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Abstract: It has been known for at least 150 years that fatigue life data exhibits a considerable amount
of variability. Furthermore, statistically modeling fatigue life adequately is challenging. Different
empirical approaches have been used, each of which has merit; however, none is appropriate
universally. Even when a sufficiently robust database exists, the scatter in the fatigue lives may
be extremely large and difficult to characterize. The purpose of this work is to review traditional
and more modern empirically based methodologies for estimating the statistical behavior of fatigue
data. The analyses are performed on two historic sets of data for annealed aluminum wire and
annealed electrolytic copper wire tested in reverse torsion fatigue. These data are readily available In
publications. Specifically, the review considers a traditional method for stress-cycle (S-N) analysis
which includes linear regression through load dependent medians and mean square error (MSE)
confidence bounds. Another approach that is used is Weibull distribution estimation for each loading
condition, from which estimations for the median behavior and confidence bounds are determined.
The preferred technique is the development of a cumulative distribution functions for fatigue life,
which contains aspects of traditional reliability, classical S-N, and applied loading modeling. Again,
confidence bounds are estimated for this technique. Even though it is an empirical technique, there
are mechanistic aspects that underlie the empiricism. This approach is suggested because the method
is very robust, and the estimation is more accurate than the other methods.

Keywords: fatigue life; mean square error; statistical modeling; stress–life modeling; Weibull distribution
function

1. Introduction

It is universally accepted that an essential characteristic of fatigue is variability in life
data. These data often range over an order of magnitude, and sometimes even more [1].
The reasons for this scatter can be categorized as epistemic and aleatoric uncertainty. Error
cannot be eliminated from experimentation, material microstructure cannot be explicitly
prescribed, and processing cannot be controlled perfectly. An excellent paper on the history
of fatigue was written by Schütz [2], in which, he credits Wöhler [3] as the first to implicitly
consider scatter in fatigue data. One of the first times that scatter was addressed was in the
book by Moore and Kommers [4]. They include the following footnote on page 168: “So far
as the writers have been able to ascertain, the term “scatter” as applied to the irregularity
shown by plotted test data was coined by Prof. G. B. Upton of Cornell University”.

One of the earliest research efforts to develop rich fatigue life databases is contained
in the paper by Ravilly [5]. The testing procedure, microstructure, and manufacturing of
those wires may not have been as controlled as is the case currently. Furthermore, the
materials characterization was not performed according to modern day standards. Scatter
between different applied loads and replicates for each given loading condition should be
expected. These datasets are some of the very first in the open literature in which systematic
experimental investigations of fatigue were conducted for statistical analysis. There were
multiple stress levels for which an adequate number of replicates were performed in order
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to make a statistical analysis possible. Consequently, these data are considered herein to
focus on statistical modeling rather than the experimental or processing techniques.

Freudenthal extensively statistically analyzed Ravilly’s data [5] in a series of publi-
cations. In [6], he considered annealed aluminum wire data, annealed Armco iron wire,
and annealed electrolytic copper wire. As an aside, Armco stands for American Rolling
Mill Company, which was founded in 1899. It continued operation until its purchase in
2020. In collaboration with Gumbel, Freudenthal published a paper [7] which was even
more statistically orientated, using the annealed aluminum wire and annealed electrolytic
copper wire data. Another paper [8] was produced using the nickel wire data and referring
to the annealed aluminum wire results from the previous papers. Gumbel [9] published a
paper making a few additional extensions and modifications to his previous work. Other
investigators, refs. [10–12] for example, mention Ravilly’s data [5], but they do not perform
any significant analyses with the data. In the ensuing pages, Ravilly’s data [5] will be
statistically presented and analyzed. Some of this will be similar to the authors cited above,
but new analyses will be shown as well.

Prior to looking at Ravilly’s data [5] specifically, it is appropriate to recall others
who have contributed to statistical modeling of fatigue life. Modeling the cumulative
distribution function (cdf) for fatigue life, given the applied loading conditions, is of
supreme importance. There are several authors, refs. [6,13–16] for example, who use the
log-normal cdf. This cdf, however, is primarily used for mathematical expediency for
parameter estimation and graphical presentation. Philosophically, the log-normal cdf is not
appropriate, especially for very high cycle fatigue analyses, because its hazard function
decreases as fatigue life increases. A decreasing hazard function indicates that the material
improves the longer it survives. Almost never does this occur in reality. Rather, the fatigue
of physical components or structures leads to increasing deterioration and damage, which
necessitates an increasing hazard function.

