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Abstract: The size and depth of defects significantly affect fatigue performance; the main purpose of
this article is to clarify the effect of stress correction factors caused by defects on the fatigue life of
α + β Type titanium alloy welded joints. In order to investigate the fatigue characteristics of α + β

Type titanium alloy welded joints, axial constant amplitude loading fatigue tests were performed
with a stress ratio of −1. The test results show that the fatigue life continues to increase as the stress
amplitude decreases, and the failure modes can be classified into two types: interior failure and
surface failure. A fatigue parameter (λ) determined by both defect depth and size was proposed
which allowed for a good generalization of the data point distribution in short and long-life regions.
The stress correction factor (W) related to the S–N characteristics was constructed by combining the λ

and average defect size, and it effectively improved the dispersion of the test data. Continuing, the
fatigue life prediction model was established under the condition that the defect type and size can be
estimated or detected on the basis of the dislocation energy method. The results indicated that the
evaluated values of the new life model associated with W are in good agreement with the test results.

Keywords: very-high-cycle fatigue; titanium alloy welded joints; defect characteristics; stress
correction; fatigue life prediction

1. Introduction

With the trend of high-performance and large-scale modern industrial equipment, the
demand for the thick plate welding of titanium alloy is increasing [1]. For large and complex
structural components, gas tungsten arc welding (TIG) has advantages such as process
economy and efficiency [2]. However, common defects such as porosity, lack of fusion,
and macroscopic cracks on the surface or inside of welded joints greatly restrict the overall
mechanical performance and service life of the components [3]. Therefore, it is urgent
to investigate the impact of defect characteristics on the fatigue behavior and fatigue life
prediction methods of titanium alloy welded joints under very-high-cycle fatigue (VHCF)
in order to lay the foundation for the development of equipment with high reliability and
long life.

Compared with the decreasing trend of the S–N curves of welded joints in high-cycle
fatigue [4–6], the S–N curves of welded joints in VHCF exhibit a “bilinear” or “stepped”
distribution [7,8]. This is due to the different fatigue fracture mechanisms from the surface
to the interior of the specimen, which are closely related to the uneven distribution of defect
sizes and differences in crystallographic characteristics [9–11]. Meanwhile, the loading
frequency does not affect the fatigue performance of the joint [9–11]. In addition, a rough
characteristic region concentrated around the defect is always found on fatigue fracture
surfaces [12–17]. This article uses “FGA” to represent the feature area. Typically, the FGA
as the crack initiation region can consume over 90% of the VHCF lifetime [18,19]. Therefore,
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when determining the very-high-cycle fatigue life of welded joints, the influence of the
FGA’s characteristic size should be taken into account.

As is well known, initiation cracks are often closely related to defects, as there is often
strong stress concentration around defects. Earlier, Murakami [20] found that the defect
size tends to negatively affect fatigue performance and proposed a well-known parametric
model that takes into account both hardness and defect size, which can be used to evaluate
fatigue life at different stress levels. Wang et al. [21] proposed a probabilistic framework
for the fatigue life assessment of notched components under size effects in which the
Smith–Watson–Topper damage parameter is utilized to characterize the multiaxial stress
state at the notch tip. Sun et al. [22] incorporated the defect size and FGA size as key
parameters into the construction and solution process of the life assessment model based
on the theory related to cumulative damage and the plastic zone of the crack tip. In
addition, Zhu et al. [23] proposed a strength-altering factor to characterize the effect of
defects on the fatigue scatter and size effect. Given the instability of defect size as a single
variable, Zhu et al. [24,25] noticed the common effect of defect size and depth on the fatigue
behavior of a material and proposed a new fatigue life prediction model by improving
the Basquin equation, where the defect depth was considered as an important parameter
for local stress correction to reduce the dispersion between the defect feature size and
fatigue life. A probabilistic fatigue life prediction model under the size effect was proposed
based on the calibrated weakest-link theory (WLT) considering the defect location and
size sensitivity [26]. Lan et al. [27] used a three-parameter Weibull reliability model to
establish the S–N characteristic error parameters, and a linear fatigue life estimation model
that can be applied to arbitrary stress conditions was proposed by deeply incorporating
the relationship between the relative size and the relative depth of the initial defects.
In addition, considering the failure mechanism, the life model for solving fatigue crack
initiation associated with intracrystalline slip bands was proposed by Tanaka and Mura,
who concluded that irreversible intergranular dislocation slip under low-strain cyclic
loading is the root cause of crack initiation in most polycrystalline metallic materials [28].
The Tanaka–Mura model considers both intuitive defect size and FGA size but does not
delve into the coupling relationship between the defect size and depth or the average size
effect of defects [29]. Therefore, it is urgent to establish a life prediction model that takes
into account the coupling effects of defect size and depth, FGA size, and average defect size.

