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Abstract: A stress plateau with a strain of 5–8% normally occurs during the stress-induced martensite
transformation (SIM) of NiTi shape memory alloys. Within the stress plateau, the correlation between
the stress and strain is lost, which limits their application in certain fields which require accurate
control of inelastic deformation. In order to address this limitation, a series of step-like NiTi samples
with graded cross-sectional area were designed and fabricated. Multiple stress plateaus were achieved
by varying the sample width and adjusting the number of steps; for instance, two and three stress
plateaus were obtained in the samples with two and three steps, respectively. Also, linear force–strain
response was obtained by changing gradually the width of the samples. The functional stability of the
geometrically graded samples was significantly improved by incomplete recrystallization annealing
(600 ◦C) followed by low-temperature (250 ◦C) aging treatment. The incompletely recrystallized
specimens contained many dislocations and grain and sub-grain boundaries, which promoted the
uniform precipitation of Ni4Ti3 nanoparticles during aging treatment. The homogeneously and
densely dispersed Ni4Ti3 nanoparticles were able to strengthen the matrix considerably and prevent
plastic activities during stress-induced martensite transformation. As a result, the functional stability
of the geometrically graded NiTi samples was much improved. After aging at 250 ◦C for 120 h, all
the samples showed a small residual strain of <1.0% after 20 loading–unloading cycles.

Keywords: shape memory alloys; NiTi; functionally graded material; superelasticity; functional
stability

1. Introduction

NiTi shape memory alloys (SMAs) show unique superelasticity (SE) and shape mem-
ory effect (SME), which originate from the reversible thermoelastic martensitic transfor-
mation between a B2-structured austenite (A) phase and a B19′-structured martensite (M)
phase [1–4]. These unique properties have attracted widespread interest, including for
aerospace [5–7], biomedicine [8–10], and micro-electromechanical systems [11,12]. During
the stress-induced martensite transformation (SIM), a stress plateau occurs over a large
strain of 5–7% [13,14]. Within the stress-plateau, the correlation between the stress and
strain is lost, which limits their application in certain fields that require accurate control of
inelastic deformation, such as guide wires, micro-actuators, and orthodontics [15–17].

To address this limitation, many studies have shown that microstructurally [18,19],
compositionally [20,21], or geometrically [22,23] graded NiTi alloys could be designed to
achieve flexible control of the mechanical performance. Microstructurally graded NiTi
alloys have been achieved through gradient aging [24] or annealing [25–27], which widens
the transformation stress window (i.e., the stress difference between the start and the end
of SIM). For example, a linear stress–strain response for SIM was achieved by introducing
a gradient distribution of Ni4Ti3 precipitates through gradient aging in a Ni-rich NiTi
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wire [24]. A gradient superelastic behavior expands the stress window for the forward
transformation to ~130 MPa. Laser surface annealing [18,28] has been reported as a promis-
ing method to tune locally the microstructure (e.g., the size of recrystallized grains) of NiTi
plates to make functionally graded samples, in which transformation temperature and
functional properties are tuned by varying the laser energy and scan rate. By alternately
varying two sets of process parameters [29] or using a repetitive scanning strategy [30]
to regulate the Ni evaporation, NiTi alloys with a compositional gradient were prepared
using laser powder bed fusion techniques. Similarly, local heat treatment of Ni-rich NiTi
wire by laser processing resulted in more pronounced vaporization of Ni than Ti, and thus
a multi-stage SIM plateau could be achieved [31]. By welding NiTi wires with different
compositions into a single unit along their length, a sample with graded transformation
temperatures and graded critical stress for SIM was achieved [32].

Geometrically graded NiTi alloys are featured with a gradient change in the shape
perpendicular [33] or parallel to the loading axis [34]. Compared with the abovementioned
microstructurally or compositionally graded alloys, the fabrication of geometrically graded
NiTi alloys is quite simple, since it is more feasible to change the shape of the samples. It has
been reported that the stress window for the forward transformation could be expanded to
~220 MPa in a NiTi sample with trapezoidal shape [34]. Different stress gradients have been
obtained by designing different geometries, such as linear strips, concave strips, and convex
strips [35]. Geometrically graded NiTi structures with parallel design configuration were
also designed [36]. During uniaxial tension, two transformation plateaus were observed in
geometrically graded NiTi alloys [33,37,38], i.e., a flat stress plateau and an inclined one
with a positive slope. These changes in plateau are attributed to the progressive propagation
of the SIM perpendicular to the loading axis. However, inhomogeneous geometries lead to
uneven deformations with locally concentrated stress, which are prone to induce plastic
deformation. As a result, the geometrically graded NiTi alloys are more susceptible to
functional degradation than the homogeneous specimens.