The cdf for fatigue life that has become the most commonly used is the Weibull cdf.
Weibull first introduced the cdf in 1939 [17] for the strength of materials, and in 1951 [18],
he extended the application to fatigue. Even though the name of the cdf is universally
known as the Weibull cdf, Fréchet [19] introduced the cdf in 1927. Fisher and Tippet [20]
and Gnedenko [21] proved that one of the only three possible limiting types of cdfs for the
minimum of a sample of random variables is a Weibull cdf. When failure of a specimen,
component, or structure is well characterized by an initial failure of the microstructure, then
the Weibull cdf is the appropriate choice. The Weibull cdf has an increasing hazard function
when its coefficient of variation (cv) is greater than one. Its applicability is extremely wide-
ranging. Bolotin [22] advocated for the use of a Weibull cdf for the statistical modeling
of fatigue. Additional examples of more recent references using a Weibull cdf for fatigue
life is [23–30]. Consequently, the Weibull cdf will be the underlying cdf used herein. As
an interesting aside, the printed discussion following Freudenthal’s paper [6] has several
contributions from leading researchers at that time that advocate for either the log-normal
cdf or the Weibull cdf. Specifically, one of the commenters is W. Weibull.

It is also necessary to make a few comments about the stress (S) versus number of
cycles (N) diagrams, commonly known as an S-N diagram or graph. Similar remarks could
be made about strain versus life diagrams, but since Ravilly’s data [5] will be used below,
the discussion will be for S-N diagrams. One of the most-quoted papers on fatigue testing
is by Wöhler [3], who is credited for introducing the S-N diagram. Frequently, it is called
the Wöhler diagram. Certainly, by the time that Weibull [18] and Freudenthal [6] analyzed
fatigue data, it was recognized that there was substantial variability in fatigue lives. Some
authors use P-S-N to designate a probabilistic (P) S-N diagram. An excellent review of
P-S-N analyses can be found in [31]. Another noteworthy article which provides a critical
review of the P-S-N approach is [32]. Several other authors have indicated the significance
of the P-S-N approach as a means of evaluating this relationship [33–37].

There have also been a number of other empirical methods used for fatigue behavior.
These include Bayesian methods coupled with maximum likelihood techniques [38–42]
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and neural networks [43–46]. One of the most recent empirical approaches which has
been applied to fatigue modeling is machine learning [47–53]. Another approach has been
designated as damage mechanics, which includes effects such as load range, cycles, and
geometrical features. Some recent references for this method are [54–56]. Since many
statistical fatigue models do not include these variables explicitly, incorporating damage
is warranted. The methods used herein, however, are more traditional. The suggested
method developed below provides the basic structure for an advanced damage mechanics
approach. Analyzing Ravilly’s data [5] with these methods may be considered in the future.

2. Materials and Methods

Ravilly’s paper [5] contains fatigue data for annealed aluminum wire, annealed Armco
iron wire, and annealed electrolytic copper wire. The fatigue lives were obtained by using a
wire fatigue testing machine where the loading is in reversed torsion for a controlled strain
level. The loading is equivalent to constant stress amplitude σ fatigue loading. Also, the
explicit fatigue data are presented in tabular format in Freudenthal [6]. The data considered
herein will be the annealed aluminum wire data and the annealed electrolytic copper wire,
both of which have 20 replicate fatigue lives for 10 different values of σ. There is sufficient
data for statistical modeling and analyses. Figure 1 shows the fatigue life data for the
annealed electrolytic copper wire. Both axes for the graph are natural logarithm scaling. To
give further insight into the data, consider Table 1. As σ decreases, the median and average
fatigue lives increase; however, there is little difference in their values. When σ = 71.1 MPa,
the sample cv is the largest for the different values of σ, and when σ = 98.1 MPa, the cv is
the smallest. For these fatigue life data none of the cvs is excessively large.
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Figure 1. S-N diagram for annealed electrolytic copper wire [6].

Figure 2 is similar to Figure 1 except that it contains the fatigue life data for the an-
nealed aluminum wire. Also, Table 2 is similar to Table 1. The trends for the medians and
averages for the annealed aluminum wire are comparable to those for the annealed elec-
trolytic copper wire. The cvs, however, are not ordered. The largest cv is for σ = 73.6 MPa,
and the smallest is for σ = 51.5 MPa. Typically, the amount of scatter in fatigue life data
increases as the stress amplitude approaches normal operating conditions. Nevertheless,
these data present an interesting statistical circumstance for modeling.
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Table 1. Sample properties for annealed electrolytic copper wire [6].