In this study, the preparation process, microstructure, and mechanical properties of
fatigue specimens for titanium alloy welded joints were investigated. The QBG-100 high-
frequency fatigue testing machine with a frequency of 100 Hz was used to conduct axial
loading fatigue tests under a stress ratio of −1. The characteristics of failure fracture were
observed and measured. A fatigue parameter determined by the depth and size of the
defect was proposed. A stress correction coefficient related to the S–N characteristics was
established by combining fatigue parameters, defect size, and average defect size. Based
on this, a fatigue life prediction model considering the dislocation slip failure mechanism
was constructed.

2. Materials and Methods
2.1. Welding and Specimen Preparation

Multi-layer manual tungsten argon arc welding was used as the welding method in
this study. The base material (BM) and solid wire used for welding were both TC4 titanium
alloys whose main chemical compositions are shown in Tables 1 and 2, respectively. The
butt weld seam was in a symmetrical X-shape, with groove parameters and a schematic of
weld passes as shown in Figure 1. Based on GB/T13149-2009, the welding parameters were
determined based on the material, thickness, and joint form of the welded specimen. That is
to say, the specific welding parameters including current, voltage, and welding speed were
135 A, 20 V, and 2.2–3.5 mm/s, respectively. Welding quality can generally be judged by
color, with silver white and buff being the best. In addition, based on NB/T 47013.2-2015,
X-ray testing was conducted to check for macroscopic defects such as pores, strip defects,
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lack of fusion defects, incomplete penetration, and cracks. If none are present, the welding
quality is acceptable.

Table 1. Chemical compositions of BM (wt%).

C N H Fe O Al V Ti

0.011 0.009 0.0006 0.026 0.060 6.19 4.03 Balance

Table 2. Chemical compositions of solid wire (wt%).

C N H Fe O Al V Ti

0.007 0.008 0.0007 0.12 0.14 6.35 3.96 Balance
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Figure 1. Schematic of groove parameters and weld passes.

Figure 2 provides a schematic illustration of the fatigue specimen sampling locations
from TC4 plates after welding. In order to effectively avoid the effect of the surface rough-
ness of the specimen, the transition arc area of the specimen was sequentially sanded and
polished axially by using 360–2000 grit sandpaper until the transverse lines perpendicular
to the axial direction were beyond what is visible to the naked eye. Based on the size
requirements for fatigue specimens in the standard GB/T3075-2008 [30], the final geometry
and dimensional parameters of the fatigue specimen are shown in Figure 2, where the black
part represents the weld zone.

2.2. Specimen Preparation

Perpendicular to the welding direction, the metallographic specimens of the fatigue
specimens were intercepted by using wire-cutting equipment (Taizhou Tengfeng CNC
Equipment Co., Ltd., Taizhou, China). The surface of the metallographic sample was
ground and polished with 360-2000# abrasive papers in sequence, and then the small
scratches on the surface and the residual stresses generated during machining were elimi-
nated by thePI100 electrolytic polishing apparatus (Leibo Scientific Instrument Co., Ltd.,
Jiangyin City, China). Finally, the metallographic specimen was etched with Kroll solution
and the microstructure composition of the welded joints was observed through an Axio
Vert. A1 metallographic microscope.
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Figure 2. Schematic illustration of the sampling method and dimension parameters (unit: mm).

