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Abstract: The evolution of the microstructure, the precipitation behavior, and the mechanical perfor-
mances of Nb-V-Ti micro-alloyed steel prepared under different tempering time were studied using
transmission electron microscopy (TEM), X-ray diffraction (XRD), and mechanical tests. It was found
that the width of the martensite laths increases with the increasing tempering time. Several kinds of
carbides, including M3C, M2C, M23C6, M7C3, and MC particles, were identified after tempering. The
MC carbides remain stable during tempering, but the transformation behavior of other carbides was
identified. The transformation sequence can be summarized as: M3C→M2C→M7C3 →M23C6.
The strength decreases and the Charpy impact toughness increases gradually with the increase in the
tempering time. The ultimate strength (UTS) decreases from 1231 to 896 MPa, and the yield strength
(YS) decreases from 1138 to 835 MPa. The −40 ◦C Charpy impact toughness increases from 20 to 61 J
as the tempering time increases from 10 min to 100 h. The evolution of carbides plays an important
role in their mechanical performances.
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1. Introduction

With the rapid development of modern industry and technology, the exploitation
and utilization of crude oil and natural gas have been gradually increasing [1–3]. In the
past several decades, oil and gas exploration has been extended to abyssal regions [4]. To
enhance the transportation efficiency, a larger diameter and a higher operation pressure
have been adopted. This requires an excellent combination of a high strength and a good
toughness for pipeline steels [5–8]. Therefore, micro-alloyed components are added to
pipeline steels to improve their mechanical performance through grain refinement and
precipitation strengthening [9–12]. Nowadays, micro-alloyed ultra-high-strength pipeline
steel is indispensable to the development of offshore oil and gas exploitation.

The conventional heat treatment of micro-alloyed steels consists of quenching and
tempering. Quenching and tempering at different temperatures for different times can
provide a beneficial combination of a microstructure and precipitates [13,14]. Multi-phase
microstructures and different types of carbides can further meet the requirements for
excellent mechanical properties [15–17].

The precipitation of fine particles during tempering plays an important role in improv-
ing the strength and toughness of micro-alloyed ultra-high-strength steels. Much research
on the evolution of carbide precipitates under different tempering times has been reported.
Li et al. [1] investigated the evolution of precipitates in a G18CrMo2-6 steel during temper-
ing at 680 ◦C for up to 100 h. It was found that M3C carbides were transformed from M-A
particles first, and then MC carbides precipitated. M3C particles refined and spheroidized
gradually, and M23C6 coarsened with increasing the tempering time. Moon et al. [18] clearly
showed the transformation sequence of carbide precipitates in Cr-Mo API steels. They also
found that the precipitation sequence of carbides during tempering at 650 ◦C was: MC +
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M3C→MC→MC + M7C3 + M23C6. Tao et al. [19] investigated the evolution of different
carbides in X12CrMoWVNbN10-1-1 steel after tempering and found that M23C6 possesses
a higher thermal stability than M7C3. The precipitation sequence of carbides can be summa-
rized as: M3C→M7C3 →M23C6. On the contrary, Asadabad et al. [20] reported that part
of M23C6 transformed into M7C3 in 4.5Cr-2W-0.25V-0.1C steel. Janovec [21] reported that
the Cr content determines the transformation sequence of precipitates in Cr-alloyed steels.
With the addition of 1wt.% Cr, the precipitation sequence of Cr-Mo-V steels was proven
to be M23C6 → M7C3 [18]. In middle- or high-Cr steels, Jia et al. found that four kinds
of precipitates, M2X, M3C, M23C6, and M7C3, existed in 9CrMoCoB (CB2) steel [22], and
the thermal stability of M7C3 was lower than M23C6 [23–25]. However, the transformation
sequence of the carbide precipitates of Nb-V-Ti micro-alloyed ultra-high-strength steel
during high-temperature tempering is still not clear, and it should have more attention
paid to it.

This paper focused on the carbide evolution of Nb-V-Ti micro-alloyed steel during
different tempering times. The microstructure and precipitates under different tempering
times were analyzed. Further, the mechanical properties of the explored steel under
different tempering times were evaluated, and the correlation between the evolution of
the microstructure, the precipitation behavior, and the mechanical performances was also
discussed in detail.

