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Abstract: In the present work, Fe88Zr4Pr3B4Ce1 metallic glass (MG) was successfully prepared
by minor Ce substitution for Pr, and compared with Fe88Zr4Pr4B4 MG in terms of glass forming
ability (GFA), magnetic and magnetocaloric properties. The GFA, Tc and the maximum magnetic
entropy change (−∆Sm

peak) of the Fe88Zr4Pr3B4Ce1 MG were found to decrease slightly. At the
same time, the possible interaction mechanism of minor Ce replacing Pr was also explained. The
critical exponents (β, γ and n) obtained by the Kouvel–Fisher method indicate that Fe88Zr4Pr3B4Ce1

MG near Tc exhibits typical magnetocaloric behavior of fully amorphous alloys. The considerable
maximum magnetic entropy change (−∆Sm

peak = 3.84 J/(kg×K) under 5 T) near its Curie temperature
(Tc = 314 K) as well as RCP (~ 646.3 J/kg under 5 T) make the Fe88Zr4Pr3B4Ce1 MG a better candidate
as a component of the amorphous hybrids that exhibit table-shape magnetic entropy change profiles
within the operation temperature interval of a magnetic refrigerator.

Keywords: metallic glass; glass forming ability; magnetic entropy change; adiabatic
temperature change

1. Introduction

As is known, traditional gas compression–expansion refrigeration technology, depen-
dent on fluorine-containing refrigerants, has many disadvantages such as greenhouse gas
emission, destroying the ozone layer, low refrigeration efficiency, and so on. Therefore,
magnetic refrigeration (MR) technology using magnetocaloric refrigerant has received a lot
of attention because of its high efficiency, lower energy loss, environmental friendliness and
structural compactness [1–6]. Magnetocaloric refrigerants are the magnetic materials that
emit/absorb heat adiabatically when a magnetic field is applied/removed, which is called
magnetocaloric effect (MCE) [4–6]. The magnetocaloric effect of the magnetic materials is
induced by the reduction in magnetic entropy upon magnetization, and, as a consequence,
the magnetocaloric properties of a magnet are usually evaluated by the change in mag-
netic entropy (−∆Sm) under a certain magnetic field. As such, early research focused on
the MCE of first-order magnetic phase transition (FOMPT) materials that exhibit a sharp
−∆Sm profile with rather high maximum −∆Sm (−∆Sm

peak) [7–9]. However, the narrow
working temperature intervals of these FOMPT materials make them difficult to match
the requirements of magnetic refrigerants working in an Ericsson cycle; that is, a fattened
−∆Sm curve over the range of operating temperatures in a magnetic refrigerator [10]. In
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addition, the FOMPT materials inevitably show some disadvantages such as high magnetic
and thermal hysteresis [11]. In contrast, amorphous magnetocaloric alloys that experience
a second-order magnetic phase transition (SOMPT) exhibit several characteristics superior
to the FOMPT materials, such as low energy loss induced by their negligible coercivity and
high electric resistance, broadened −∆Sm curve and tunable −∆Sm peak temperature that
make them easily composed to achieve the fattened −∆Sm curve [12–31]. Unfortunately,
although rare earth (RE)-based metallic glasses (MGs) exhibit rather high glass formability
(GFA), excellent −∆Sm

peak at low temperature and ultrahigh refrigeration capacity (RC),
their formability and −∆Sm

peak get worse when their Curie temperature (Tc) increases to or
above the ambient temperature [12–18]. Thus, RE-based amorphous magnetocaloric alloys
are more likely to be applied in low temperature refrigeration instead of room temperature
(RT) refrigeration. The Fe-based amorphous magnetocaloric alloys exhibit good glass
formability when their Tc is near the ambient temperature, but their −∆Sm

peak is usually
very low [19–23]. For example, Fe-Zr-B MGs with Tc ranging from the cold end (TCold) to the
hot end (THot) of domestic cooling equipment can be easily fabricated, but their −∆Sm

peak

under 5 T is less than 3.34 J/(kg × K) [21–23], which is far from enough for them to be
utilized as cooling agents in domestic cooling appliances. More recently, by microalloying
the Fe-Zr-B MGs with other transition metals or RE metals, we successfully adjusted the Tc
and improved the −∆Sm

peak of the Fe-Zr-B MGs [24–31]. For instance, the −∆Sm
peak under

5 T reaches 3.55 J/(kg × K) at 336 K in the Fe85Co3Zr5B4Nb3 amorphous ribbon [24] and
at 333 K in the Fe85Zr8B4Sm3 amorphous ribbon [25]; it reaches 4.0 J/(kg × K) at 323 K in
the Fe88Zr4Pr4B4 amorphous ribbon [26] and 4.10 J/(kg × K) at 335 K in the amorphous
Fe88Zr4Nd4B4 ribbon [27].