Precipitation strengthening has been widely utilized to improve the performance
of metallic materials [39–42]. Ni4Ti3 nanoprecipitates can be introduced by aging at a
temperature range from 200 ◦C to 550 ◦C in Ni-rich NiTi alloys [43–45]. However, a
high-temperature solution treatment is typically required prior to the aging treatment [3],
which results in the coarsening of the grains. It has been reported frequently that the
distribution of Ni4Ti3 nanoprecipitates is not homogeneous in coarse grains [41,43,46].
Kolobova et al. [47] studied the precipitation behavior from a kinetic point of view. It
was found that the precipitates are much smaller at the grain or sub-grain boundaries
than in the grain interior. The heterogeneous distribution of Ni4Ti3 nanoprecipitates may
undermine the effect of precipitation hardening [48,49]. Previous studies have shown that
controlling the grain size can alter the distribution of the Ni4Ti3 particles. Low-temperature
aging treatment of the fine-grained Ni-rich NiTi alloys (e.g., 1.7 µm [42,50]) has yielded
a microstructure with homogeneously distributed Ni4Ti3 nanoprecipitates, and thus im-
proved functional stability [42]. For coarse-grained NiTi alloys, the uniform precipitation of
Ni4Ti3 nanoprecipitates can be achieved by introducing dislocation networks prior to aging
treatment. Several approaches have been reported to introduce the dislocations, including
repetitive temperature-induced phase transformation (i.e., thermal cycles between liquid
nitrogen and boiling water [51]), stress-induced phase transformation, and ultrasonic shot
peening [52]. As a result, the functional stability of the coarse-grained NiTi alloys has
been improved.

In this work, a series of geometrically graded samples with different stepwise shapes
was designed and fabricated. The effect of sample shape on the stress–strain response
was investigated. The influence of incomplete recrystallization (600 ◦C) and subsequent
low-temperature (250 ◦C) aging treatment on the functional stability of geometrically
graded NiTi alloys was studied. This work will provide insight into the development of
high-performance functionally graded NiTi alloys.
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2. Materials and Methods

A commercial cold-rolled NiTi plate (Youyan Medical Co., Ltd., Beijing, China) with a
nominal composition of Ti-50.8 at.% Ni and thickness of 0.5 mm was used. The accumulated
cold deformation was around 10%. Geometrically graded samples were cut from the as-
received NiTi plates along the rolling direction using wire electrical discharge machining.
Figure 1 shows the detailed dimensions of the samples. A homogeneous specimen with a
gauge width of 3 mm and length of 20 mm was used for comparison (Figure 1a). Figure 1b
shows a two-step sample with step widths of 3 mm and 4 mm and a length of 10 mm for
each step. Figure 1c shows a three-step sample with step widths of 3 mm, 3.4 mm, and
4 mm and a length of 10 mm for each stage. Figure 1d shows a sample with a continuous
width transition from 3 mm to 4 mm over a length of 20 mm, named the N-step sample.
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Figure 1. Dimension of the geometrically graded NiTi samples: (a) homogeneous sample; (b) two-step
sample, with length of 10 mm for each step; (c) three-step sample, with length of 10 mm for each step;
(d) N-step sample.

All the NiTi specimens were annealed at 600 ◦C for 30 min, followed by water quench-
ing at room temperature. The characteristic transformation temperatures of the NiTi alloys,
measured by differential scanning calorimetry (DSC), were −61.8 ◦C (Mf, martensite trans-
formation finish temperature), −38.8 ◦C (Ms, martensite transformation start temperature),
−22.7 ◦C (As, austenite transformation start temperature), and −6.5 ◦C (Af, austenite
transformation finish temperature). Low-temperature aging treatment was conducted at
250 ◦C for different durations from 1 h to 120 h. The microstructure of the annealed and
aged samples was characterized using electron backscatter diffraction (EBSD) and trans-
mission electron microscopy (TEM). EBSD testing was carried out using the NordlysMax3
system (Oxford Instruments, Abingdon, UK) on a JSM-7800 scanning electron microscope
(JEOL, Tokyo, Japan). Samples for EBSD observation were electropolished in a solution
of 21 vol% perchloric acid and 79 vol% acetic acid at room temperature. TEM charac-
terization was performed using a Talos F200 microscope (ThermoFisher, Waltham, MA,
USA), operated at 200 kV. The phase transformation behavior was studied using differential
scanning calorimetry (DSC) in a DSC 3500 Sirius calorimeter (Netzsch, Selb, Germany),
with a cooling/heating rate of 10 ◦C min−1. The superelasticity was tested on a tensile test
machine with a strain rate of 1.67 × 10−4 s−1 at room temperature.