Stress Amplitude,
σ (MPa)

Sample
Size

Sample
Median

Sample
Average

Sample Standard
Deviation

Sample
cv (%)

264.9 20 11,500 11,480 3497 30.5

220.7 20 17,150 16,585 4492 27.1

186.4 20 20,900 21,705 4444 20.5

157.0 20 33,400 33,020 8381 25.4

132.4 20 51,500 52,600 11,399 21.7

114.8 20 71,000 69,900 14,330 20.5

98.1 20 114,000 113,450 19,083 16.8

90.7 20 176,500 176,950 35,922 20.3

80.9 20 326,500 315,850 61,750 19.6

71.1 20 728,000 798,000 274,770 34.4
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Figure 2. S-N diagram for annealed aluminum wire [6].

Table 2. Sample properties for annealed aluminum wire [6].

Stress Amplitude,
σ (MPa)

Sample
Size

Sample
Median

Sample
Average

Sample Standard
Deviation

Sample
cv (%)

294.3 20 8900 8545 1616 18.9

220.7 20 9700 9985 2538 25.4

176.6 20 13,950 13,170 3084 23.4

134.9 20 19,150 18,305 5741 31.4

105.5 20 24,750 23,825 6004 25.2

83.4 20 40,350 39,440 10,292 26.1

73.6 20 80,500 75,100 25,319 33.7
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Table 2. Cont.

Stress Amplitude,
σ (MPa)

Sample
Size

Sample
Median

Sample
Average

Sample Standard
Deviation

Sample
cv (%)

56.4 20 220,000 217,300 57,424 26.4

54.0 20 555,500 552,150 177,149 32.1

51.5 20 1,146,000 1,140,200 179,961 15.8

3. Results

The annealed electrolytic copper wire and the annealed aluminum wire will be ana-
lyzed below. The first analyses will be for statistical modeling of the S-N data. The next
effort will be statistical modeling of the cdfs for the fatigue life for each given σ. The final
investigation will be an attempt to statistically combine the S-N behavior with appropriate
cdf characterizations.

3.1. S-N Modeling
3.1.1. Annealed Electrolytic Copper Wire

Figure 3 is identical to Figure 1 with some additions. The hollow points are the
medians for each σ. Recall that the medians correspond to the 50th percentile of the sample.
The solid line on Figure 3 is the linear least squares fit through the medians. The correlation
coefficient r2 for the regression is 0.95, which indicates that the regression is quite good.
The linear behavior on Figure 3 implies that the relationship between σ and N is given by

σ = N−meb, (1)

where m and b are the slope and intercept of the regression line, m = 0.32, and b = 6.15.
Obviously, the slope is negative. The dashed line is a lower confidence bound. It is
constructed by using a mean square error (MSE) analysis. The error ei is the difference
between the model estimate and the data from a sample size of n. For Figure 3, the model
estimate is assumed to be the linear regression. The MSE is given by

MSE =
1
n

n

∑
i=1

e2
i . (2)

The root mean square error σMSE is the square root of the MSE, and it is often used as
the standard deviation to create confidence intervals. Confidence intervals can be developed
by using a suitable multiple of the σMSE. One of the most common confidence intervals
is constructed by adding and subtracting 2 × σMSE to the model estimate because this
produces an approximation for a 95% two-sided confidence bound. A good introduction
to this type of analysis is [57], and MSE is explained in detail in statistics books, for
example [58]. If only 2 × σMSE is subtracted from the model estimate, then a 97.5% lower
confidence bound is computed. The reason for considering just the lower bound is that the
minimum life is required for design and life cycle assessment. In other words, a component
or structure can be certified only up to the minimum life given a loading condition. This
type of a lower confidence bound is shown on Figure 3. Notice that all of the data is greater
than the lower bound, except for two data points which are on the lower bound. Also, the
lower bound is reasonably close to the data except when σ = 71.1 MPa. The curvature in
the lower bound as σ decreases is an indication of slightly more scatter in the fatigue lives.
This nonparametric statistical analysis for the copper wire data is quite good because the
median behavior is characterized well by the linear regression.
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Figure 3. S-N data for annealed electrolytic copper wire [6] with linear regression through the
medians and a lower confidence bound.