2. Experimental

The chemical composition of the investigated steel was 0.25C-0.29Si-0.4Mn-0.97Cr-
0.88Mo-0.015Nb-0.089V-0.026Ti (wt.%). In this study, the investigated steels were austeni-
tized at 1000 ◦C for 30 min, quenched with water, and then tempered at 600 ◦C for 10 min,
30 min, 1 h, 2 h, 3 h, 5 h, 10 h, 25 h, 50 h, and 100 h, respectively. All the specimens were
cooled in water to room temperature after tempering.

The thin-foil specimens were used for TEM characterization, and they were electropol-
ished in a double-jet electropolishing device with a solution of 7% perchloric acid and 93%
ethanol at−20 ◦C. The morphologies, sizes, distributions, and chemical compositions of the
precipitates were identified using TEM (JEM-2100F, JEOL, Tokyo, Japan). The experimental
steels were immersed in hydrochloric acid for 15 days, and then the precipitated particles
were extracted by centrifuge. Hydrochloric acid was removed by continuously adding alco-
hol to the solution during extraction. The precipitated particles were then dried in a drying
cabinet at 50 ◦C for more than 5 h. The phase composition and the various carbides formed
during tempering were determined by XRD (D8 Advanced, Bruker, Karlsruhe, Germany).

Tensile tests were performed on the tempered specimens at room temperature. The
gauge length of the specimens was 15 mm. An Instron 5565 (Instron, Boston, MA, USA)
tensile machine was used for tensile test with a strain rate of 1.0 × 10−3 s−1. The standard
CVN samples were machined to 10 mm × 10 mm × 55 mm with a notch depth of 2 mm.
The tensile and the Charpy impact toughness experiments were repeated three times to
ensure the accuracy of the results. The Charpy impact toughness tests were carried out at
−40 ◦C using an Instron MPX (Instron, Boston, MA, USA) impact tester. The samples were
cooled in a cold box with air as the cooling medium. Micro-hardness testing was conducted
using a MH-6 type (Shanghai Everone Precision Instruments, Shanghai, China) Vickers
hardness tester with a maximum load of 100 g for 5 s.

3. Results and Discussion
3.1. Microstructure Evolution under Different Tempering Times

Figure 1 shows the TEM images of samples tempered at 600 ◦C at different times. The
martensite lath with dislocations indicated by arrows can be seen in the microstructure.
With a prolonged tempering time, the width of martensite lath increased, and the mean
widths of martensite lath were determined to be 149, 199, 247, 282, 305, and 388 nm for the
tempering times of 10 min, 30 min, 5 h, 10 h, 50 h, and 100 h, respectively. The lath width
of the martensite was obtained by measuring about 200 martensites. The density of the
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dislocation was reduced with the extension of the tempering time, which was due to the
recovery of the martensite lath.
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the retained austenite films tempered for 10 min, 30 min, and 5 h was about 57, 35, and 
27 nm, respectively. 

Figure 1. TEM micrographs of steel specimens after being tempered at 600 ◦C for different periods:
(a) 10 min, (b) 30 min, (c) 5 h, (d) 10 h, (e) 50 h, and (f) 100 h.

The microstructure of the retained austenite in the samples tempered at 600 ◦C is
shown in Figure 2. The retained austenites are marked by white arrows. The retained
austenite films were continuously distributed between the martensite lathes when the
tempering time was 10 min (Figure 2a), and then the films became discontinuous with
a prolonged tempering time (Figure 2b,c). After tempering for 100 h, few films could
be seen between the martensite laths (Figure 2d). The mean thickness of the retained
austenite film decreased with the increase in tempering time, and the average thickness
of the retained austenite films tempered for 10 min, 30 min, and 5 h was about 57, 35, and
27 nm, respectively.
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Figure 2. TEM micrographs of retained austenite in the steel specimens after tempering at 600 ◦C for
different tempering periods: (a) 10 min, (b) 30 min, (c) 5 h, and (d) 100 h.

