). Since the C concentration influences elastic properties,
the only change in this case is the change in the shape of the γ nuclei forming from θ from
disk to spherical, which occurs at a C concentration of 0.90 wt% of C in austenite nuclei.

4. Conclusions

The alloying of the steel with Si or a combination of Si and Mn has a clear impact on the
nucleation and transformation process in presented alloys. Starting with the segregation,
there is a clear dependence of the partition coefficient on the overall concentrations of Mn
and Si in the alloys (Table 3). The addition of 2.0 wt% of Mn seems to slightly change the
microsegregation levels of Si, while Mn is not significantly affected by the addition of Si
(Figure 5). The presence of Mn changes the way the austenite forms. This is evident by the
value of A−

c1, which in the case of low-Mn alloys, match orthoequilibrium temperatures,
while high-Mn alloys match better with paraequilibrium temperatures (see Figure 7). Also
evidenced by the dilatometer results, the austenite growth is much slower with the addition
of 2.0 wt% of Mn (see Figure 9).

When considered in detail, the roles of Si and Mn in the nucleation of austenite from
pearlite are complex. The addition of Mn allows for the presence of Si in cementite (see
Table 5). This in turn affects the way the pearlite transforms and the austenite nuclei form.
As a consequence, with the addition of Si in high-Mn alloys, the austenite nuclei carbon
concentration increases significantly (see Figure 11). The calculated volumetric misfit is
affected by this as well (see Figure 14). With the increase in the C content in austenite nuclei,
the transformation seemingly results in an expansion instead of a decrease in volume.

The classical nucleation theory that is used in the present work accounts for the
chemical driving force and strain energy between the austenite nucleus and both matrix
phases. The present work shows that some results can be explained with the classical
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nucleation theory. The results in the case of low-Mn alloys and high-Mn alloys with 0.1
and 0.4 wt% of Si are ambiguous and need further consideration. The high-Mn alloys
with Si concentrations higher than 1.0 wt% show ∆Gυ > GS, even with the assumption
of a spherical shape of the nuclei (see Figure 17). The alloys with lower Si concentrations
and the low-Mn alloys both need nuclei shapes to be more disk-like for the nucleation to
happen (see Figure 18). An independent calculation of the shape factor does not support
this conclusion though (see Figure 18). A more detailed study of the strain energy and
nuclei shape should be conducted in those cases.
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