3.1.2. Annealed Aluminum Wire

Figure 4 reproduces the S-N data from Figure 2. Again, the hollow points correspond
to the medians for each σ. Clearly, a linear regression through the medians would not be an
appropriate estimation of their behavior. Consequently, a nonlinear regression is needed.
The equation of choice is as follows:

σ =
a

Nb +
c

Nd , (3)

where a, b, c, and d are parameters to be determined. Equation (2) is similar to the shape of
the Coffin–Manson model, which is designated frequently as the universal slopes method
for strain life behavior [59,60]. The universal slopes method coupled with MSE analysis was
used in [61] for a couple of sets of strain life data; it should be consulted for further details.
Also, an equivalent form of Equation (3) was suggested in [62]. Standard nonlinear regres-
sion for Equation (3) yields the following parameter estimations: a = 1.35 × 109 MPa-cycb,
b = 1.74, c = 246.3 MPa-cycd, and d = 0.115. The correlation coefficient r2 is 0.98, which
indicates that the fit is excellent. Only three of the medians do not lie on the regression.
The dashed line is the MSE − 2 × σMSE lower confidence bound. Obviously, the lower
bound is not acceptable for the higher values of σ. There are about seven data points to the
left of the lower bound. For the lowest three values of σ the lower bound is a full order of
magnitude too small. While Equation (3) is an excellent representation of the medians, the
MSE analysis is not acceptable. Thus, another method is required for characterization of
the aluminum fatigue lives.

3.2. cdf Modeling
3.2.1. Annealed Electrolytic Copper Wire

The copper wire fatigue lives can be used in statistical analyses in order to estimate
the cdfs given σ. The data is presented graphically on Figure 5. The graph is presented on
a two-parameter Weibull probability paper, which means that a two-parameter Weibull cdf
will be linear on such paper. This probability paper is selected for convenience. Also, it
accentuates the lower tail behavior, which corresponds to the high reliability region. Using
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it does not imply that a two-parameter Weibull cdf must be used to characterize the data.
The nonparametric estimate for the probability plotting points pk,n used are as follows:

pk,n =
k− 0.5

n
, (4)

where n is the sample size, and k is the index for the kth ordered data. This form for pk,n is
preferred because it has the smallest MSE [63]. Visually, the data appear to be reasonably
linear. Thus, the two-parameter Weibull cdf is considered to be the appropriate parametric
form for characterizing these data. The two-parameter Weibull cdf F(t) is

F(t) = 1− Exp
[
−
(

t
β

)α]
, t ≥ 0, (5)

where t represents time or cycles, α is the shape parameter, and β is the scale parameter.
Graphical estimation, however, is not ideal for statistical parameter estimation. It is far
better to use maximum likelihood estimation (MLE). A very efficient method for computing
the MLE estimates for the parameters for the two-parameter Weibull cdf can be found
in [64]. Table 3 contains the MLE estimated parameters, mean µ, and cv for each given value
of σ. The hat over the parameters indicate an estimate. Also included in Table 3 are the
Kolmogorov–Smirnov (KS) and Anderson–Darling (AD) goodness-of-fit values. The KS test
indicates that the two-parameter Weibull cdf is acceptable for any level of significance less
than 0.25. Likewise, the AD test yields the same conclusion. Therefore, the two-parameter
Weibull cdfs with the MLE parameters in Table 3 are excellent characterizations of the
copper wire fatigue life data.
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Figure 4. S-N data for annealed aluminum wire [6] with a nonlinear regression through the medians
and a lower confidence bound.

Figure 6 is similar to Figure 3 except that the medians are estimated from the MLE
Weibull cdfs. The sample medians and the MLE estimated medians are very close in
magnitude. The largest percentage difference is about 9% when σ = 71.1 MPa. The solid
line is the curve through those medians. Clearly, the line is not linear, but it does follow
the slight curvature of the S-N data. The 97.5% lower confidence bound is constructed by
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using the 2.5 percentiles from the MLE Weibull cdfs. The dashed curve is the lower bound.
Because the S-N data are somewhat different for each value of σ, the MLE Weibull cdfs
behave slightly differently. Thus, the lower bound is irregular in shape. It is, however,
quite tight to the data, which implies that the lower bound is highly representative of the
behavior. Based on the copper wire S-N data, the analysis using MLE for two-parameter
Weibull cdfs is preferred to the nonparametric analysis above.
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Figure 5. Probability plot for annealed electrolytic copper wire [6]; two-parameter Weibull probability
paper.

