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Abstract: In this work, the surface integrity (surface morphology, microstructure, microhardness,
residual stress) of contact fatigue (CF) samples with different numbers of running cycles was com-
prehensively studied. Based on typical working conditions, a fatigue life evaluation method was
proposed based on the evolution law of surface integrity. The CF with different numbers of running
cycles revealed that the average grain size decreased with the increase in the number of running
cycles, and the surface microhardness, residual stress and surface roughness Ra increased first and
then decreased. In addition, the relationships between different surface integrity parameters and
fatigue life were plotted. Moreover, based on the fatigue life profiles, the running state and remaining
life of gear samples can be evaluated.

Keywords: contact fatigue behavior; running cycles; surface integrity; failure analysis; 18CrNiMo7-6
gear steel

1. Introduction

Gears are the most widely used form in transmission systems. Compared with other
mechanical transmission forms, gear transmission can change speed, torque and direction,
which also has the advantages of high transmission efficiency, accuracy, a stable transmis-
sion ratio, and a large power range [1–3]. Due to the high working speed and large load,
the gear needs to withstand the shear stress and impact force under the action of circulation.
However, gear fatigue is an inevitable phenomenon in the service life. Gear fatigue can
eventually lead to serious failures, including surface pitting, spalling and fracture [4,5].
These failures can significantly reduce the remaining service life, and even affect the normal
operation of the mechanical equipment. For example, Bejger et al. argued that gears are
subjected to alternating loads due to wind speed changes and free braking pulses, which
makes them one of the most fragile components of a wind turbine with low reliability, and
gear fatigue failure led to the abnormal operation of wind power generation devices [6].

The gear service life is directly related to the performance characteristics of the tooth
surface [7,8]. Obtaining the surface integrity characteristics of the gear surface is an impor-
tant step to improve service life. In order to effectively monitor the degradation of gear
material performance during the service cycle, Feng et al. proposed gear remaining service
life and fatigue propagation monitoring technology based on vibration [9]. Xiang et al.
developed a new type of long short-term memory neural network with weight amplifi-
cation to predict gear remaining life, which was based on fusing the time-domain and
frequency-domain features of vibration signals [10]. Wang et al. used the Archard model
to formulate the gear tooth wear and predicted gear service life based on tooth surface
wear [11]. Moreover, a variety of surface strengthening techniques have also been applied
to gears to improve their fatigue life, such as laser shock peening, surface ultrasonic rolling,
pneumatic shot peening, etc. [12–14]. Zhang et al. [15] found that surface ultrasonic rolling
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can improve the surface integrity and fatigue life of the 17Cr2Ni2MoVNb gear steel due to
the surface work hardening layer. Qu et al. [16] revealed that shot peening can improve
the fatigue life of shaft steel due to the formation of dislocation tangles. In addition, some
studies have proposed crack initiation and fatigue life prediction based on surface damage
and wear performance [17,18].

Although a series of research achievements have been made in improving the surface
integrity, fatigue life and service performance of gear samples, the variation law of tooth
surface integrity during the service period has not yet been established. Therefore, the
aim of this work is to analyze the variation in surface integrity with different numbers
of running cycles, which meant testing sample surfaces at different cycle counts. The
results provide basic data for providing tooth surface characteristic parameters and later
gear maintenance.

2. Materials and Methods

The chemical components (wt.%) of 18CrNiMo7-6 steel were C 0.18, Si 0.28, Mn 0.7,
Cr 1.6, Ni 1.48, Al 0.097, Mo 0.29 and Fe balance. The heat treatment process was as follows:
the carburizing temperature was 920~930 ◦C for 45 h. After carburizing treatment, the
samples were furnace-cooled to 850 ◦C for 0.5 h and quickly quenched in oil for 0.5 h, and
the samples were tempered at 160 ◦C for 3 h.