However, preliminary results show that the excellent MCE of the iron-based MGs
appear near or above the THot of a domestic refrigerator. It is known that the high −∆Sm

peak

at temperatures higher than TCold but lower than THot is also required for the construction
of fattened −∆Sm curves suitable for the Ericsson refrigeration cycle. Thus, it is necessary
to develop a new type of metallic glass with excellent MCE at RT. As such, it is critical
to decrease the −∆Sm peak temperature of the iron-based MGs without dramatically
deteriorating their −∆Sm

peak. In the present work, according to our preliminary results on
the effect of Ce substitution on the Tc and −∆Sm

peak of the Fe-Zr-B amorphous alloys [32],
we add minor Ce to replace the Pr element in the Fe88Zr4Pr4B4 amorphous alloy for the
purpose of obtaining good magnetocaloric properties at a temperature slightly lower
than the THot of a domestic refrigerator. The mechanism for the influence of minor Ce
substitution on the magnetic as well as magnetocaloric properties of the Fe88Zr4Pr4B4
metallic glass was also investigated. The research results provide a feasible path for the Fe-
Zr-B-RE amorphous alloy to reduce Tc and avoid significant deterioration of magnetocaloric
properties while reducing costs.

2. Materials and Methods

The Fe88Zr4Pr3B4Ce1 ingot was manufactured by arc-melting the high purity raw mate-
rials more than five times to ensure uniformity of composition [33]. Ribbons were fabricated
by spraying the Fe88Zr4Pr3B4Ce1 melt from a quartz tube to the surface of a copper roller
rotating at a linear velocity of 55 m/s. The whole sample preparation process is protected
by a high purity Ar atmosphere. The cross-sectional morphology of the Fe88Zr4Pr3B4Ce1
as-spun ribbon was characterized through a Hitachi tungsten filament scanning electron
microscope (SEM, model SU-1500). The ~40-µm-thickness as-spun ribbons were selected
for structural analysis by X-ray diffraction (XRD) using a Cu Kα radiation with a scanning
speed of 1 ◦/min on a PANnalytical spectrometer. Under program-controlled temperature
conditions, the glass transition behavior, melting and crystallization of Fe88Zr4Pr3B4Ce1
ribbons were distinguished by measuring the power difference between the sample and the
reference material as a function of temperature (i.e., the thermal effect information related
to heat absorption and release). Hence, the thermodynamic parameters, including glass
transition temperature (Tg), initial crystallization temperature (Tx) and liquidus tempera-
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ture (Tl), were derived from the differential scanning calorimetry (DSC) curve measured by
a NETZSCH DSC-404 C calorimeter at a heating speed of 20 K/min to evaluate the forma-
bility of the MG ribbon. The temperature dependence of the heat capacity (Cp(T)) curve of
the glassy sample was measured by a Perkin-Elmer DIAMOND calorimeter. The magnetic
measurements of the amorphous ribbons, including magnetization vs. temperature (M-T)
curve, isothermal magnetization (M-H) curve and hysteresis loop, were performed on the
vibrating sample magnetometer (VSM) module of a physical property measurement system
(PPMS, model 6000, Quantum Design) after applying an oscillating magnetic field to a fully
amorphous ribbon to eliminate residual magnetism. The sample for magnetic measure-
ment was prepared by sticking several ribbons together using non-magnetic cement. To
minimize the impact of demagnetization, the magnetic field is applied parallel to the length
of the sample.