Table 3. MLE parameter estimates for the two-parameter Weibull cdf for annealed electrolytic copper
wire [6].

σ (MPa) ^
α

^
β (cyc)

^
µ (cyc) ĉv (%) KS AD

264.9 3.75 12,700 11,500 29.8 0.082 0.137

220.7 4.31 18,300 16,600 26.2 0.093 0.305

186.4 5.28 23,500 21,700 21.8 0.115 0.444

157.0 4.52 36,200 33,100 25.1 0.119 0.321

132.4 4.89 57,100 52,400 23.4 0.124 0.406

114.8 5.79 75,500 69,900 20.0 0.095 0.214

98.1 6.97 121,000 113,000 16.9 0.079 0.131

90.7 5.94 191,000 177,000 19.5 0.080 0.182

80.9 6.13 334,000 316,000 19.0 0.122 0.323

71.1 3.28 892,000 800,000 33.5 0.152 0.386

3.2.2. Annealed Aluminum Wire

The aluminum wire fatigue data are plotted on a two-parameter Weibull probability
paper in Figure 7. The data are nearly linear for many of the values of σ; however, when
σ is 134.9 MPa the data do not appear to be linear. Table 4 contains the MLE parameters
and the KS and AD values, as in Table 3. The KS values imply that the MLE two-parameter
Weibull cdfs are acceptable for any significance less than 0.25. The AD test infers that the
MLE two-parameter Weibull cdfs are acceptable for any significance less than 0.25 for σ not
equal to 134.9 or 51.5 MPa. The significance must be lower than 0.20 when σ = 134.9 MPa
and less than 0.01 when σ = 51.5 MPa in order to be acceptable. This is a clear example of
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the difference between the KS and AD goodness-of-fit tests. The KS test is more focused on
the central portion of the cdf while the AD test emphasizes the tail behavior. By careful
inspection, when σ equals 134.9 or 51.5 MPa, the tails are visually different. Freudenthal and
Gumbel [8] suggested that a Weibull cdf with a minimum life would be more appropriate.
It should be noted that they did not use goodness-of-fit tests to validate their results. The
standard three-parameter Weibull cdf is

F(t) = 1− Exp
[
−
(

t− γ

β

)α]
, t ≥ γ, (6)

where γ is the minimum life. Assuming that Equation (6) is appropriate for characterizing
the aluminum wire fatigue data, the MLE is required. The MLE for the three-parameter
Weibull is a bit more challenging. An excellent method for its computation is given in [65].
The MLE parameters are shown in Table 5. As with the other examples, the KS test infers
that the three-parameter Weibull cdf is acceptable for any level of significance less than
0.25. The AD test, however, indicates that the three-parameter Weibull cdf is not acceptable
when σ equals 134.9 or 73.6 MPa. For σ = 71.1 MPa the level of significance can only be 0.01.
When σ is 294.3, 176.6, or 83.4 MPa, the three-parameter Weibull cdf is acceptable for only
significance levels less than 0.05. All in all, it is suggested that the two-parameter Weibull
cdf is preferred over the three-parameter Weibull cdf for the aluminum wire data.
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Figure 6. S-N data for annealed electrolytic copper wire [6] with MLE estimates of medians and 2.5%
probability for the median curve and a 97.5% lower confidence bound, respectively.

In order to consider a lower confidence bound for the aluminum data, the two-
parameter Weibull cdfs will be used analogously to that on Figure 6. Consider Figure 8
where the MLE estimated medians are shown. The difference between the sample medians
and the MLE estimated medians is quite small. The percentage difference ranges from
about 0.1% to about 7.5%. Again, the solid line is the curve through the MLE medians,
and it closely follows the curvature of the S-N data. The 97.5% lower confidence bound
constructed from the MLE Weibull cdfs is quite good. The only data to the left of the
bound are the minimum values for σ equal to 83.4 and 73.6 MPa. The minimum value
for σ = 73.6 MPa is 7500 cycles, which is so much smaller than the rest of those fatigue
lives. In fact, using the MLE Weibull cdf, its probability of occurrence is only 0.00023. It
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causes one to wonder about its integrity. Statistically, it may be considered to be an outlier.
These experiments were conducted so long ago, however, that describing this behavior
would be pure speculation. Other than those two data, the lower bound is very close to the
remaining data. It is suggested for engineering purposes that the analysis using MLE for
two-parameter Weibull cdfs is acceptable.
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Table 4. MLE parameter estimates for the two-parameter Weibull cdf for annealed aluminum wire [6].