3.2. Precipitation Behavior of Carbide under Different Tempering Times

The TEM micrographs of samples under different tempering times were examined.
After tempering for 10 min, needle-like particles could be observed in the interior of the
martensite lath. As shown by the black oval in Figure 3a, the mean length of the needle-like
precipitates was about 94.2 nm. The sizes of the carbides were obtained by measuring about
400 carbides. According to the corresponding electron diffraction pattern results shown in
Figure 3b, the needle-like precipitates possessed an orthorhombic crystal structure. Based
on the EDS results (Figure 3c), the carbides contained a high content of Fe and a small
amount of Mn and Cr. Referring to the PDF No. 75-0910, the carbide was M3C with
a = 4.518 nm, b = 5.069 nm, c = 6.736 nm, and α = β = γ = 90◦.

Spherical nano-sized precipitates with a mean diameter of about 4.89 nm and square
particles with a mean dimension of 42.45 mm were also observed, as shown in Figure 4a,d.
The EDS analysis results combined with the SAD identifications are shown in Figure 4b–e.
These two kinds of particles both had an f.c.c. structure. The nano-sized spherical particles
contained Nb and a small amount of Ti and V, and the corresponding PDF card was 47-1418.
The square precipitates contained Ti with a small amount of Nb and V, and the corresponding
PDF retrieval number was 65-7931. The Fe, Mn, and Cr elements were derived from the
matrix. Therefore, these two types of carbides were identified as Nb-rich MC (I) carbide and
Ti-rich MC (II) carbide.

When the tempering time was prolonged to 30 min, the needle-like M3C carbides
dissolved into the matrix during tempering and acted as nucleation sites for rod-like
particles, as denoted by the arrow in Figure 5a. The EDS results (Figure 5d) indicated
that the rod-like particles contained a high iron content and Mo with a tiny amount of Cr
and Mn. The SAD pattern shown in Figure 5b matched well with the electron diffraction
pattern of M2C, and the PDF retrieval number was 35-0787. The mean length of the rod-like
M2C particles was about 59.04 nm. Irregular-shaped particles precipitated along the lath or
grain boundaries, as marked by the white oval in Figure 5a. The EDS analysis results and
the SAD identifications are shown in Figure 5c–e. These precipitates had a complex cubic
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structure and contained Fe and a certain amount of Cr and Mn. The corresponding PDF
retrieval number was 78-1499, and this type of precipitate was recognized as M23C6. The
mean size of M23C6 was around 46.77 nm.
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Figure 3. (a) TEM micrographs of M3C after tempering at 600 ◦C for 10 min; (b,c) corresponding
SAD pattern and EDS analysis of M3C precipitates, respectively.

The TEM images of the specimens after being tempered for 5 h are shown in Figure 6.
It was obvious that more M2C particles precipitated, and the angle between the particles
was about 60◦. In addition, some of the M2C particles connected and formed long-line
precipitates, as demonstrated by the white oval in Figure 6a and the black arrow in Figure 6b.
The EDS analysis results and the diffraction pattern of these precipitates are indicated in
Figure 6c,d. The needle-like precipitates had a hexagonal structure and mainly contained Fe
and certain amounts of Cr and Mo. The corresponding PDF retrieval number was 05-0720;
thus, the needle-like precipitates were identified to be M7C3 carbide.

The TEM images of the samples tempered at 600 ◦C for 100 h are demonstrated in
Figure 7. After tempering for 100 h, the density of the carbides obviously increased,
compared with the specimen tempered for 5 h. Most of the needle-like M7C3 particles
disappeared, and some of the needle-like M7C3 particles transformed into rod-like car-
bides, as shown in Figure 7a. The corresponding electron diffraction pattern is shown
in Figure 7b. This type of carbide had a complex cubic structure, which was consistent
with the previously identified M23C6. This result showed that the M7C3-type precipitates
transformed into M23C6 with a prolonged tempering time. Most of the coarse M23C6
carbides precipitated at the grain boundaries (Figure 7c) with an average size of 86.83 nm.
Two kinds of MC carbide particles remained stable during the 100 h tempering, as shown
in Figure 7c,d. The diameters of the MC particles presented almost no significant change
when compared with the specimen tempered at 600 ◦C for 10 min. The average size of the
MC(I) and MC(II) was about 5.02 and 54.34 nm after tempering for 100 h, respectively.
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carbide; (d,e) TEM micrographs, corresponding SAD pattern, and EDS analysis of Ti-rich MC (II)
particles after tempering at 600 ◦C for 10 min.

