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Abstract: Two–dimensional MXene synthesized from MAX phase ceramic has good electrical con-
ductivity, promising to be used as electrodes. In this study, Nb4C3Tx (T = –OH, –F, or =O) MXene
and low–entropy (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx (T = –OH, –F, or =O) MXene were prepared
by etching Nb4AlC3 and (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 ceramics in the HF acid at 60 ◦C. By
investigating the electrochemical properties of lithium batteries, it was found that the Nb4C3Tx

and (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx could provide the specific capacities of 163.7 mAh·g−1 and
130 mAh·g−1 after 50 cycles at a current density of 0.1 A·g−1, respectively, and maintain the coulom-
bic efficiency close to 100%, good for the utilization of electrodes in lithium batteries.

Keywords: Nb4AlC3; (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3; MXene; lithium battery; electrochemical
property

1. Introduction

MXene is a new 2D material, first synthesized by Naguib et al. in 2011 [1]. Here, the
name “MXene” comes from the combination of “M” for the transition metal, “X” for carbon
or nitrogen, and “ene” to signify the presence of the two–dimensional layers. Typically,
MXene is obtained by selective removal of the A–atom layer from the MAX phases which
are ternary compounds composed of a transition metal (M), an element from group 13 or
14 (A), and carbon or nitrogen (X) using etchants (HF, LiF, HCl, etc.) [1,2]. It not only has
the high specific surface area of 2D materials but also has a high electrical conductivity
similar to that of the MAX phase. The etching process enriches the surface of MXene
with surface groups, giving it hydrophilic and surface modification potential [3]. The
excellent properties of MXene make it promising for a wide range of applications in energy
storage [4–7], catalysis [8,9], adsorption [10], hydrogen storage [11], and medicine [12],
especially in the field of energy storage.

The high–entropy materials that appeared in 2004 can exhibit excellent performance
due to the high–entropy effect [13–15]. Subsequently, the concept of high entropy quickly
extended to the study of ceramics [16]. In 2021, Yang et al. first reported high–entropy
MXene (HE–MXene) [17]. After that, other researchers followed up the research quickly.
Their research focused on the development of nearly equimolar ratios HE–MXene based on
Ti–based MXene that were mainly applied to lithium–ion batteries [17,18], Li–S ion batter-
ies [19], and capacitors [20,21], etc. Among them, the HE–MXene reported by Yang et al. as
an anode still maintained a capacity of 150 mAh·g−1 after 50 cycles at 0.5 C [17]. Rosen et al.
reported that the capacity also reached 126 mAh·g−1 at a rate of 0.01 C [18]. However, the
effect of entropy increase on the energy storage performance of MXene is still not too clear.
Therefore, in this work, Nb–based MXene was subjected to entropy increase treatment, and
its effect on electrochemical performance was systematically studied.
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In this work, low–entropy Nb–based 413 MAX phase (LE–MAX, (Nb0.8Ti0.05V0.05Zr0.05
Ta0.05)4AlC3) and Nb4AlC3 ceramics were synthesized by spark plasma sintering (SPS). The
corresponding low–entropy MXene (LE–MXene) (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx and
Nb4C3Tx were then obtained by etching, and their performance as the anode materials for
lithium–ion batteries was investigated comparatively. Here, T refers to the groups that
enter the MX interlayers during the etching process, such as –OH, –F, or =O.