3. Results and Discussion

The Fe88Zr4Pr3B4Ce1 as-spun ribbon is amorphous according to its XRD pattern
shown in Figure 1. The cross-sectional morphology (the upper left inset of Figure 1a) and
the prepared samples (the upper right inset of Figure 1a) of the Fe88Zr4Pr3B4Ce1 as-spun
ribbon, indicate a thickness of ~40 µm and a width of ~2 mm. The glassy characteristic
of the Fe88Zr4Pr3B4Ce1 ribbon is also illustrated by the upward glass transition hump
before the downward crystallization peak on its DSC trace, as shown in Figure 1b. The
onset of Tg and Tx of the amorphous ribbon determined from its DSC trace is ~795 K and
~856 K, respectively. The Tl of Fe88Zr4Pr3B4Ce1 alloy obtained from its melting curve,
which is illustrated in the inset of Figure 1b, is determined to be ~1545 K. Therefore,
we can assess the GFA of the Fe88Zr4Pr3B4Ce1 amorphous sample by calculating the
reduced glass transition temperature (Trg = Tg/Tl = 0.515) [34] as well as the parameter
γ (= Tx/(Tg + Tl) = 0.366) [35]. The Trg of the Fe88Zr4Pr3B4Ce1 MG sample is slightly higher
than that of the Fe88Zr4Pr4B4 MG [26], while the γ parameter is slightly decreased by
the Ce substitution. Therefore, it seems that the Ce addition does not obviously change
the glass formability of the Fe88Zr4Pr4B4 metallic glass. On the other hand, although the
Fe88Zr4Pr3B4Ce1 as well as Fe88Zr4Pr4B4 MGs do not show Trg and γ values comparable
to the bulk metallic glasses, their Trg and γ values are still larger than most other Fe-Zr-B
MGs [21–23], indicating that the Fe88Zr4Pr3B4Ce1 and Fe88Zr4Pr4B4 alloys can be easily
prepared into MG ribbon.
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Fe88Zr4Pr3B4Ce1 glassy sample. The ferromagnetic materials exhibit strong magnetism 

Figure 1. (a) XRD pattern of the Fe88Zr4Pr3B4Ce1 as-spun ribbon measured at the scanning speed
of 1 ◦/min: the upper-left is the cross-section morphology, the upper-right is the prepared sample;
(b) The DSC traces and melting behaviors (inset) of the Fe88Zr4Pr3B4Ce1 as-spun ribbon.

The M-T curve under 0.03 T of Fe88Zr4Pr3B4Ce1 sample was measured after a zero-field-
cooling process from RT. Figure 2a depicts the M-T curve under 0.03 T of the Fe88Zr4Pr3B4Ce1
glassy sample. The ferromagnetic materials exhibit strong magnetism when magnetized.
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However, as the temperature increases, the intensification of thermal motion will affect the
ordered arrangement of magnetic moments of the magnetic domain. When the temperature
reaches enough to disrupt the orderly arrangement of magnetic moments of the magnetic
domain, the magnetic domain is disrupted, the average magnetic moment becomes zero
and the magnetism of ferromagnetic materials disappears and becomes paramagnetic. As
seen in the (dM/dT)-T plots of the sample in the inset, Tc of the Fe88Zr4Pr3B4Ce1 MG is thus
determined at the minimum value of the dM/dT to be 314 K, which is about 9 K lower than
that of the Fe88Zr4Pr4B4 MG [26]. The decreased Tc caused by the replacement of Ce for Pr
may be closely related to the antiferromagnetic coupling of the Ce atom with the Fe atom [32].
The hysteresis loops of the Fe88Zr4Pr3B4Ce1 MG ribbon, as displayed in Figure 2b, suggest
that the MG is paramagnetism at 380 K and soft magnetism at 200 K. The Fe88Zr4Pr3B4Ce1
MG exhibits excellent soft magnetic properties with almost zero hysteresis and high magnetic
susceptibility at 200 K, both of which are typical characteristics of fully amorphous alloys
and are essential for magnetocaloric materials. The saturation magnetization (Ms) of the
Fe88Zr4Pr3B4Ce1 alloy (~129 Am2/kg at 200 K) is slightly lower than that of the Fe88Zr4Pr4B4
MG (~137 Am2/kg at 200 K [26]), indicating that the magnetocaloric properties of the
Fe88Zr4Pr3B4Ce1 MG may be not as high as Fe88Zr4Pr4B4 MG because both the Ms and the
−∆Sm of the amorphous alloys are primarily determined by the ordering of their magnetic
moments.
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Figure 2. (a) M-T curve of the Fe88Zr4Pr3B4Ce1 amorphous ribbon measured under a field of 0.03 T,
the inset is the (dM/dT)-T curve; (b) Hysteresis loops of the Fe88Zr4Pr3B4Ce1 amorphous ribbon
measured at 200 K and 380 K under 5 T.