CF tests were performed on a roller fatigue tester, and vibration signals were used
to monitor contact surface damage. The fatigue sample size and a physical image of
the roller fatigue tester are shown in Figure 1. Mobil lubricant (APIGL 80W90) was
selected for lubrication, and CF samples of 18CrNiMo7-6 steel were processed according to
standard YB/T5345-2014 [19]. A scanning electron microscope (SEM, NOVA NANOSEM
430, Financial Education Initiative, Hillsboro, OR, USA) was used to observe the surface
morphology. Electrolytic polishing was used to prepare the target surface for electron
backscattering diffraction (EBSD) characterization. The EBSD characterization was carried
out on HKL Symmetry equipment (Oxford Instruments, Abingdon, UK), with a 20 kV
accelerating voltage and scanning step size of 0.07 µm. A durometer (SCTMC, HV-50,
Shangcai Instruments, Shanghai, China) was used to evaluate microhardness, and the
applied load and dwelling time were 200 g and 15 s, respectively. The residual stresses
were measured by using a X-ray diffraction residual stress tester (Proto LXRD, Michigan,
ON, Canada) with the sin2ψ method and Cr-Kα radiation. A roughness tester was used to
evaluate surface roughness (Mahr-300C, Mahr Group, Limbach-Oberfrohna, Germany).
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The Hertzian stress between the driven roller and driving roller was calculated using
the following equation:
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where σ is the contact stress; F is the loading force; R1 is the radius of driven roller, R2 is the
radius of the driving roller, E1 and E2 are the elastic modulus of the samples, respectively,
and V1 and V2 are the Poisson’s ratios of samples.

When the vertical load is 13,000 N, the corresponding Hertzian stress was 6 GPa.

3. Results
3.1. Determining Fatigue Life

CF tests of different running periods were carried out to obtain the surface integrity
parameters of the 18CrNiMo7-6 steel samples at different stages. The premise of dividing
the fatigue life of the sample reasonably was based on obtaining the fatigue life distribution
curve. Six groups of fatigue tests were carried out to obtain the mean life of the samples.
The details of the experimental results of fatigue life are shown in Table 1. The fatigue life
distribution curve of the 18CrNiMo7-6 steel samples is shown in Figure 2.

Table 1. Fatigue life distribution of 18CrNiMo7-6 steel samples.

Sample NO.1 NO.2 NO.3 NO.4 NO.5 NO.6 Mean Life

Fatigue life 8.23 × 106 9.35 × 106 1.35 × 107 2.55 × 107 4.77 × 107 5.04 × 107 3.80 × 107
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Figure 2. Fatigue life distribution curve of the 18CrNiMo7-6 steel.

As can be seen from Table 1 and Figure 2, the mean life of the 18CrNiMo7-6 steel
samples was 3.80 × 107 cycles, and most samples have fatigue failure of more than 107 cycles
in the tests. Therefore, the study on the evolution law of the surface integrity of the samples
before fatigue failure was of great significance for revealing the fatigue failure mechanisms
and improving the fatigue life. Based on the fatigue life obtained, the tested samples
were divided into different numbers of running cycles, namely the initial state, 0 cycles
(Sample 1), 3 × 106 cycles (Sample 2), 5 × 106 cycles (Sample 3), 8 × 106 cycles (Sample 4)
and 3.8 × 107 cycles (Sample 5), to study the surface integrity evolution characteristics.