2. Experimental Procedures
2.1. Synthesis of LE–MAX Phase

Commercial Nb, Ti, V, Zr, Ta, Al, and C powders were mixed and sintered by spark
plasma sintering (SPS) to prepare the LE–MAX phase. Specifically, the elemental powders
of Nb (99.5%, 400 mesh) (ENO High–tech Materials Development Co., Ltd., Qinhuangdao,
China), Ti (99.5%, 500 mesh) (ENO High–tech Materials Development Co., Ltd., China), V
(99.5%, 500 mesh) (ENO High–tech Materials Development Co., Ltd., China), Zr (99.5%,
500 mesh) (ENO High–tech Materials Development Co., Ltd., China), Ta (99.5%, 500 mesh)
(ENO High–tech Materials Development Co., Ltd., China), Al (99.9%, 500 mesh) (ENO High–
tech Materials Development Co., Ltd., China), and C (99.9%, 500 mesh) (ENO High–tech
Materials Development Co., Ltd., China) were weighed based on the designed molar ratio of
Nb:Ti:V:Zr:Ta:Al:C = 3.2:0.2:0.2:0.2:0.2:1.39:2.67 using an electrical balance (10−4 g accuracy)
and mixed in an agate jar for 12 h at 50 rpm. After sieving, the mixture was put into a
graphite die with a diameter of 20 mm and sintered in a spark plasma sintering furnace
(SPS–20T–10, Chenhua Technology Co., Ltd., Shanghai, China). The sample was gradually
heated to 1475 ◦C in argon atmosphere under a pressure of 30 MPa and then was annealed at
1475 ◦C for 16 min for consolidation. After sintering, the sample was naturally cooled down
with the furnace. After that, the sample was taken out of the graphite die, and the surface
graphite paper was removed using a diamond grinding wheel. Then, the sample was crushed
into powder, and the 400 mesh standard sieve was used for screening to get fine particles.
Finally, the 400–mesh LE–MAX (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 powder was successfully
obtained. For comparison, Nb4AlC3 sample was also prepared using the same procedure by
sintering the powder mixture with a molar ratio of Nb:Al:C = 4:1.39:2.67.

2.2. Preparation of LE–MXene

The LE–MAX (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 powder was mixed with 40 wt% HF
acid in a ratio of 1 g: 15 mL and kept in an oil bath facility with magnetic stirring for a
certain time (12 h, 24 h, 40 h, 48 h, 120 h) at a constant temperature (room temperature
(RT), 50 ◦C, 60 ◦C). After etching, the etched powder was rinsed with deionized water
and separated by centrifugation. The etched sample was repeatedly washed three times
until the pH value of the suspension was close to 7 and then was washed twice with pure
alcohol. The LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx sample was then placed in a
desiccator and dried at 40 ◦C for 12 h. Similarly, Nb4C3Tx was prepared using the same
etching procedure.

2.3. Material Characterization and Electrochemical Performance

The phase compositions of the as–prepared materials were analyzed using an X–ray
diffractometer (DX–2700BH, Haoyuan Instrument Co., Ltd., Dandong, China) with Cu
Kα radiation (λ = 1.54178 Å). The scanning speed was set to 0.02◦/step. The microscopic
morphology and elemental distribution of the sample particles were determined using a
scanning electron microscope (Apreo 2, Thermo Fisher Scientific, Waltham, MA) equipped
with an energy–dispersive spectrometer. The LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx,
carbon nanofibers, and polyvinylidene fluoride (PVDF) were mixed according to the weight
ratio of 7:2:1, and then 5 mL of N–methyl pyrrolidone (NMP) solution was added. After
that, the mixture was mixed by using a planetary ball mill machine at 500 rpm for 12 h.
Then, the mixture was uniformly coated on a copper foil using a coating machine and dried
to obtain an electrode plate with a thickness of about 50 µm. The performance of LE–MXene
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(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx as electrode material was tested by assembling lithium–
ion half–cell (battery specification: CR2032 button battery; counter electrode: lithium sheet;
secondary electrolyte: 1.0 M LiPF6 in the solution of ethylene carbonate (EC) and Dimethyl
carbonate (DMC) (1:1)). Cyclic voltammetry was tested on an electrochemical workstation
(CS350H, Corrtest Instruments Co., Ltd., Wuhan, China) at a scanning rate of 0.1 mV·s−1.
The galvanostatic charge–discharge test and rate performance test were conducted on the
battery detection system (CT2001A, Wuhan Land Co., Ltd., Wuhan, China). Electrochem-
ical impedance spectra (EIS) were also measured using the electrochemical workstation
(100 kHz~0.01 Hz, 10 mV).