The temperature dependence of −∆Sm (−∆Sm-T curve) can be derived from the M-
H curves measured at various temperatures. Figure 3a displays the M-H curves of the
Fe88Zr4Pr3B4Ce1 MG from 200 K to 380 K under 5 T. On the basis of these M-H curves,
the M2-H/M plots, namely the Arrott plots of the Fe88Zr4Pr3B4Ce1 MG, can be established
accordingly, as illustrated in Figure 3b. The Arrott plots (M2-H/M) at each temperature
show a positive slope and are almost parallel to each other from 200 K to 380 K, both
of which indicate the typical feature of the materials experiencing a SOMPT according
to the Banerjee criterion [36]. The second-order magnetic transition allows the alloy to
undergo a continuous phase transition in a broad temperature range and hence leads
to a better overall cooling capacity. The −∆Sm-T curves under various external mag-
netic fields of the Fe88Zr4Pr3B4Ce1 MG obtained from its M-H curves are depicted in
Figure 4a. The −∆Sm

peak of the Fe88Zr4Pr3B4Ce1 ribbon reaches 1.15 J/(kg × K) under 1 T,
1.57 J/(kg × K) under 1.5 T, 1.94 J/(kg × K) under 2 T, 2.63 J/(kg × K) under 3 T,
3.26 J/(kg × K) under 4 T and 3.84 J/(kg × K) under 5 T at 312.5 K. The −∆Sm

peak of
the Fe88Zr4Pr3B4Ce1 ribbon is marginally lower than that of the Fe88Zr4Pr4B4 MG [26],
probably because of the lower magnetic moment of the Ce atom than the Pr atom due to
there being only one up-paired electron in the 4f shell of Ce atom. The minor Ce atom sub-
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stitution for Pr atom reduces the total magnetic moment of the Fe88Zr4Pr4B4 MG, which is
confirmed by the effective magnetic moment (µeff). As shown in Figure 4b, the temperature
dependence of H/M of the Fe88Zr4Pr4B4 and Fe88Zr4Pr3B4Ce1 ribbons were obtained from
their M-T curves. According to the Curie–Weiss law [37], the slopes of the lines above their
Tc are correlated to the µeff, and, thus, the µeff of the two MGs are calculated to be about
8.89 µB for Fe88Zr4Pr4B4 and 7.74 µB for Fe88Zr4Pr3B4Ce1. Apparently, the µeff of the alloy
is reduced with the addition of the Ce atom, resulting in a decrease in −∆Sm

peak.
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Although the −∆Sm
peak of the Fe88Zr4Pr3B4Ce1 ribbon is not as high as that of the

Fe88Zr4Pr4B4 MG, it is still higher than the −∆Sm
peak near 310 K of other amorphous alloys

and even high entropy alloys (HEA) reported in the literature [25,26,38–41]. For example,
its −∆Sm

peak under 5 T is about 234% higher than that of the Al20Mn20Fe20Co15.5Cr24.5
HEA (1.15 J/(kg × K) at 314 K [38]), 193% higher than that of the Mn20Al20Co14Fe23Cr23
HEA (1.31 J/(kg × K) at 310 K [39]), 22.3% higher than that of the Fe87Zr7B4Dy2 MG
(3.14 J/(kg × K) at 308 K [40]), 17.4% higher than that of the Fe87Zr8B4Sm1 MG
(3.27 J/(kg × K) at 308 K [25]), 5.5% higher than that of the Fe86La7B5Ce2 MG
(3.64 J/(kg × K) at 313 K [41]) and 6.67% larger than that of the Fe88Zr6Pr2B4 MG
(3.6 J/(kg × K) at 306 K [26]). Figure 4c displays the −∆Sm-T curves of several iron-
based MGs under 5 T. The Fe88Zr4Pr3B4Ce1 MG ribbon shows a rather high −∆Sm