Meta-stable carbides precipitated during tempering can be gradually replaced by more
stable precipitates. The precipitation sequence of different types of carbides relates to the
chemical composition of steel, the relative diffusion coefficient of the different alloying
atoms, and the nucleation sites of the matrix [19]. Therefore, it is essential to comprehend
the transformation sequence of carbides. Several kinds of carbides after tempering at 600 ◦C
for different times were identified above. The transformation sequence of the carbides at
different stages is summarized as follows.

Stage 1 (tempered for 10 min): three kinds of carbides (M3C, MC(I), and MC(II)) were
found after tempering at 600 ◦C for 10 min. The quick precipitation of the M3C particles
could be due to a carbon-diffusion-controlled reaction [26]. Even the meta-stable M3C
precipitated before the other carbides due to the relatively rapid diffusion of interstitial
carbon, while the substitutionary atoms remained indiffusible [27]. Some researchers [28]
have suggested that smaller spherical MC(I)-type carbide particles precipitate in the fer-
rite region following a K-S relationship with ferrite. MC(II)-type carbides precipitate in
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austenite regions, exhibiting a cube–cube K-S relationship with the matrix. MC-type second-
phase particles result in the strengthening of steel by forming fine and densely distributed
carbides [29].
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Stage 2 (tempered for 30 min): the M3C carbides disappeared, and the M2C and M23C6
carbides precipitated. The formation of M2C and M23C6 was controlled by substitutionary
diffusion, and they hardly precipitated during the early tempering process since the sub-
stitutionary alloying components could not sufficiently diffuse during the relatively short
tempering process [22]. As the tempering time was prolonged, the substitutionary alloying
components could diffuse, which caused the formation of M2C and M23C6 carbides. The
precipitation temperature of the M2C particles was approximately between 500 and 600 ◦C,
which was mainly determined by the diffusion of Mo [22]. The formation of the M2C car-
bides led to the dissolution of the M3C carbides, which resulted in a secondary hardening
effect in the tempered martensitic steel [30]. Fine and dispersive M2C can improve the



Metals 2023, 13, 1495 8 of 15

toughness of steel, since the precipitation of M2C results in the dissolution of brittle M3C
carbides [21].
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Stage 3 (tempered for 5 h): part of the M2C dissolved into the matrix and then trans-
formed into M7C3 particles. The M2C in the experimental steel was a meta-stable transition
phase. Previous studies have found that M7C3 nucleates on M2C and grows inward into
the M2C through an in situ nucleation mechanism during tempering at 600 ◦C [31].

Stage 4 (tempered for 100 h): Hou et al. [32] found that the preferential nucleation
of M7C3 occurred at dislocations and sub-grain boundaries, while M23C6 nucleated on
grain and twin boundaries. As the tempering time was prolonged, the dislocation density
decreased gradually. The recombination of the sub-grain boundaries caused a decrease
in the sub-grain boundaries [33]. Thus, the number of M7C3 nuclei decreased and the
M23C6 coarsened progressively with the elimination of the M7C3 particles. This indi-
cates that the M7C3 carbides transformed into M23C6 with the increase in the tempering
time [34,35]. The nucleation-free energy of M23C6 and M7C3 is −1.82 and −10.43 kJ/mol,
respectively [36]. The higher the nucleation-free energy of precipitates, the more stable they
are. The nucleation-free energy of M23C6 and M7C3 demonstrates that the M7C3 precipi-
tated first and then transformed into M23C6. Two kinds of MC particles were also observed
in the samples tempered for 100 h. This indicates that the MC(I) and MC(II) precipitates
were stable when tempering at 600 ◦C for different times. During the prolonged tempering
process, the precipitates in the specimen consisted of M3C, M2C, M23C6, M7C3, MC(I),
and MC(II) precipitates. The transformation sequence of the other four types of carbides
tempered at 600 ◦C for a long time can be summarized as follows: M3C→M2C→M7C3
→M23C6.