3. Results and Discussion

Figure 1 shows the X–ray diffraction (XRD) patterns of Nb–based LE–MAX (Nb0.8Ti0.05
V0.05Zr0.05Ta0.05)4AlC3 and Nb4AlC3 samples prepared by spark plasma sintering. It is seen
that the diffraction peaks of LE–MAX are shifted to higher angles than those of Nb4AlC3.
For example, the (106) peak is shifted from 2θ = 40.04◦ to 2θ = 40.10◦, and the corresponding
crystal plane spacing d is reduced from 2.2500 Å to 2.2468 Å. The reason lies in that V
(171 pm), Zr (206 pm), Ti (176 pm), and Ta (200 pm) atoms are added to the M–site, and
their average atomic radius is smaller than that of Nb (198 pm) [17,20,22,23]. In addition,
the synthesized LE–MAX ceramic is relatively pure, whereas there is a small amount of
impurity phases Nb6C5 and Nb2AlC existing in the Nb4AlC3 sample. Based on the scanning
electron microscopy (SEM) image (Figure 2a) and energy–dispersive spectroscopy (EDS)
analysis on the polished surface of the LE–MAX sample (Figure 2b–f), it is seen that the M–
site elements are evenly distributed in the grains without obvious segregation. Therefore,
LE–MAX (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 ceramic is confirmed to be a relatively uniform
solid solution, which is consistent with the XRD result.
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Figure 2. (a) Scanning electron microscopy (SEM) image of polished surface of (Nb0.8Ti0.05

V0.05Zr0.05Ta0.05)4AlC3 ceramic; (b–f) element distribution of Ti, V, Zr, Nb, Ta examined by
energy–dispersive spectroscopy (EDS).

When etching the LE–MAX (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 powder with HF acid,
different etching times and etching temperatures to get the optimal parameters were tried.
The XRD results of the samples treated with different etching parameters are shown in
Figure 3a. It is found that the etching effect of the LE–MAX (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3
powder for a long time of 120 h at room temperature is not obvious (green curve in Figure 3a).
Although a broad characteristic XRD peak of MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx is
observed at low angles [1], its intensity is too low, and there is no significant change in the
characteristic XRD peaks of the LE–MAX phase. This implies that long–time etching at room
temperature could etch LE–MAX, but the etching efficiency was very low.

Since increasing the etching temperature could promote the etching reaction
process [24,25], the etching effect was significantly improved by increasing the etching temper-
ature to 50 ◦C and 60 ◦C, respectively, named 60–24 h–LE, 60–48 h–LE, and 50–48 h–LE samples.
The sample name indicates its etching temperature, etching time, and sample type. For ex-
ample, 60–48 h–LE means that the sample is a low–entropy (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx
MXene etched at 60 ◦C for 48 h. It is observed that this sample has the characteristic
(002) diffraction peak of MXene. The reason lies in that after the Al layer atoms in the
(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 phase were selectively etched, groups such as –OH
and –F in the etching environment were inserted between the (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3
layers, and the nanosheets were obtained [26]. This makes the interlayer spacing of the
(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx sheets change to be larger, resulting in a decrease in the in-
tensity of the diffraction peak and an increase in the width [1,27,28]. In the XRD
patterns of the 60–24 h–LE and 50–48 h–LE samples, many diffraction peaks of the resid-
ual (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 phase can be clearly distinguished, which indicates
that the LE–MAX phase was not completely etched under these two etching conditions of
60 ◦C–24 h and 50 ◦C–48 h. Therefore, the obtained 60–48 h–LE sample is the best LE–MXene
(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx.
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Figure 3. (a) XRD patterns of LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx treated with different
etching conditions; (b) XRD patterns of Nb4C3Tx treated with different etching conditions.