σ (MPa) ^
α

^
β (cyc)

^
µ (cyc) ĉv (%) KS AD

294.3 6.22 9190 8530 18.7 0.093 0.284

220.7 4.35 10,900 9960 26.0 0.113 0.251

176.6 5.19 14,300 13,200 22.1 0.098 0.271

134.9 3.81 20,300 18,400 29.3 0.142 0.472

105.5 4.36 26,100 23,800 26.0 0.112 0.292

83.4 4.66 43,200 39,500 24.4 0.106 0.247

73.6 3.49 83,100 74,800 31.7 0.064 0.395

56.4 4.52 239,000 218,000 25.1 0.106 0.297

54.0 3.54 615,000 553,000 31.3 0.110 0.227

51.5 6.34 1,220,000 1,130,000 18.4 0.181 0.847

Table 5. MLE parameter estimates for the three-parameter Weibull cdf for annealed aluminum wire [6].

σ (MPa) ^
α

^
β (cyc)

^
γ (cyc)

^
µ (cyc) ĉv (%) KS AD

294.3 1.95 3660 5130 8380 20.7 0.076 0.680

220.7 1.81 5450 4930 9780 28.4 0.064 0.484

176.6 2.11 7730 5990 12,800 26.6 0.073 0.628

134.9 1.20 9710 8830 18,000 42.6 0.146 1.669

105.5 1.76 12,300 12,400 23,400 27.5 0.079 0.417

83.4 1.91 23,600 17,600 38,500 29.6 0.084 0.643



Metals 2023, 13, 1419 11 of 17

Table 5. Cont.

σ (MPa) ^
α

^
β (cyc)

^
γ (cyc)

^
µ (cyc) ĉv (%) KS AD

73.6 2.03 68,100 11,600 71,900 43.3 0.111 1.142

56.4 1.66 115,000 110,000 213,000 29.9 0.083 0.548

54.0 1.36 291,000 276,000 542,000 36.5 0.062 0.416

51.5 1.74 364,000 796,000 1,120,000 17.2 0.101 0.806

1 
 

 

Figure 8. S-N data for annealed aluminum wire [6] with MLE estimates of medians and 2.5%
probability for the median curve and a 97.5% lower confidence bound, respectively.

3.3. Time-Dependent Modeling
3.3.1. Annealed Electrolytic Copper Wire

Coleman [66–71] developed a generalized cdf that included the time dependence of
the mechanical breakdown of materials. The cdf is a natural extension of the fundamentals
of reliability theory. The proposed cdf has the following form:

F(t|L) = 1− Exp{−Ψ

 t∫
0

κ(L(s))ds

}, t ≥ 0, (7)

where Ψ(x) is the hazard function, κ(x) is the breakdown rule, and L(t) is the time dependent
load function. An excellent summary of the features of Equation (7) is contained in [72].
The functional form of κ(x) in Equation (7) is heuristically mechanistically based on the
material damage accumulation. Frequently, Ψ(x) is assumed to be a Weibull hazard. Since
constant amplitude loading is often used for fatigue experiments, L(t) can be considered
to be constant. Examples where Equation (7) has been the foundational cdf can be found
in [73–75].

Since the two-parameter Weibull cdf is acceptable for characterizing the copper wire
fatigue data, a Weibull hazard function of the form

Ψ(x) = xα, x ≥ 0 (8)
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is assumed. Here, α is the shape parameter, as in Equation (5). Because a linear regression is
suitable for modeling the medians on Figure 3, a power law breakdown function given by

κ(x) = βxρ, x ≥ 0 (9)

is considered. The parameters β and ρ are a scale and power parameter, respectively. The
applied loading for the copper wire fatigue experiments was constant amplitude. Thus,

L(t) = σ, t ≥ 0. (10)

Substituting Equations (8)–(10) into Equation (7) and simplifying yields the following cdf:

F( t|σ) = 1− Exp{−[βσρt]α}, t ≥ 0. (11)

The constants α, β, and ρ, are non-negative, and they are statistically estimated
from the life data. It should be mentioned that the power law breakdown rule given in
Equation (9) produces linear percentile curves for S-N data plotted on logarithmic versus
logarithmic axes. In order to evaluate Equation (11) graphically, the ensuing transformation
is considered:

ln[− ln(1− F( t|σ))] = α ln(t) + αρ ln(σ) + α ln(β). (12)

For a fixed value of σ, Equation (12) is linear in ln{−ln [1 − F(t|σ)]} versus ln(t) with a
slope of α. For a fixed probability, say F(t|σ) = p, Equation (12) is linear in ln(σ) versus ln(t)
with a slope of −1/ρ. Given F(t|σ) and σ, after α and ρ are estimated, the final parameter
in Equation (12) to be estimated is β. A detailed numerical example for this analysis can be
found in [74].