2.3. Fatigue Testing Method

Under constant amplitude loading conditions, the specimens were subjected to axial fa-
tigue loading tests by using a high-frequency fatigue testing machine (QGB-100, Changchun
Qianbang Testing Equipment Co., Ltd., Changchun, China) with a stress ratio (R) of −1.
The loading frequency of the fatigue test was maintained at 100 ± 2 Hz with a stress am-
plitude range of 400–450 MPa. All fatigue tests were conducted in a well-ventilated room
at ambient temperature to avoid interference with the test results from external factors.
Furthermore, the tests were maintained without interruption until the specimen failed
completely or the number of loading cycles reached 108.

3. Results and Discussion
3.1. Microstructure and Mechanical Properties

In relation to the different distances to the center of the melt pool, uneven heat input
and the cooling rate result in significant discrepancies in the microstructure and grain size
of the weld zone (WZ), heat-affected zone (HAZ), and BM. In detail, the BM is composed
entirely of staggered primary α phase and primary β phase, which exhibit the typical
microstructure morphology of a dual-phase titanium alloy with minimal grain size, as
shown in Figure 3a. As can be seen in Figure 3c, the formation condition of the β phase
was satisfying in all parts of the melt pool during extremely high temperatures, which led
to the complete transformation of the primary α phase inside the WZ into β phase. During
the subsequent rapid condensation process, the gross β grains in the melt pool gradually
took shape, accompanied by a large number of needle-like α’ martensite arranged in a
selective orientation inside the individual β grains, which can be seen in Figure 3c, as well
as a clear β grain boundary and a net basket-like α’ layer, and the grain size in this region
was significantly larger compared to Figure 3a,b. In the HAZ between the BM and WZ,
only part of the α phase underwent transformation into the β phase. In addition to the α’
formed inside the β grain during the cooling phase, a large number of primary α phases
with staggered distribution can be seen that have not undergone phase transformation, as
shown in Figure 3b.
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Figure 3. Microstructure of the welded joint: (a) BM; (b) BM and HAZ; (c) WZ.

Static tensile tests were carried out at room temperature and atmospheric pressure by
using a WDW-100 electronic universal testing machine with a tensile rate of 5 mm/min; the
results are shown in Figure 4. The yield strength σy, tensile strength σb, and elastic limit
σe obtained are approximately 972 MPa, 1024 MPa, and 553 MPa, respectively. The elastic
modulus E obtained from the stress–strain relationship in the elastic stage is 128 GPa.
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3.2. S–N Characteristics

Figure 5 shows the relationship between the stress amplitude and fatigue life of
the titanium alloy welded joints in the case of R = −1. Obviously, the fatigue life of all
specimens was between 104 and 108 cycles in the applied stress range and limited by time
and cost; the test points where fatigue life reached 108 but no failure occurred are marked
with arrows in the figure. According to the S–N curve, it can be clearly seen that the fatigue
life continued to increase as the applied load level decreased, and the cycles of 107 cannot
serve as a critical value to terminate the failure phenomenon, indicating that there is no
conventional fatigue limit here for titanium alloy welded joints. In the high-stress region,
the distribution of data points of titanium alloy welded joints was relatively concentrated.
In the low-stress region, the distribution of the data was relatively scattered. This may be
due to the uneven size distribution of the internal defects inside the specimen under low
stress. This phenomenon will continue to be discussed.
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Figure 5. S–N curve of titanium alloy welded joints.

Based on the observation results of crack initiation location using a scanning electron
microscope (SEM), the failure modes can be classified into two types: interior failure and
surface failure. Specifically, in the high-stress region with a fatigue life of fewer than 105

cycles, fatigue failure caused by surface crack sources dominated; while in the low-stress
region where the fatigue life exceeded 105 cycles, the fatigue crack sources were all located
inside the specimen and surrounded by FGA, due to the limitation of the surface crack
propagation threshold. Therefore, 450 MPa can be considered as a transitional stress from
surface failure to interior failure. Based on the Basquin empirical equation, the relationship
between the applied stress and fatigue life can be determined by σa = ANb, where A is
526.76 and b is −0.015, as shown by the red dashed line in Figure 5. In addition, this study
defines the stress amplitude corresponding to the S–N curve at 108 cycles as the fatigue
limit of titanium alloy welded joints, thus the fatigue limit σw is 399.6 MPa for R = −1.