To compare the effect of entropy enhancement on the etching effect, the etching test
was carried out on Nb4AlC3 powder at 60 ◦C. Figure 3b shows the XRD patterns of Nb4C3Tx
samples obtained at different etching times. In the XRD pattern of sample 60–48 h (black
curve in Figure 3b), the main diffraction peaks of the Nb4AlC3 phase have disappeared,
and the characteristic peaks of Nb4C3Tx MXene were also not observed. The diffraction
peaks of Nb6C5 were observed, including the (200) peak at 2θ = 34.9127◦, (131) peak at
2θ = 40.5328◦, and (133) peak at 2θ = 58.6644◦. It might be considered that the etching time
of 48 h at 60 ◦C was too serious for Nb4AlC3. At a high temperature, the loss of M–site
elements increases with the increment of etching time, leading to the formation of the
by–product Nb6C5. In the XRD pattern of the 60–12 h sample (red curve in Figure 3b), the
peaks of the Nb4AlC3 phase almost disappeared, and the characteristic peaks of Nb4C3Tx
MXene were obvious. Same as in the LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx sample,
there was an unavoidable peak of the by–product Nb6C5.

Figure 4a–d show the SEM images of etched 60–48 h–LE and 60–12 h samples at
different magnifications. The lamellar structure can be clearly seen, and the obtained
MXene is essentially multilayered. The results based on the EDS testing of the sam-
ples are summarized in Table 1. The atomic ratio of Al:M elements in the 60–48 h–
LE sample decreased from 0.844:4.00 before etching to 0.034:4.00 after etching, and the
atom ratio of the low–entropy Nb–based (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx is close to
Nb:Ti:V:Zr:Ta = 0.8:0.04:0.05:0.05:0.05. It is proved that the Al elements in the precursor
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(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 and Nb4AlC3 phases have been essentially selectively
etched, which is consistent with changes in the XRD patterns before and after etching.
Additionally, the atomic ratio of Al:M elements in the 60–12 h sample decreased from
1.061:4.00 before etching to 0.095:4.00 after etching. It is proved that the Al atomic layers
have been efficiently etched out.
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Figure 4. (a,b) SEM images of 60–48 h–LE ((Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx) MXene; (c,d) SEM
images of 60–12 h (Nb4C3Tx) MXene.

Table 1. Energy–dispersive spectroscopy (EDS) results of (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 and
Nb4AlC3 samples before and after etching.

Sample Nb:Ti:V:Zr:Ta
(Atomic Ratio)

Al: M–Site Elements
(Atomic Ratio)

(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 80:4.02:4.88:5.03:4.72 0.844:4.00
60–48 h–LE 80:5.81:6.52:2.58:7.64 0.034:4.00

Nb4AlC3 - 1.061:4.00
60–12 h - 0.095:4.00

Based on the above results, it is concluded that the preparation of Nb4C3Tx requires
less time than that of LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx. In other words, the Al
atomic layers of Nb4AlC3 are easier to etch selectively. This might be related to the M–site
solid solution elements in the LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx. It is speculated
that the M–Al bond of (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 is more energetic than the Nb–Al
bond of Nb4AlC3, making a selective etching of the Al atomic layer more difficult [17,24,29].
The addition of M–site solid solution elements leads to the formation of lattice distortion
and defects. As an electrode material, the lattice distortion and defects not only increase
the resistance of ion diffusion but also change the conductivity of MXene, thus affecting the
electrochemical performance. Therefore, the 60–48 h–LE and 60–12 h samples were used as
electrode materials to assemble lithium–ion batteries for electrochemical testing.