3.2. Microstructure

Figure 3 presents the cross-sectional EBSD microstructure, average grain size and pole
figures near the fatigue failure location after different numbers of running cycles. As shown
in Figure 3(a1), in the sample with coarse grains in the initial state, the grain size was
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distributed in the range of 0~25 µm, and 74.79% of the grains were smaller than 5 µm. The
average grain size was 0.94 µm, as presented in Figure 3(a2). In addition, it can be observed
that the layered structures were distributed along the vertical loading direction. Figure 3(a3)
presents the (001), (011) and (111) pole figures with a maximum intensity value close to 7.17.
After operation, the original coarse grains were slightly refined, as shown in Figure 3(a1–e1),
and grain size was decreased after contact operation. As shown in Figure 3(a2–e2), the
average grain size of the samples with 3 × 106, 5 × 106, 8 × 106 and 3.8 × 107 cycles was
0.82 µm, 0.78 µm, 0.70 µm and 0.67 µm, respectively. It should be noted that the polar
density of the samples decreased, suggesting that the texture orientation of the material
properties in the initial state was changed, as shown in Figure 3(a3–e3). Wang et al. [20]
discovered the deformation characteristics and texture evolution mechanisms of martensite
steel, and they found that the low-angle grain boundaries with misorientation angles
help to improve fatigue performance. In addition, the average grain size of the samples
decreased with an increase in the number of running cycles. At the same time, it could
be seen that the proportion of small grain sizes had increased. Also, it can be inferred
that with the increase in the number of running cycles, the contact surface morphology
of the samples changed, causing different vibration between contact surfaces, resulting
in the differentiation of grain size and polar density. Moreover, the vibration effects can
deform the surface layer material and significantly accelerate grain refinement. Based on
the Hall–Petch relationship [21], the relationship between grain size and sample strength
can be obtained, which also would help improve the fatigue behavior. Based on the above
conclusion, it can be determined that the running state of the fatigue samples directly
affects the characteristic change in the microstructure of the material surface layer, which
has important guiding significance for evaluating the service performance of the fatigue
samples by using this evolutionary characteristic.
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Figure 3. EBSD microstructure, average grain size and pole figures of the samples with different 
numbers of running cycles: (a1–a3) Sample 1; (b1–b3) Sample 2; (c1–c3) Sample 3; (d1–d3) Sample 
4; (e1–e3) Sample 5. 

Figure 3. EBSD microstructure, average grain size and pole figures of the samples with different
numbers of running cycles: (a1–a3) Sample 1; (b1–b3) Sample 2; (c1–c3) Sample 3; (d1–d3) Sample 4;
(e1–e3) Sample 5.
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3.3. Microhardness and Residual Stress

Figure 4a shows the surface microhardness of the samples with different numbers
of running cycles. The initial microhardness of the sample was 696 HV0.2, and the micro-
hardness of the samples with 3 × 106, 5 × 106, 8 × 106 and 3.8 × 107 cycles was 712 HV0.2,
720 HV0.2, 708 HV0.2 and 688 HV0.2, respectively. It can be seen that with the increase in
the number of running cycles, the surface microhardness of samples increased first and
then decreased. The main reasons for the increase in surface microhardness was work
hardening, but with the increase in the number of running cycles, the temperature of the
contact interface has a softening effect. Cvetkovski et al. [22] studied the thermal softening
of fine pearlitic steel and its influence on fatigue properties, and their research conclusions
proved that material softening can lead to a decrease in material deformation resistance,
resulting in a decrease in fatigue life. Figure 4b shows residual stress at the top surface of
the samples with different numbers of running cycles. The surface residual stress in the
initial state of the sample was compressed, which was −24 MPa, and the residual stress of
the samples with 3 × 106, 5 × 106, 8 × 106 and 3.8 × 107 cycles was −185 MPa, −277 MPa,
−307 MPa and −270 MPa, respectively. The surface residual stress of the samples with
different numbers of running cycles was higher than that in the initial state. It should
be noted that the residual stress value of Sample 5 was lower than that of Sample 4 and
Sample 3, which may be due to the softening effect of the contact surface accelerating
the decline in residual stress and material strength with the increase in the number of
cycles [23]. This inference was consistent with the conclusion of microhardness analysis.
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3.4. Surface Roughness and Morphology