3.3. Typical Fracture Observation

Combined with the SEM observations, it was found that all crack sources causing
fatigue failure can be divided into three types, including dislocation–slip defects, pores,
and irregular lack of fusion, which can be collectively referred to as fatal defects. It is
worth noting that the nucleation phenomenon of cracks induced by pores is only found
in interior failure, while surface failure corresponds to the other two types of fatal defects.
Figures 6 and 7 show the overall and local fracture characteristics in detail for the two
failure modes mentioned above.

In surface failures, higher cyclic loads tend to cause dislocation and slip at locations
on the surface of materials, followed by crack initiation and extension at the resulting
individual extrusion peaks or intrusion grooves. Meanwhile, compared to dislocation–slip
defects, the severe stress concentration caused by lack of fusion on the surface may lead to
a lower threshold for crack propagation around it, thus, surface fatigue failure may also be
caused by lack of fusion. Taking the surface fatal defect as the center, the four typical areas
are as follows: short crack area, long crack area, unstable growth area, and final fracture
area, as shown in Figure 6a,c. In Figure 6b, obtained by further enlarging the crack source
region in Figure 6a, some obvious fatigue striations can be found near the dislocation slip
defect which are closely related to the failure process mechanism associated with the slip. In
Figure 6c, the surface failure induced by lack of fusion does not show the obvious traces left
by dislocation and slip, but a large number of short crack features centered on the defect and
radiating to the interior of the specimen can be observed in the vicinity of the fatal defect.
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Compared to the surface, it is noteworthy that the fatal lack of fusion, determined by
the manufacturing process, does not appear in interior failure. By focusing on the local
magnification features near the fatal defect, the white rough area attached around the defect,
i.e., the FGA, can be seen in Figure 7b. The typical characteristic regions formed around
fatal defects can be divided into four parts: the FGA, fisheye, unstable growth area, and
final fracture area, as shown in Figure 7a. Further enhancing the SEM magnification, a large
number of micro-cracks inside the FGA can be observed in Figure 7c, which are directly
related to the cyclic local stress around the fatal defect. In addition, dense step morphology
can be seen in Figure 7c, so it can be assumed that the cracks are heavily affected by the
microstructure with a high degree of deflection, which directly leads to the formation of the
rough morphology inside the FGA. In fact, the unique micro-crack initiation mechanism
within the FGA can determine a higher upper limit of fatigue life.

3.4. Crack Characteristic Size

In view of the fact that fatigue failure is always caused by fatal defects, it is necessary
to study the impact of major characteristic parameters including the size and depth of fatal
defects on fatigue life. The size of the fatal defect can be expressed using the Murakami
parameter,

√
areaD, which is defined as the square root of the projected area of the fatal

defect in the plane perpendicular to the principal stress axis. Moreover, the shortest distance
between the critical defect boundary and the free surface of the specimen is defined as the
critical defect depth, which is expressed by H. The specific schematic diagram of defect size√

areaD and defect depth H is shown in Figure 8.
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Figure 8. Schematic diagram of defect size and depth.

The relationship between the defect size and depth with fatigue life obtained through
Image-Pro Plus measurement software is shown in Figure 9a,b, respectively. As can be seen
from Figure 9a, the defect size widely ranges from 18 to 201 µm, which is related to the
inherent properties of welding manufacturing processes. Special attention should be paid
to the fact that the peak of the interior defect size distribution is higher relative to that of the
surface defect. For surface failure induced by a lack of fusion, the existence of potentially
larger defect sizes cannot be ruled out due to the limited number of specimens tested. In
the study by Zhu et al. [24], it was found that fatigue life tends to show an extended trend
as the size of fatal defects decreases. This finding is in good agreement with the present
study, regardless of surface or interior failure, despite differences in materials and test
conditions. However, the good negative correlation between the fatigue life and fatal defect
size in this study makes it difficult to achieve integration without distinguishing between
the two failure modes, as fitting data points for interior and surface failure in parallel leads
to obviously poor goodness, so further investigation of the influence law of the failure
mode on fatigue life is necessary.
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Figure 9. Relationships of defect size and defect depth with fatigue life: (a) Relationships between
defect size and fatigue life; (b) Relationships between defect depth and fatigue life.In view of the
dispersion phenomenon common to Figure 9a, b, a dimensionless fatigue parameter λ is proposed
to further investigate the combined action mechanism of depth and fatal defect size in the fatigue
failure process of titanium alloy welded joints, defined as:.