To further investigate the evolution of the different types of carbides, their extraction
from hydrochloric acid was studied by XRD. The XRD patterns of the carbide particles of
the specimens tempered at 600 ◦C under different times are illustrated in Figure 8. M3C
and two types of MC were identified in the sample tempered for 10 min. With increasing
the tempering time to 30 min, M2C, M23C6, and two types of MC were positively identified.
After tempering for 100 h at 600 ◦C, M2C, M7C3, M23C6, and two types of MC carbide were
identified. The XRD analysis showed that the peak intensity of the extracted particles was
much greater than that of the specimens with shorter tempering times. This means that the
number of precipitates obviously increased with increasing the tempering time, and the
main carbide particles were M23C6.
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tempered at 600 ◦C for different lengths of time.

The TEM images of the M2C carbides after tempering at 600 ◦C are shown in Figure 9. It
was confirmed that fine M2C carbides were dispersedly distributed in the sample tempered
for 30 min. The angle between the particles was about 60◦, and the mean length of the M2C
carbides was about 59.04 nm. With increasing the tempering time to 1 h, the M2C particles
precipitated adequately, and the average length increased to 64.78 nm. The increase in the
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average length of the M2C carbides was attributed to the adequate diffusion of Mo atoms
and their combination with carbon to form larger-scale M2C. As the tempering time was
prolonged to 10 h, part of the M2C changed into M7C3, and the average length reached
a peak value of around 102.48 nm. For the experimental steel tempered for a long time
(100 h) at 600 ◦C, the mean length decreased to 88.32 nm.
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The mean length of the M7C3 particles and the average diameter of the M23C6 particles
were also measured statistically. The variation in the mean size of the precipitates with the
tempering time is given in Figure 10. It can be seen that the mean diameter of the M23C6
particles increased gradually with the tempering time. The average length of the M2C and
M7C3 particles first increased and then decreased. The variation in the size of carbides
can be explained based on coarsening and evolution of the precipitates. The isothermal
coarsening equation considering a constant volume fraction of carbides can be expressed
as [37]:

d3 − d3
0 = kt (1)

where d and d0 are the mean diameter of the carbides at different tempering times, k is a
constant, and t is the tempering time. Thus, the size of the M23C6 carbides increased with
the tempering time. In addition, the decreased length of the M2C and M7C3 particles at
longer tempering times was correlated with the evolution of the carbide. Since relatively
longer M2C and M7C3 particles are apt to transform into M7C3 and M23C6, the sizes of the
untransformed M2C and M7C3 carbides were relatively small. With a prolonged tempering
time, the amount of transformed carbides increased gradually. Therefore, the mean length
of the M2C and M7C3 particles decreased when the tempering time was extended to 10 h
and 50 h, respectively.
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3.3. Mechanical Properties under Different Tempering Times

The stress–strain curve of the explored steel under different tempering times is demon-
strated in Figure 11. The tensile property data can be seen in Table 1, including the YS,
UTS, and total elongation (TE). With the increase in the tempering time, the YS and UTS
decreased gradually. The UTS decreased from 1231 to 896 MPa, and the YS decreased from
1138 to 835 MPa.
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Table 1. Tensile properties of the investigated steel during tempering at 600 ◦C.

Tempering Time YS, MPa UTS, MPa TE, %

10 min 1138 ± 16 1231 ± 20 8.8 ± 0.3
30 min 1112 ± 12 1193 ± 18 8.4 ± 0.2

5 h 1055 ± 14 1132 ± 21 11.5 ± 0.5
100 h 835 ± 11 896 ± 15 12.3 ± 0.6

Zhang et al. [38] showed that the minimum structural unit that could effectively
control the strength of 25CrMo48V micro-alloyed steel was the width of the martensitic
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lath. The relationship between the width of the martensitic lath and the strength conforms
to the Langford–Cohen formula:

σy = σ0 + kyd−1 (2)

where ky is the structural constant and d is the average lath width. In the Langford–Cohen
model, the strength of the material is directly proportional to the reciprocal of the lath width.