3. Results and Discussion
3.1. Microstructure

Figure 2 shows the EBSD crystallographic orientation map and inverse pole figures of
the as-annealed Ti-50.8 at.% Ni plate. Figure 2a indicates that the deformed microstructure
is largely annihilated. But several deformation bands can also be observed in some areas,
indicating that recovery and recrystallization occurs when annealing at 600 ◦C, but the short
annealing duration (30 min) was insufficient for full recrystallization. The average grain
size is around 27 µm, which was manually determined using the linear intercept method
described by Sutou et al. [53]. Figure 2b shows the inverse pole figures with reference
to the rolling direction (RD), transverse direction (TD), and normal direction (ND) of the
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NiTi plate. The following relationship could be identified: RD//<110>B2, ND//<111>B2,
indicating the presence of (111)//<110> texture in the as-annealed sample.
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Figure 2. (a) EBSD orientation map of the as-annealed Ti-50.8 at.% Ni sample; (b) the inverse pole
figures with reference to the rolling direction (RD), transverse direction (TD), and normal direction
(ND), respectively.

Figure 3a–f show the TEM results of the as-annealed Ti-50.8 at.% Ni plate. Figure 3a
shows that some deformed (i.e., elongated) grains still remain in the as-annealed sample. A
large number of dislocations are also observed inside the elongated grains. This result is
consistent with the EBSD results; the short annealing duration (30 min) was insufficient for
full recrystallization. Selected area electron diffraction (SAED) pattern (Figure 3b) indicates
that the as-annealed sample is in B2 austenite phase at room temperature. Some ultrafine
grains with size of <500 nm, as a result of recrystallization, are also observed in Figure 3c.
Figure 3d shows that a high density of dislocation also exists at the grain boundaries and in
the grain interior of the equiaxial grains. Some particles with size around 1 µm are detected
in Figure 3e. The corresponding SAED pattern (Figure 3f) indicates that the particles
are Ti2Ni. This indicates that the low annealing temperature (600 ◦C) was insufficient to
dissolve the Ti-rich particles.

Figure 3g–l show the TEM images of the as-annealed sample after aging at 250 ◦C
for 120 h. Some elongated grains are observed in Figure 3g. Figure 3h–j show the high-
resolution TEM (HRTEM) image of the NiTi matrix, and the corresponding fast Fourier
transforming (FFT) pattern and schematic presentation of the FFT pattern, respectively.
Figure 3i,j clearly show the 1/7{321}B2 spots (marked by green arrow) for the Ni4Ti3
nanoprecipitates along the [111]B2 zone axis. This indicates that Ni4Ti3 particles are formed
in the matrix after long-term aging treatment, consistent with previous studies [42,50]. The
nucleation of Ni4Ti3 precipitates is energetically favorable in the places of B2 austenite
lattice distortion, dislocations, grain boundaries, and sub-grain boundaries [3,54]. The
diffraction spots at 1/3<110>B2 (marked by yellow arrow) are also identified, indicating
that the aged samples are in the R-phase at room temperature [55]. Some Ti2Ni particles are
also observed in the NiTi alloy (Figure 3k,l). According to EDS point analysis in Figure 3k,
the Ti content of the particle is about twice the Ni content. The HRTEM image and the
corresponding FFT pattern (Figure 3f) indicate the Ti2Ni structure. The Ti2Ni particles may
have formed during the casting process.
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Figure 3. TEM images of the as-annealed (600 ◦C, 30 min) Ti-50.8 at.% Ni alloy: (a) TEM
bright field (BF) image, (b) selected area electron diffraction (SAED) pattern of the red circle in
(a), (c–e) high-magnification TEM-BF images and (f) SAED pattern of the red circle in (e). TEM
images of the sample after aging at 250 ◦C for 120 h: (g) TEM-BF image, (h) high-resolution TEM
image of the red rectangle in (g), (i) fast Fourier transforming (FFT) pattern of (h), (j) schematic
presentation of FFT in (i), (k) TEM bright field (BF) image and (l) high-resolution TEM image and the
corresponding FFT pattern of the red rectangle in (k).