Generally, the definition of surface and interior failure is directly associated with
the depth of fatal defects. In Figure 9b, the distribution of fatal defect depths covers the
range of 0–1520 µm and has a large span of values. Meanwhile, although the data points
exhibit singularity in the long-life region, they do not affect the overall trend of increasing
fatigue life with increasing fatal defect depth. In addition, the dispersion of fatal defect
depths is much greater in the long-life region above 105 cycles than in the short-life region,
suggesting crack initiation at more random locations within the specimen; nevertheless,
the probability of fatal defects being far from the surface is still relatively greater in the
interval of long fatigue life.

λ =
H

√areaD
(1)

The relationship between the λ and fatigue life is shown in Figure 10. Three test
points are in the short-life region below 105 cycles, where all values of λ are less than 1.
Relatively, within the long-life region, all test points are located above the control line of
λ = 1. In addition, the area of λ < 1 covers all test points of surface failure, while 80% of
the interior failure test points have λ values that are greater than 1. Overall, the control
line of λ = 1 shows good generalization for both short and long-life regions as well as
for the distribution of data points under different failure modes. In addition, the linear
relationship between the fatigue parameter λ, which is jointly determined by the depth
and size of the fatal defect, and the fatigue life is significantly tighter, and the linear trend
of increasing values of λ with increasing fatigue life becomes more intuitive.

3.5. Evaluation of Stress-Intensity-Factor Range

In accordance with the relevant theory of fracture mechanics, the stress-intensity-factor
range for fatal defects, the FGA, or short crack area can be expressed using the Murakami
equation as follows [20]:

∆KD, FGA or SCA = Y∆σ
√

π
√areaD, FGA or SCA (2)

where ∆σ denotes the applied stress range and Y is a dimensionless parameter; the values
for Y are taken as 0.5 and 0.65 for interior failure and surface failure, respectively. Referring
to Equation (2), the relationship between the range of stress intensity factors and fatigue
life is shown in Figure 11.
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Figure 11. Relationship between the stress-intensity-factor range and fatigue life: (a) Relationships
between ∆KD; and fatigue life; (b) Relationships between ∆KFGA or SCA and fatigue life.

As can be seen in Figure 11a, the ∆KD for fatigue failure induced by an interior defect
is distributed in the range of 3.20–11.31 MPa·m1/2, while the corresponding ∆KD for surface
failure is distributed in the range of 9.50–10.73 MPa·m1/2. It is clear that the values of ∆KD
exhibit a decreasing characteristic with the increase of fatigue life, which is not limited by the
failure modes. In Figure 11b, ∆KFGA and ∆KSCA are dispersed within a quite limited range,
therefore they can be considered as fixed constants independent of fatigue life where the mean
values of ∆KFGA as well as ∆KSCA are 12.27 MPa·m1/2 and 27.85 MPa·m1/2, respectively.