peak near
310 K. On the other hand, the relative cooling power (RCP = −∆Sm

peak × ∆TFWHM, where
∆TFWHM is the full width at the half of −∆Sm

peak [42]) of the Fe88Zr4Pr4B3Ce1 MG, can be
calculated as 164.7 J/kg under 1.5 T and 646.3 J/kg under 5 T according to the −∆Sm-T
curve, both of which are similar to the values of amorphous alloys and much higher than
those of the first-order magnetic transition alloys or compounds [26,41,43,44]. Since the
Fe88Zr4Pr3B4Ce1 MG experiences an SOMPT, it exhibits large value of magnetic entropy
changes over a wide temperature range, which may be caused by the coupling interaction
between RE-RE and RE-TM. Therefore, it can be predicted that Fe88Zr4Pr3B4Ce1 MG has a
good magnetocaloric effect over a large temperature range.

After constructing the ln(−∆Sm)-ln(H) plots at each temperature, we can achieve their
slopes (defined as n) by linearly fitting and thus, observe the magnetocaloric behaviors of
the Fe88Zr4Pr3B4Ce1 MG in more detail. Figure 5a represents the temperature dependence
of n (n-T curve) of the Fe88Zr4Pr3B4Ce1 amorphous ribbon. Similar to other amorphous
alloys [21,22,24,26,27,40], the n of the Fe88Zr4Pr3B4Ce1 MG is close to 1 at temperatures
well below its Tc, and smoothly drops to the minimum value near its Tc, then dramatically
increases with the increasing temperature and approaches 2 at temperatures much higher
than its Tc. The minimum n value of the Fe88Zr4Pr3B4Ce1 MG ribbon, which appears at
312.5 K and is shown in the inset of Figure 5a, is ~0.747 and is close to the predicted value
of amorphous alloys proposed by V. Franco et al. based on the Arrott–Nokes equation [45].
Both the n-T curve and the minimum n value of the Fe88Zr4Pr3B4Ce1 MG indicate typical
magnetocaloric behaviors similar to those of fully MGs.
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On the other hand, the magnetocaloric behavior near its Tc of the Fe88Zr4Pr3B4Ce1
MG can also be explored by its critical exponents; that is, n(Tc) = 1 + (β − 1)/(β + γ) [45].
Wherein, β and γ are the exponents related to spontaneous magnetization (Mst) and initial
susceptibility (χ0), respectively, which can be described as follows [46]:

Mst(T) = M0(−ε)β, ε < 0, T < Tc (1)

χ0(T)−1 = (H0/M0)εγ, ε > 0, T > Tc (2)

where M0 and H0 are the critical amplitudes, ε = (T − Tc)/Tc is the reduced temperature.
Based on Equations (1) and (2), Kouvel and Fisher proposed a method to determine the
critical exponents β and γ with high accuracy, namely the Kouvel–Fisher (KF) method [47].
Equations (1) and (2) can be rewritten as:

Y = Mst(T)·(dMst(T)/dT)−1 = (T − Tc)/β (3)

X = χ0(T)−1·(dχ0(T)−1/dT)−1 = (T − Tc)/γ (4)

As such, we constructed the modified Arrott plots (M2.5-(H/M)0.75) at various tem-
peratures of the Fe88Zr4Pr3B4Ce1 MG and obtained the temperature dependence of Mst
and χ0

−1 from the intersections of the linear extrapolation of high field regions with
M2.5 and (H/M)0.75 axes, respectively. Figure 5b shows the temperature dependence of
Mst(T)·(dMst(T)/dT)−1 and χ0(T)−1·(dχ0(T)−1/dT)−1 of the ribbon. The critical exponents
β and γ can be determined to be 0.438 and 1.384 from the slope of the linear fitting of
the two plots. The values of β and γ are close to those of other iron-based MGs [45,48].
Therefore, the n value near Tc based on the KF method is calculated to be 0.692, which is
slightly lower than the n value based on the Arrott–Nokes equation, but still higher than
the theoretical value of the mean field model [45,49,50]. The reason for this may be related
to the unique short-range ordered microstructure of MGs.