3.2. Transformation Behavior

Figure 4a–g show the transformation behavior of the NiTi samples after aging at
250 ◦C for different durations from 0 h to 120 h. The martensite (Mp) and R-phase (Rp)
transformation peak temperatures are summarized in Figure 4h. The transformation heat
of martensite and R-phase transformation are summarized in Figure 4i. The as-annealed
sample shows a one-stage A→M transformation during cooling, and M→A transformation
during heating. The latent heat of the martensitic transformation is 19.3 J/g (Figure 4i),



Metals 2023, 13, 1518 6 of 14

which is less than that reported in the literature (21–29 J/g [56]). This is because the
martensitic transformation is suppressed due to the incomplete recrystallization, where
numerous dislocations and fine grains are present within the samples (Figure 3). Upon
aging at 250 ◦C for short times (i.e., 1 h and 4 h), a two-stage A→R→M transformation is
observed during cooling. Further increasing the aging time to 12 h-120 h, the martensite
transformation peak disappears, and only A→R transformation during cooling is detected.
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Figure 4. (a–g) DSC curves of the as-annealed NiTi samples after aging at 250 ◦C for different
durations (from 0 h to 120 h); (h) variation of martensite and R-phase peak temperature with aging
time; (i) variation of transformation heat of martensite and R-phase transformation with aging time.
Mp and Rp represent the martensite and R-phase transformation peak temperatures, respectively.

According to Figure 4h, as the aging time increases from 1 h to 4 h, the Mp temperature
decreases, while the Rp temperature increases. The reason behind this phenomenon is
two-fold. First, a strain field is formed around the coherent Ni4Ti3 nanoprecipitates, which
inhibits the martensitic transformation. The strength of strain field increases with the
growth of Ni4Ti3 nanoprecipitates, leading to greater inhibition of the martensitic trans-
formation. This leads to a reduction in martensitic transformation temperature (e.g., Mp)
and the latent heat of the martensitic transformation (Figure 4i). Secondly, the strain field
generated by the coherent Ni4Ti3 nanoprecipitates has a negligible effect on the R-phase
transformation due to its small transformation strain associated with the A→R transfor-
mation (around 1%) [3]. Therefore, the R-phase transformation temperature is mainly
related to the Ni content in the matrix. The formation of Ni4Ti3 nanoparticles causes the
depletion of Ni in the matrix, leading to an increase in the R-phase transformation tem-
perature. The latent heat of the R-phase transformation also increases (Figure 4i). After
aging for 12 h, only the A→R peak temperature is detected during cooling due to the
further suppression of the martensitic transformation. The R→M transformation takes
place continuously over a wide temperature range, resulting in a non-detectable trans-
formation peak temperature. However, an evident M→R peak temperature is observed
during heating.

It has been frequently reported that multi-stage martensitic transformation with
two-stage R-phase occurs in the coarse-grained (e.g., average grain size > 20 µm) Ni-
rich NiTi alloys after low-temperature aging treatment [48]. The multi-stage transformation
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is mainly due to the inhomogeneous distribution of Ni4Ti3 precipitates between the vicinity
of grain boundaries and the grain interior. However, in this work, the multi-stage trans-
formation is absent, indicating a homogeneous distribution of the Ni4Ti3 nanoprecipitates.
This is mainly due to the presence of dislocations and ultra-fine grains, which helps the
precipitation of the Ni4Ti3 particles in the grain interior. As a result, the homogeneous
aging microstructure could be achieved.

3.3. Superelasticity

Figure 5 shows the tensile loading–unloading curves of the homogeneous and geomet-
rically graded NiTi samples (with a tensile strain of 10%). Figure 5a shows the deformation
behavior of the homogenous sample. During loading, elastic deformation of the austenite
phase (stage I) occurs first, followed by the stress-induced martensite (SIM) transforma-
tion (stage II), which produces a stress (or force) plateau. Once the SIM is complete, the
sample undergoes the elastic deformation of the martensite (stage III). Upon unloading,
elastic strain is recovered and the stress-induced martensite reverse transformation occurs,
producing a plateau with lower force level. A small residual strain is generated, caused by
the plastic activities during A↔M transformation.
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Figure 5. Tensile loading–unloading curves of the geometrically graded NiTi samples: (a) homoge-
neous sample; (b) two-step sample; (c) three-step sample; (d) N-step sample.