Figure 5a,b show the obtained current–voltage (CV) curves of a lithium battery as-
sembled by using the 60–48 h–LE and 60–12 samples, respectively, over a voltage range
of 0.01 to 3 V (for Li/Li+) with a scan rate of 1 mV/s. For the 60–48 h–LE sample, in the
first scan cycle, an obvious reduction peak was observed at 1.20 V, and a less obvious
reduction peak was observed at 0.25 V. These two reduction peaks were no longer observed
in the subsequent scan cycles, and the reactions that occurred were irreversible chemi-
cal processes of solid electrolyte interface (SEI) film formation and Li+ insertion into the
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(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx sheets [30–32]. The oxidation peaks at 0.40 V and 1.65 V
correspond to the chemical process of Li+ deintercalation in the active material. After the
first scan cycle, the 1.65 V oxidation peak decreased and then gradually stabilized. The oxi-
dation peak at 0.40 V was observed and stabilized in the second scan cycle. It indicates that
the Li+ deintercalation behavior was gradually stable after the first cycle [33]. The reason is
that due to the existence of lattice distortion and lattice defects, the ion diffusion resistance of
LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx increases. Because the battery energy storage
behavior depends on the redox reactions, and the larger ion diffusion resistance prevents
the redox reactions from proceeding smoothly, this results in a decrease in the proportion of
battery behavior in the energy storage behavior of (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx, and
there are no obvious redox peaks on the CV curve. Overall, the CV curve of the 60–48 h–LE
sample shows a rectangular–like curve profile with no obvious oxidation peaks, except for
the first scan cycle. It can be inferred that its energy storage behavior is mainly pseudo-
capacitive behavior [34] and some battery behavior [35,36]. For the 60–12 h sample, the
shape of the CV curve for the first scan cycle is almost identical to that of the previously
discussed CV curve for LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx. However, from the
second scan cycle onward, the CV curve is very different from the former. After the second
scan cycle, a stable reduction peak was observed at about 1.75 V and 2.20 V, while a stable
oxidation peak was observed at about 2.50 V. The battery behavior is proved to be a greater
contributor to its energy storage behavior than the former.
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Figure 5. Current–voltage (CV) curves of lithium batteries assembled by using (a) 60–48 h–LE
((Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx) and (b) 60–12 h (Nb4C3Tx) samples, and galvanos-
tatic charge–discharge curves of lithium batteries assembled by using (c) 60–48 h–LE
((Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx) and (d) 60–12 h (Nb4C3Tx) samples.

Figure 5c,d show the galvanostatic charge–discharge curve of a lithium battery assem-
bled by using the 60–48 h–LE and 60–12 samples at a current density of 0.1 A·g−1 and a
voltage range of 0.01~3 V. The first charge/discharge capacities (initial coulombic efficiency)
of the 60–48 h–LE and 60–12 h samples are 209.3/424.9(49.28%) and 176.6/304.7(57.95%)
mAh·g−1, respectively. Both samples have a large irreversible capacity, which is related
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to the formation of SEI and the unsuccessful deinsertion of Li+ after partial embedding
in the active material sheet structure [37]. However, after several cycles, the reversible
capacity gradually stabilized, and finally, the coulombic efficiency stabilized close to 100%,
indicating that the batteries had good stability. After cycling stability, the reversible specific
capacities of the lithium battery assembled by using the 60–48 h–LE and 60–12 h samples
are about 135 and 160 mAh·g−1, respectively. In addition, the lithium battery assembled by
using the 60–12 h sample entered the steady state relatively quickly and was almost stable
in the second cycle. The following electrostatic charge–discharge curves almost coincided
with the second cycle onward. This might be related to the full separation of the sample
layer during the etching process, which contributes to the insertion and removal of Li+
during the charge–discharge cycle rapidly going into a steady state. Due to the lattice
distortion and defects caused by the existence of solid solution elements in the LE–MXene
(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx, during the charge–discharge process, the layer spacing
may change continuously with the repeated insertion and exit of Li+, stabilizing after
a few cycles. Meanwhile, the Nb4C3Tx has only Nb at the M–site, so there is no such
process, and they enter a steady state after one charge–discharge cycle. The galvanostatic
charge–discharge curves of the two lithium batteries have no obvious platform and show
an inclined linear shape. In addition, the galvanostatic charge–discharge curve shows clear
changes in slope at the voltage position where the redox peak of the CV curve appears.
Such galvanostatic charge–discharge curves show that the energy storage mechanism of
(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx and Nb4C3Tx is a mixture of pseudocapacitive behavior
and battery behavior. Therefore, the present result is consistent with the previous analysis
of the CV curves.