Furthermore, the field dependence of the refrigeration capacity is also controlled by
the critical exponent, as follows [51]:

RC ∝ HN , N = 1 +
1
δ

(5)
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where δ is the critical magnetization isotherm at Tc, that is:

M = DH
1
δ (6)

D is the critical amplitude. According to the Widom scaling relation (δ = 1 + γ/β) [52],
the exponent δ can be determined to be 4.160. Moreover, the determination of the exponent
δ can also be obtained by the modified Equation (6), as follows [46]:

ln M = ln D +
1
δ

ln H (7)

Taking into account the measurement increments of 5 K in the M-H curves from
300 K to 330 K and the Tc of 314 K for the Fe88Zr4Pr3B4Ce1 MG, the M-H curve at 315 K
was selected to construct the ln(M) vs. ln(H) plot, as shown in Figure 5c. The linear
fitting is rather accurate, with a regression coefficient (Adj. R-Square) of up to 0.9999. The
value of the exponent δ is derived from the slope of the linear fitting to be 4.093 ± 0.003,
which is close to the result based on the Widom scaling relation. Therefore, according
to Equation (5), we can obtain that RC is roughly proportional to H1.24. The ln(RCP)-
ln(H) plot of the Fe88Zr4Pr3B4Ce1 MG constructed from its RCP under different fields is
illustrated in Figure 5d. The plot also fits well linearly and the slope is determined to be
1.130 ± 0.005. Clearly, the N value obtained from the ln(RCP)-ln(H) plot is slightly lower
than that obtained from the KF method and the modified Equation (6), but these values are
around the range of iron-based MGs. The deviation of n and N are supposed to be due to
the error in obtaining Mst and χ0

−1 from the modified Arrott plots.
A phenomenological universal behavior for the −∆Sm of the SOMPT materials has been

proposed by V. Franco et al. [53]. The−∆Sm-T curves under all magnetic fields are normalized
with their respective −∆Sm

peak; that is, ∆S
′
(T, Hmax)= ∆Sm(T, Hmax)/∆Speak

m (T, Hmax). The
temperature axis is divided into upper and lower parts with Tc as the boundary, and rescaled
in different ways, as follows:

θ =

{
−(T − Tc)/(Tr1 − Tc), T ≤ Tc
(T − Tc)/(Tr2 − Tc), T > Tc

(8)

where Tr1 and Tr2 are the starting and ending temperatures corresponding to ∆TFWHM
under different magnetic fields, respectively. Figure 6a shows ∆Sm/∆Sm

peak-θ curves under
different magnetic fields of the Fe88Zr4Pr3B4Ce1 MG. We can find that the normalized ∆Sm
curves under each magnetic field can collapse onto the same universal curve. This unifor-
mity indicates the typically magnetocaloric behavior of the SOMPT Fe88Zr4Pr3B4Ce1 MG.
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To evaluate the magnetocaloric properties of the Fe88Zr4Pr3B4Ce1 MG in a more direct
way, we calculated the adiabatic temperature rise (∆Tad) of the amorphous ribbon, as
follows:

∆Tad(T, 0→ H) =− T
Cp(T)

∆Sm(T, 0→ H) (9)

Figure 6b illustrates the temperature dependence of ∆Tad (∆Tad-T curve) of the
Fe88Zr4Pr3B4Ce1 MG obtained from its −∆Sm-T curves and Cp(T) curve (shown in the
inset). The ∆Tad reaches a maximum value of ~1.05 K under 1.5 T and ~2.64 K under 5 T,
respectively. These well-known magnetocaloric materials (such as Gd [54], Gd5(Si2Ge2) [7],
MnAs [8] and Fe49Rh51 [55]) undergo a first-order magnetic phase transition, exhibiting
a giant magnetocaloric effect. Therefore, the magnetic entropy change curve shows ex-
tremely high sharp peaks within a narrow temperature range, and the magnetic entropy
change peak value is much higher than that of the Fe88Zr4Pr3B4Ce1 MG with a second-
order magnetic phase transition in this study. Therefore, the RCP of Fe88Zr4Pr3B4Ce1
MG is larger than that of famous magnetocaloric materials, but ∆Tad is smaller than of
these materials. Considering its relatively high −∆Sm

peak at 312.5 K, RCP and ∆Tad, the
Fe88Zr4Pr3B4Ce1 MG is a prospective candidate for an intermediate component of magnetic
refrigerants with a table-shape −∆Sm curve within the interval between TCold and THot of a
domestic refrigerator.