Figure 5a presents the surface roughness of the samples with different numbers of
running cycles, and it can be found that the the surface roughness Ra value has great differ-
ences after different numbers of running cycles. The surface roughness Ra value increased
first and then decreased with the increase in the number of fatigue cycles. The initial surface
roughness value Ra of the Sample 1 was 0.491 µm. The surface roughness of Sample 2, Sam-
ple 3, Sample 4 and Sample 5 cycles was 0.206, 0.255, 1.688 and 2.099 µm, respectively. In
addition, the surface roughness curve of Sample 1 shows more peaks and troughs, and has
high curve fluctuations. With the contact operation of the fatigue samples, the peaks were
gradually flattened, and the roughness curves were relatively smooth. Figure 5b presents
the surface morphology of the samples with different numbers of running cycles. The
machining marks produced in the process of sample preparation were regularly distributed
on the sample surface, and this was the reason for the large fluctuation in the surface
roughness curve of the original sample. With the increase in the number of running cycles,
the machining marks on the surface gradually disappeared, and new surface damage can
be observed in Figure 6b,c. Also, local smooth areas were formed, and surface damage
started from slight scratches and gradually evolved into pitting until the final spalling. This
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was because the machining marks were smoothed out as the number of running cycles
increased, while surface damage was formed, resulting in an increase in roughness value.
Zhang et al. [24] demonstrated that the surface morphology characteristics are important
factors affecting CF performance. It should be noted that the pitting and spalling on the
surface of Sample 5 would further expand into delamination failure, resulting in extensive
material peeling. According to EDS analysis of the composition distribution of spalling in
Figure 6e, no oxygen element was detected, indicating that there was no obvious oxidative
wear and fatigue damage on the contact surface before 18CrNiMo7-6 steel severe fatigue
failure. Related studies suggested that oxidation is one of the important factors affecting
fatigue life [11,25].
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3.5. Analysis of the Relationship between Surface Integrity and Fatigue Life

Figure 7 displays the fatigue life evolution relationships between surface roughness,
microhardness, average grain size and residual stress. Both surface roughness and micro-
hardness can be obtained using portable equipment, and thus the service performance
of the samples can be inferred. The average grain size obtained via EBSD was relatively
complex, which was a supplement to the evaluation and fatigue life evolution method.
Figure 7a displays the relationships between surface roughness, microhardness and fatigue
life. It can be seen that the fatigue life of samples can be clearly evaluated under the
coupling relationships of microhardness and surface roughness. In addition, compared
with surface roughness, the influence of microhardness on CF life was relatively weak,
and when the surface roughness increased from 0.4 µm to 2.0 µm, it gradually approached
the fatigue failure point. Moreover, when the surface roughness was greater than 1.6 µm,
the influence of microhardness on fatigue life decreased markedly. Figure 7b displays the
relationships between average grain size, residual stress and fatigue life. It can be seen that
the average grain size was between 0.7 µm and 0.8 µm, and the samples were in a healthy
running state. With the accumulation of surface damage, samples produced more severe
vibration, and formed an impact effect, which resulted in the further reduction in surface
grain size and a greater release of residual stress [26]. Therefore, samples were also close to
the fatigue failure point.
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4. Discussion

By obtaining the surface integrity parameters of 18CrNiMo7-6 gear steel samples
with different numbers of running cycles, the variation rules of surface integrity can be
identified, providing the most basic data for the prediction of the fatigue life of samples
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and the maintenance of a healthy running state. There have been few reports on the use
of this method to predict fatigue life and to monitor the operational health status of gears.
Once the method is successfully applied, it will provide a new solution for the health
monitoring of the core moving components of high-end equipment such as gears and
bearings. Future work will further study the effect of different heat treatment processes
and running conditions on the surface integrity of 18CrNiMo7-6 gear steel and improve
the basic data of the fatigue properties of gear materials.

5. Conclusions

In this paper, the surface integrity (surface morphology, microstructure, microhardness,
residual stress) characteristics of CF samples based on different numbers of running cycles
was investigated. Also, the relationship between surface integrity and fatigue life was
analyzed. The main findings are as follows:

(1) A large difference in the surface integrity characteristics of different numbers of
running cycles was observed. Surface machining marks were first gradually pol-
ished (about 5 × 106 cycles) and then surface pitting damage was formed (about
8 × 106 cycles) during the fatigue test.

(2) The average grain size decreased with the increase in the number of running cycles.
Within the testing range, the grain size gradually decreased by 0.94 µm from 0.67 µm.

(3) As the number of running cycles increased, the surface microhardness, residual stress
and surface roughness Ra increased first and then decreased.

(4) Based on the evolution law of surface integrity mentioned above, the relationships
between different surface integrity parameters and fatigue life were plotted. When
the surface roughness Ra increased from 0.4 µm to 2.0 µm, it gradually approached
the failure point, and the average grain size was between 0.7 µm and 0.8 µm, meaning
that the samples were in a healthy running state.
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