With the prolongation of the tempering time, the width of the martensite lath increased
and the dislocation decreased gradually. The recovery phenomenon was obviously en-
hanced, which resulted in matrix softening. Matrix softening was the main reason for the
strength reduction. It is generally accepted that σ0 is mainly composed of Peierls stress,
precipitation strengthening, and solution strengthening [39,40]. That is to say, the strength
of the sample was determined not only by the martensitic lath width and dislocation den-
sity but also by precipitation strengthening and solution strengthening. After tempering
for 100 h, the tensile strength was about 900 MPa. The high strength was attributed to the
precipitation strengthening from the nano-sized Nb-rich MC (I) particles. According to
the Abshy–Oroman mechanism, nano-size precipitates with a size of less than 10 nm can
provide about 200 MPa [41].

The −40 ◦C Charpy impact property of the specimens tempered under different times
is shown in Figure 12. It was concluded that the Charpy impact toughness increased
gradually with the increase in the tempering time. When the tempering time was extended
from 10 min to 100 h, the Charpy impact toughness increased from 20 to 61 J.
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This phenomenon mainly depended on the following factors. One was matrix soften-
ing. With the increase in the tempering time, the recovery of the matrix was considerable,
and the dislocation density decreased gradually. Furthermore, the increase in the number of
precipitates meant that the interstitial atoms dissolved in the matrix precipitated gradually,
and the supersaturation decreased, resulting in the softening of the metal matrix [42]. The
other was the fact that some small-angle lath boundaries evolved gradually into large-
angle boundaries. Several studies have indicated [43] that when cleavage cracks attempt
to propagate through a large-angle boundary, the crystal orientation and crack direction
may change, and then the growth of cracks may eventually be stopped. Consequently, an
increasing amount of large-angle boundaries would lead to a larger deflection of cleavage
cracks, and a higher toughness could be obtained.

The correlation between the micro-hardness and tempering time is depicted in
Figure 13. The Vickers hardness first increased rapidly to the peak value when the tem-
pering time was 1 h, and it then reduced remarkably after tempering for 5 h. Finally, the
hardness decreased monotonically with increasing the tempering time to 100 h. This trend
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was due to two competitive mechanisms that occurred during the tempering process. The
strengthening was due to the precipitation of the carbides, and the softening was due
to the recovery of the martensitic matrix. As described above, when the tempering time
was between 10 min and 1 h, the hardness increased steadily due to the transformation
from M3C to M2C. The precipitation of M2C had a strong secondary hardening effect on
the matrix, which results in the increasing hardness during tempering for 1 h. Then, the
hardness decreased significantly when the tempering time was 5 h, since most of the M2C
transformed into long-line M7C3. The secondary hardening effect was weakened, and
precipitate particles were gradually coarsened, which had a detrimental impact on the
Vickers hardness. With the increase in the tempering time, the coarsening of the carbides
resulted in a reduction in the dislocation pile-up effect [44]. Martinez-de-Guerenu et al. [45]
concluded that the recovery percentage of steels during tempering could be estimated by
the following equation:

1− Ry = b− aln t (3)

where Ry is the recovery percentage, which is related to the dislocation density variation,
t is the tempering time, and a and b are constants, which are related to the tempering
temperature. During the continuous tempering, the recovery of dislocations in the matrix
changed with the prolonging of the tempering time, which led to a gradual decrease in the
Vickers hardness. It can be concluded that the variation in the Vickers hardness should
be derived from the evolution and coarsening of the precipitate and the recovery of the
lath martensite.
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4. Conclusions

The evolution behaviors of the microstructure and precipitates and their effect on the
mechanical properties of Nb-V-Ti micro-alloyed steel under different tempering times were
explored, and the main conclusions obtained are shown as follows:

1. The width of martensite laths increased and the retained austenite and dislocation
decreased gradually with the prolongation of the tempering time.

2. The evolution sequence of the carbides during tempering at 600 ◦C for the different
times was identified as: M3C→M2C→M7C3 →M23C6. The other two kinds of MC
carbides remained stable during the tempering process.

3. The strength decreased and the Charpy impact toughness increased gradually with
the prolongation of the tempering time. The Vickers hardness increased remarkably
as the tempering time was extended to 1 h and then decreased sharply with a further
increase in the tempering time up to 5 h. When the tempering time was between 5
and 100 h, the Vickers hardness values decreased gradually.
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