Figure 5b shows the mechanical behavior of the two-step sample (10 mm for each step),
where sections a and b represent the regions with widths of 3 mm and 4 mm, respectively.
Upon loading, SIM starts at the narrow region giving rise to the first force plateau (stage II).
After the completion of the SIM in stage II, section a undergoes the elastic deformation of
stress-induced martensite (stage III), in which the force increases with the increase in strain.
When the force reaches a critical value, the SIM in the wide region is triggered, resulting in
a second force plateau (section IV). Therefore, two force plateaus are obtained by changing
the width of the samples.

Figure 5c shows the mechanical behavior of the three-step NiTi sample (widths of 3,
3.4, and 4 mm). Similar to the two-step specimen, SIM occurs sequentially in three different
regions as the applied force increases, resulting in three plateaus, namely, sections II, IV, and
VI. However, a large residual strain is observed upon unloading, since the force required
to induce the SIM in section VI (i.e., widths of 4 mm) exceeds the critical value for plastic
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deformation at its narrowest part (i.e., widths of 3 mm). The deformation behavior of the
N-step sample is given in Figure 5d. As the loading force increases, SIM occurs successively
in the trapezoidal region (stage II). The force required for the transformation gradually
increases from the narrowest side (3 mm) to the widest side (4 mm), resulting in a linear
force–strain relationship over a large strain (from 1% to 8%). Upon unloading, most of the
strains are recovered.

Figure 6 schematically shows the sequence that triggers the SIM during loading
in the homogeneous and geometrically graded NiTi samples. Figure 6a shows that the
homogeneous specimen gradually undergoes SIM from austenite to martensite upon
loading. The two-step specimen produces a two-step phase transformation (Figure 6b):
(i) SIM occurs first in the narrow region at low loading force, and (ii) SIM occurs in the wide
region at high loading force. For the N-step specimen, the cross section does not change
abruptly but transitions progressively. The SIM occurs successively from the narrow side
to the wide side (Figure 6c), resulting in a linear stress–strain response. This is consistent
with previous studies [34,37,38].
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Figure 6. Schematic diagram of the phase transformation sequence of the homogeneous and ge-
ometrically graded NiTi samples during loading: (a) homogeneous sample; (b) two-step sample;
(c) N-step sample.

As discussed above, different sample geometries result in different stress–strain re-
sponses, which offers the possibility to control the nucleation location and propagation of
the SIM. This improves the controllability and flexibility of the geometrically graded NiTi
samples as an actuator.

Figure 7 shows the superelastic stability of the homogeneous and geometrically graded
NiTi samples after annealing. All the specimens were subjected to cyclic loading–unloading
for 20 cycles with a strain of 8%. All the samples show a fast degradation of the functional
stability. This is because the cyclic A↔M transformation is accompanied by plastic slip,
resulting in the accumulation of residual strain. Figure 7a shows that the residual strain of
homogeneous specimens is 3.4% after 20 cycles. The residual strain of the two-step sample
is 4.1% (Figure 7b). The three-step sample has a residual strain of 4.2% after 20 cycles
(Figure 7c). As compared with the uniform specimen, the larger residual strain of the
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geometrically graded specimen is attributed to the locally concentrated deformation at the
narrower region that induces more plastic deformation. However, the room temperature
superelasticity of the N-step sample exhibits a residual strain of 3.5% (Figure 7d). This
is mainly due to the gradual transition of the cross section that homogenizes the overall
deformation and avoids the locally concentrated plastic activities. In addition, the stress–
strain response (i.e., the stepwise shape of the loading–unloading curve) of geometrically
graded NiTi samples disappears due to the plastic activities accompanying the cyclic A↔M
transformation. For instance, the multiple force plateaus of the two-step and three-step
samples disappear after 2 cycles. The results in Figure 7 indicate that geometrically graded
samples are more susceptible to functional degradation than homogeneous specimens. En-
hancement of the strength of the matrix is highly required to suppress plastic deformation,
thus improving their functional stability.
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Figure 7. Superelastic curves of the as-annealed NiTi alloys with geometric gradients: (a) homoge-
neous sample; (b) two-step sample; (c) three-step sample; (d) N-step sample. The blue and red curves
indicate the 1st and 20th cycle, respectively.