Figure 6a,c show the cycle performance curves of lithium batteries assembled by
using the 60–48 h–LE and 60–12 h samples, respectively. The measured specific discharge
capacities of two kinds of batteries were 130.0 mAh·g−1 and 163.7 mAh·g−1, respectively,
after 50 charge–discharge cycles at the current density of 0.1 A·g−1. Three different current
densities of 0.1, 0.2, and 0.5 A·g−1 were used in the rate performance tests. Figure 6b,d
show the rate performance curves of lithium batteries assembled by using the 60–48 h–LE
and 60–12 h samples, respectively. The tested specific capacities of the lithium batteries
containing 60–48 h–LE ((Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx) MXene were 123.1, 68.7, and
35.2 mAh·g−1 at the current densities of 0.1, 0.2, and 0.5 A·g−1, respectively. When the
current density was restored to 0.1 A·g−1, the specific capacity recovered to 112.6 mAh·g−1.
Additionally, it is seen that the measured specific capacities of the lithium battery con-
taining the 60–12 h (Nb4C3Tx) sample were 164.7, 116.1, and 72.2 mAh·g−1 at the current
densities of 0.1, 0.2, and 0.5 A·g−1, respectively. When the current density was decreased to
0.1 A·g−1, the specific capacity increased to 169.5 mAh·g−1 again. It is concluded that the
electrochemical properties of the 60–12 h sample are better than those of the 60–48 h–LE
sample, which is consistent with the results of some researchers who added a single solid
solution element at the M–site [22]. For example, Yang et al. attempted to add a single solid
solution element of 20 at.% to the M–site, resulting in the specific capacity losses of 16.4%
(solid solution element Ti) and 30.2% (solid solution element Zr) [22]. They found that after
20 cycles at a rate of 0.25C (equivalent to a current density of 0.0395 A/g based on a specific
capacity of 158 mAh/g), the batteries containing (Nb0.8Ti0.2)4C3Tx and (Nb0.8Zr0.2)4C3Tx
still had the specific capacities of 158 and 132 mAh/g, respectively. Comparatively, the
present prepared lithium battery containing (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx still had a
specific capacity of 163.7 mAh/g after 50 cycles at a current density of 0.1 A/g. Therefore,
this work achieved a larger specific capacity at a higher current density.