Improving the −∆Sm
peak near RT as much as possible seems to be an effective way to

improve the magnetocaloric properties of Fe-based MGs. In the previous study of Fe-Ce-B
ternary MGs [56], Ce was partially replaced by B, and it was found that with the decrease
in Ce atoms, the antiferromagnetic coupling between Ce and Fe atoms was weakened,
resulting in the enhancement of 3d-3d interaction between Fe atoms and thus Tc increased.
In the study of Fe-Zr-B ternary MGs [32], it was found that by replacing Zr with Ce, Tc
decreased from 306 K to 283 K. In summary, the composition dependence of the MCE in the
Fe-Zr-Pr-B quaternary amorphous alloys system can be explained by the antiferromagnetic
coupling between Ce and Fe atoms and the Ce-Pr interaction caused by the introduction of
Ce atoms, which may lead to the weakening of the 3d-3d interaction between Fe atoms.
Therefore, the substitution of Ce for Pr will reduce the Tc of Fe88Zr4Pr4B4 MG. At the
same time, because the magnetic moment of Ce atoms is lower than that of Pr atoms, the
total magnetic entropy of the alloy will be reduced by the substitution of Ce for Pr, so
the −∆Sm

peak will be reduced. There are two reasons for choosing minor Ce to replace
Pr in this research: firstly, Ce is cheaper than Pr, which can save costs; secondly, Ce and
Pr are in adjacent positions in the periodic table of elements and the 4f shell is different
from two electrons, which will not produce a large change. Based on the previous research
results, it is expected that the total magnetic moment will not decrease too much while the
minor Ce replaces Pr in reducing the Tc of Fe88Zr4Pr4B4 MG, so it is more likely to obtain
magnetocaloric materials with good magnetocaloric properties near RT.

4. Conclusions

In summary, minor Ce was selected to replace the Pr atom in a Fe88Zr4Pr4B4 MG,
and the Fe88Zr4Pr3B4Ce1 amorphous ribbon with a thickness of ~40 micrometer was
successfully prepared. The influences of the minor Ce substitution for Pr on GFA, magnetic
properties and magnetocaloric effect of the Fe88Zr4Pr4B4 MG, as well as their mechanisms,
were further studied. The main conclusions are detailed below:

(i) The Trg and γ indicate that the minor Ce substitution for Pr does not obviously change
the glass formability of the Fe88Zr4Pr4B4 MG, but the glass formability of both the
two ribbons is enough to vitrify them into glassy ribbon.

(ii) The Tc of the Fe88Zr4Pr3B4Ce1 ribbon decreases by 9 K compared with the Fe88Zr4Pr4B4
MG, which may be closely related to the antiferromagnetic coupling of the Ce atom
with the Fe atom. The Fe88Zr4Pr3B4Ce1 MG ribbon shows typical soft magnetic charac-
teristics of fully amorphous alloys but slightly lower Ms than that of the Fe88Zr4Pr4B4
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MG at 200 K. The M2-H/M plots at various temperatures indicate the typical SOMPT
feature of the Fe88Zr4Pr3B4Ce1 MG.

(iii) According to the Maxwell Equation, the −∆Sm
peak of the Fe88Zr4Pr3B4Ce1 ribbon

reaches 3.84 J/(kg × K) under 5 T at 312.5 K, which is slightly lower than that of the
Fe88Zr4Pr4B4 MG but still higher than the −∆Sm

peak near 310 K of other amorphous
alloys and even high entropy alloys reported in literature.

(iv) The n-T curve, the minimum n value and the normalized universal curve of the
Fe88Zr4Pr3B4Ce1 MG ribbon also indicate the typical magnetocaloric behaviors of
fully amorphous alloys. The values of n and N obtained by the KF method deviate
slightly from those obtained by the linear fitting of the field dependence of −∆Sm

peak

and RCP, which may be due to the error in multiple derivation of the KF method.

Consequently, considering the relatively high −∆Sm
peak near 310 K, RCP (~646.3 J/kg

under 5 T) and ∆Tad (~2.64 K under 5 T), the Fe88Zr4Pr3B4Ce1 MG ribbon has great potential
for application as an intermediate component of magnetic refrigerants with a flattened
−∆Sm curve in a domestic refrigerator.
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