Figure 8 shows the superelastic curves of the homogeneous and geometrically graded
NiTi samples after aging at 250 ◦C for different durations (1, 4, 12, 24, 48, and 120 h). For
homogeneous samples, aging for 1 h has a negligible effect on the functional stability,
and the residual strain remains 2.8% after 20 loading–unloading cycles (Figure 8a). With
increasing aging time, the residual strain gradually decreases. For example, the accumu-
lated residual strain decreases to 1.0% as the aging time increases to 120 h (Figure 8f).
The improvement in superelasticity is attributed to the formation of homogeneously and
densely dispersed Ni4Ti3 nanoprecipitates that hinders the plastic deformation during
cyclic A↔M transformation.
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Figure 8. Superelastic curves of the homogeneous and geometrically graded NiTi samples after
aging at 250 ◦C for different durations (1, 4, 12, 24, 48, and 120 h): (a–f) homogeneous samples;
(g–l) two-step samples; (m–r) three-step samples; (s–x) N-step samples.

Similarly, the functional stability of the geometrically graded specimen is also much
improved with the increase in aging time (Figure 8g–x). Although the as-annealed geomet-
rically graded specimens are more prone to introduce plastic deformation (Figure 7), the
functional stability could be improved to a level comparable to that of the homogeneous
specimens after long-term aging treatment (e.g., 120 h). It is suggested that the accu-
mulated residual strains of all the geometrically graded samples were less than 1% after
20 loading–unloading cycles after aging treatment at 250 ◦C for 120 h (Figure 8l,r,x).

Figure 8 also shows that the aging treatment helps to maintain the stepwise shape
of the cyclic loading–unloading curves of the geometrically graded NiTi samples. For
the specimens with short-term aging treatment (e.g., 1 h and 4 h), plastic deformation
is generated and accumulated rapidly during cyclic A↔M transformation due to less
precipitation of Ni4Ti3 nanoprecipitates. This results in the disappearance of the multiple
force plateaus in the geometrically graded specimens after a few loading–unloading cycles.
For example, the three-step specimen aged for 4 h exhibits three force plateaus in the first
5 cycles, while the plateau disappears in the subsequent 6 to 20 cycles (Figure 8n). With
increasing aging time, the uniform dispersion of Ni4Ti3 nanoprecipitates suppresses the
plastic activities, thereby increasing the number of cycles that can maintain the multiple
force plateaus. After aging treatment for 120 h, the stepwise shape of the loading–unloading
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curves of the two-step and three-step geometrically graded samples is still observed after
20 loading–unloading cycles (Figure 8l,r). The above results indicate that long-time aging
treatment not only improves functional stability but also helps to maintain the stepwise
stress–strain response of geometrically graded samples.

Figure 9 summarizes the total residual strain of the different geometrically graded
samples. For the as-annealed and the short-term aged (i.e., 1 h and 4 h) specimens, a
large residual strain is generated in the first few cycles due to the rapid accumulation
of plastic deformation. In subsequent cycles, the residual strain increment is gradually
reduced. However, the overall residual strain increment of long-term-aging-treated (i.e.,
120 h) specimens is small, which is attributed to the inhibition of plastic activities by the
uniform precipitation of Ni4Ti3 nanoparticles.
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Figure 9. Effect of cycling number on the residual strain: (a) homogeneous samples; (b) two-step sam-
ples; (c) three-step samples; (d) N-step samples.

4. Conclusions

In this study, a series of geometrically graded NiTi samples were designed and fab-
ricated. Multiple force plateaus were achieved by varying the geometries of each step.
The superelastic stability of geometrically graded samples was improved through a com-
bination of incomplete recrystallization treatment and long-term low-temperature aging
treatment. The main conclusions can be drawn as follows:

(1) Altering the width and the number of steps of the geometrically graded samples can
adjust their stress–strain response, resulting in multiple force plateaus over a large
strain of 8%.

(2) Geometrically graded samples are more susceptible to functional degradation than
homogeneous specimens due to the locally concentrated deformation at the narrower
region that induces more plastic deformation.

(3) Incomplete recrystallization treatment at 600 ◦C for 30 min leads to a high density
of dislocations and grain and sub-grain boundaries in the specimen, which are en-
ergetically favorable for the nucleation of Ni4Ti3 precipitates during the subsequent
low-temperature aging process. This significantly improves the functional stability
of the geometrically graded samples. All the geometrically graded samples aged at
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250 ◦C for 120 h show good superelasticity, with a total residual strain of <1.0% after
20 loading–unloading cycles.

(4) The stepwise shape of the stress–strain curve (i.e., stress–strain response) of the
geometric gradient samples can be maintained after long-term low-temperature aging
treatment (i.e., 120 h) due to the suppression of plastic activities.
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