The specific capacitance loss of a lithium battery containing the 60–48 h–LE sample was
20.6% compared to that containing the 60–12 h sample. It seems that increasing the entropy
of MXene by increasing the type of M–site elements in the low–entropy range could not
improve the energy storage performance of MXene. It is speculated that the possible reasons
for the lower discharge–specific capacity of the lithium battery containing the 60–48 h–LE
sample are as follows: Firstly, it is more difficult to etch (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3
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after entropy increase treatment. Longer etching time (48 h) and high etching temperature
(60 ◦C) bring by–product Nb6C5, which has a negative effect on lithium storage. Secondly,
the lattice distortion and defects caused by entropy increase treatment change the electrical
conductivity of MXene and hinder the diffusion of ions in MXene.
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Figure 7 shows the electrochemical impedance spectra (EIS) curves of lithium batteries
assembled by using the 60–48 h–LE and 60–12 h samples. The intersection of the high–
frequency semicircle and the x–axis corresponds to the intrinsic resistance (Rs) of the battery.
The radius of the high–frequency semicircle corresponds to the charge transfer impedance
(Rct) in the battery system. The slope of the low–frequency line represents the diffu-
sion impedance (W). The larger the slope, the greater the ion diffusion coefficient [31,38].
The intrinsic resistance of both kinds of batteries is low due to the high electrical con-
ductivities of (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx and Nb4C3Tx MXene. Here, the intrinsic
resistance of a lithium battery containing (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx is larger, which
corresponds to the result that the lattice distortion and lattice defects caused by entropy
enhancement reduce the electrical conductivity of (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx. Also,
the lattice distortion in the LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx increases the ion
diffusion resistance, which hinders the redox reaction in the energy storage process. Re-
versely, the ion diffusion resistance of a lithium battery containing Nb4C3Tx is significantly
lower than that containing (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx, which is related to fewer
defects in Nb4C3Tx. So, the lithium battery containing the 60–12 h (Nb4C3Tx) sample
has a proportionally higher energy storage capacity than that containing the 60–48 h–LE
((Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx) sample.

In addition, the amount of by–products was well controlled in the 60–48 h–LE
((Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx) and 60–12 h (Nb4C3Tx) samples prepared by appro-
priate etching conditions. Therefore, the influence of by–products on the electrochemical
performance is limited, and the assembled lithium batteries show good energy storage
capability. For the field of energy storage, as long as the etching conditions are properly
controlled, the effect of by–products is acceptable, and it is feasible to increase the tempera-
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ture to improve the etching efficiency. This attempt is also of informative interest in other
applications. The present study reveals the importance of MXene nanosheets in promising
applications in the functional energy storage fields [39–41].
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4. Conclusions

In this work, Nb4C3Tx and (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx MXenes were success-
fully prepared by etching Nb4AlC3 and (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4AlC3 at 60 ◦C in
the HF acid. The energy storage capacity of lithium batteries containing Nb4C3Tx and
(Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx MXenes were systematically investigated, and the
achieved results are listed as follows:

(1) As the electrode material of a lithium–ion battery, the resulting Nb4C3Tx MXene
provided the reversible capacity of 163.7 mAh·g−1 after 50 cycles at 0.1 A·g−1, main-
taining the coulombic efficiency close to 100%. The measured specific capacities of the
lithium batteries containing Nb4C3Tx MXene were 164.7, 116.1, and 72.2 mAh·g−1 at
the current densities of 0.1, 0.2, and 0.5 A·g−1, respectively. When the current density
was decreased to 0.1 A·g−1, the specific capacity increased to 169.5 mAh·g−1 again.

(2) The lithium battery containing LE–MXene (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx exhib-
ited the reversible capacity of 130 mAh·g−1 at 0.1 A·g−1 after 50 cycles. Also, the
coulombic efficiency retained the high value close to 100%. The tested specific ca-
pacities of the lithium batteries containing (Nb0.8Ti0.05V0.05Zr0.05Ta0.05)4C3Tx MXene
were 123.1, 68.7, and 35.2 mAh·g−1 at the current densities of 0.1, 0.2, and 0.5 A·g−1,
respectively. When the current density was restored to 0.1 A·g−1, the specific capacity
recovered to 112.6 mAh·g−1.

(3) It is concluded that the specific capacity of a lithium battery containing Nb4C3Tx MX-
ene was higher than that of a lithium battery containing LE–MXene (Nb0.8Ti0.05V0.05
Zr0.05Ta0.05)4C3Tx MXene, which was ascribed to the existence of lattice distortion and
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defects in the LE–MXene which hindered the diffusion of lithium ions and reduced
the reversible insertion and extraction of lithium ions.

(4) The present work proved the promising applications of Nb4C3Tx and (Nb0.8Ti0.05V0.05
Zr0.05Ta0.05)4C3Tx MXenes in lithium batteries.
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