3.6. Correction for S–N Relationships

Le et al. [27] plotted modified S–N characteristics based on the concept of average
defect size, resulting in a closer correspondence between stress and life, and confirmed the
rationality of subsequent fatigue failure analysis through corrected stress, which provides
some insights for this section. The formula for corrected stress proposed by Le et al. is
expressed as:

σc = σ

( √areaD
√areaD, average

)S′

(3)

where S′ is the parameter obtained by fitting, σ and σc denote the applied stress before
and after correction, and

√
areaD,average is the average of the fatal defect size. Furthermore,
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the positional parameter considering the defect depth was described as L = 1 − 2H/Φ,
where Φ is the fracture diameter of the specimen [24,25]. Nevertheless, it was found that
the fatigue parameter λ, which is jointly determined by defect size and defect depth, can be
better used to describe the relationship between the defect characteristic size and fatigue
life according to Section 3.3. Therefore, based on Equation (3), the stress correction factor
(W) related to the stress amplitude is reconstructed and expressed as follows:

W =

(
λt

√areaD
√areaD, average

)S

(4)

where both S and t are material-related correction factors whose values can be obtained
based on the Basquin equation and test data. The formula used for the solution is expressed
as follows:

σa−c = Wσa = A(Nf)
b (5)

In Equation (5), both A and b are the constants related to the corrected S–N curve, and
consistently determined by both fatigue test and defect characteristic size. The fitted values
of A, b, S, and t were 650.93, −0.03, 0.05, and 0.06, respectively. It should be specifically
mentioned that all stress correction sessions do not address surface failure, given that
interior failures with the FGA are more prominent in terms of the joint action mechanism of
defect depth and size, and can well reflect the VHCF characteristics. Combining Equations
(4) and (5), the S–N relationship can be corrected to take into account the important role
played by the defect characteristic size effect in the fatigue failure process under the local
stress state, and the S–N characteristics before and after correction are shown in Figure 12.
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Figure 12. S–N relationships before and after correction.

Obviously, the dispersion of the S–N data is somewhat improved after considering the
parameters of defect size and depth, showing a better linear trend in general, as can be clearly
seen by the comparison results in Figure 12. The results are in agreement with some of the
studies mentioned in the literature, demonstrating the important contribution of defects to the
dispersion of fatigue performance [31–33]. Overall, the constructed stress correction factor
allows for the effective optimization of data dispersion and quantification of the degree of
influence of defective feature parameters on fatigue performance, which, in fact, provides
a new way of thinking about fatigue life assessment and may be more advantageous in the
face of extremely dispersed data scenarios. Additionally, the reacquired fatigue limit (σw−c)
through corrected stress is somewhat different from the initial value (σw), and the value of
σw−c is taken to be about 374.6 MPa, according to the corrected S–N curve.
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3.7. Fatigue Life Assessment of Interior Failure

As already mentioned, the fatigue life related to interior failure in this paper is abso-
lutely dominated by the FGA, the formation of which is closely related to the processes of
dislocation and slip, and in turn, the corresponding fatigue life assessment can be carried
out by dislocation motion and irreversible slip theory. Under this theoretical framework, it
is generally believed that cyclic loading can cause the plastic flow of grains in the material
along the slip band. Unfortunately, this process will be impeded by grain boundaries,
which allow dislocations to accumulate within the grains, accompanied by increasing
local stress concentrations and energy accumulation effects. It is not until the cumulative
dislocation reaches the critical value that micro cracks can initiate at the intragranular slip
band. According to Tanaka–Mura, the increment of strain energy for a single slip band
under each cyclic load, ∆U, can be expressed as [28,34]:

∆U =
π(1− ν)(∆τ − 2k)2l2

2µ
(6)

where ν is the Poisson’s ratio; k is the dislocation slip resistance; ∆τ is the local average
shear stress range; and l is the grain size, which is taken to be approximately 450 µm. The
total strain energy, U, stored in the unit area can be expressed as:

U = 4lWS (7)

In Equation (7), WS denotes the specific fracture energy per unit area of the slip band.
Assuming that the total strain energy caused by the process of dislocation accumulation
reaches the fracture energy threshold when the number of cycles reaches Ni, the equation
related to the crack initiation life can be established as follows:

Ni =
U

∆U
=

8µWS

(1− ν)(∆τ − 2k)2πl
(8)

Actually, not all dislocation slip plays a substantial role in the crack initiation process.
It has been found that the effective dislocation slip should be closely related to the crack
length, whereby the WS considering the crack length (c) can be given by the following
Equation [35]:

WS = c
µ

0.005

(
h
l

)2
(9)

where h represents the width of the slip band, which is usually considered a fitting parame-
ter to effectively improve the matching between the test data and life model to be discussed
below, and µ is the shear modulus. Combining Equations (8) and (9), and introducing the
fatigue life index (β) related to the accumulated strain energy and irreversible slip degree,
the improved model for predicting the crack initiation life can be expressed as:

Nβ
i =

1
∆τ − 2k

[
8µ2

0.005(1− ν)π

]1/2(h
l

)( c
l

)1/2
(10)

Once the FGA is completely covered by slip bands, the crack length (c) can be expressed
by the difference between

√
areaFGA and

√
areaD. In addition, based on the octahedral shear

stress yield criterion, ∆τ in uniaxial tensile stress can be expressed by the stress amplitude
as:

∆τ =

√
2

3
∆σ =

2
√

2
3

σa (11)

During the formation of FGA, k can be considered as the critical shear stress and can
be expressed through the fatigue limit as:
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k =

√
2

3
σw (12)

As a result, the fatigue life prediction model (dislocation-energy model, DEM) based
on crack initiation can be expressed as:

Ni =

 3
√

2h
4l(σa − σw)

[
8µ2

0.005(1− ν)π

] 1
2
( √areaFGA − √areaD

l

) 1
2


1/β

(13)

By considering the correction stress, Equation (13) can be further reformulated as the
following model (DEMC) under the condition that the defect type and size can be estimated
or detected:

Ni =

 3
√

2h
4l(σa−c − σw−c)

[
8µ2

0.005(1− ν)π

] 1
2
( √areaFGA − √areaD

l

) 1
2


1/β

(14)

Figure 13 shows the comparison of predicted fatigue life (Npre) based on the DEM and
DEMC with experimental fatigue life (Nexp). As can be seen, after indirectly introducing the
effect of the average defect size and fatigue parameters (λ) into the DEM by corrected stress,
the predicted results of the DEMC have better consistency with the experimental results,
and the predicted fatigue life is very accurate within a factor of three. In fact, from the blue
triangles in Figure 13, it can be concluded that the model provides non-conservative results
for low-life regions and conservative results for long-life regions. Therefore, the proposed
method of fatigue life is feasible from the perspective of crack initiation and in combination
with the stress correction factor based on the defect characteristic size.
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4. Conclusions

This paper focuses on the HCF-VHCF performance of α + β Type titanium alloy
welded joints based on the axial constant amplitude loading fatigue test with R = −1 and
then establishes a reliable fatigue life prediction model using dislocation–slip theory. The
main research results are as follows:

1. The grain size and the amount of acicular martensite from the WZ, HAZ, and BM
decreased in order, with a stepwise distribution. All interior failures were induced by
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pores, and no other types of defect-induced failures were found in surface failures,
except for dislocation–slip defects and the lack of fusion as characteristic crack sources.

2. The size and depth of defects exhibit negative and positive feedback mechanisms
with fatigue life, accompanied by significant dispersion, and a fatigue parameter (λ)
constructed based on them can better describe the distribution law of fatigue life.

3. The stress correction factor proposed by introducing the fatigue parameter (λ) and
the average defect size while taking into account the size of each defect, was effective
in optimizing the dispersion of the S–N characteristics, and the fatigue limit after
stress correction was 374.6 MPa, which is slightly reduced compared with the initial
399.6 MPa.

4. Based on dislocation–slip theory as well as correction stress, a reliable method for
fatigue life prediction was proposed under the condition that the defect type and size
can be estimated or detected. The model provides non-conservative results for the
low-life region and conservative results for the long-life region.

Current research on α + β Type titanium alloy welded joints focuses on the S–N
relationship as well as the effect of defect characteristic size on fatigue performance, while
in the actual welding process, the severe residual stresses caused by uneven heat input and
deformation at the microscopic level can also have a large degree of influence on the local
stress concentration of the crack. In view of the above facts, it is necessary to further explore
the failure mechanism and quantitative analysis methods in this direction in conjunction
with engineering practice.
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