In order for Equations (11) and (12) to fully represent the S-N and probability behavior,
the parameters must be constant and independent of the N and σ. Equation (12) indicates
that the Weibull shape parameter σ and the power law exponent ρ must be the same for all
values of σ and fixed p. The MLE shape parameters given in Table 3 are reasonably close in
magnitude. Thus, the estimate for α in Equations (11) and (12) is assumed to be the average
of the values in Table 3, that is, α̂ = 5.09. The linear regression shown on Figure 3 can be
used to estimate ρ. Equation (12) leads to the relationship that ρ is the negative reciprocal
of the slope m. Thus, ρ̂ = 3.12. With estimates for α and ρ, β can be estimated from the S-N
graph by fixing a probability, say p = 0.5, or by fixing a value for σ and using the probability
graph. On Figure 3, the linear regression is very close to the median when σ = 186.4 MPa.
Using these values, β̂ = 3.17 × 10−12 1/[cyc-(MPa)ρ]. Figure 9 is a facsimile of Figure 3
except that the median, the 2.5 percentile and the 0.5 percentile lines are obtained from
Equations (11) and (12) with the above estimated values. The 2.5 percentile line corresponds
to the 97.5% lower confidence bound, but it clearly is not appropriate as a lower bound.
Several data are to the left of the line. The 0.5 percentile line, however, corresponds to
a 99.5% lower confidence bound. All of the data are to the right of the bound, and it is
very tight with the data. Hence, it is very acceptable as a lower confidence bound. For the
copper wire fatigue data, Equation (11) is an excellent representation of the behavior.

3.3.2. Annealed Aluminum Wire

The S-N data for the aluminum wire are shown on Figure 4 with the nonlinear re-
gression given in Equation (3). Using the nonlinear form for the median behavior in
Equation (7) leads to a computationally very difficult integral. In order to make the analysis
more amenable, the cdf in Equation (7) will be broken into two intervals, each of which
will be assumed to be linear. Thus, the S-N data are shown with the two linear estimates
for the medians on Figure 10. Specifically, the estimate is given by

σ =

{
BLNML , N ≤ Nt cyc

BH NMH , Nt cyc ≤ N,
(13)
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where ML = −0.798, BL = 3.65 × 105 (MPa)/cycM
L, MH = −0.148, BH = 382.6 (MPa)/cycM

H,
and the subscripts L and H corresponds to the Low cyc and High cyc regions, respectively.
The transition value is Nt = 39,450 cyc.

Metals 2023, 13, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 9. S-N data for annealed electrolytic copper wire [6] with estimated median, 2.5 percentile, 
and 0.5 percentile lines. 

3.3.2. Annealed Aluminum Wire 
The S-N data for the aluminum wire are shown on Figure 4 with the nonlinear 

regression given in Equation (3). Using the nonlinear form for the median behavior in 
Equation (7) leads to a computationally very difficult integral. In order to make the 
analysis more amenable, the cdf in Equation (7) will be broken into two intervals, each of 
which will be assumed to be linear. Thus, the S-N data are shown with the two linear 
estimates for the medians on Figure 10. Specifically, the estimate is given by σ = 𝐵 𝑁 , 𝑁 ≤ 𝑁  𝑐𝑦𝑐𝐵 𝑁 , 𝑁  𝑐𝑦𝑐 ≤ 𝑁, (13) 

where ML = −0.798, BL = 3.65 × 105 (MPa)/cycML, MH = −0.148, BH = 382.6 (MPa)/cycMH, and 
the subscripts L and H corresponds to the Low cyc and High cyc regions, respectively. The 
transition value is Nt = 39,450 cyc. 

The proposed cdf for each of the two regions is Equation (11), which assumes a 
Weibull hazard function, power law breakdown, and constant amplitude load. The 
estimated parameters are obtained similarly to those described for the copper wire above. 
Thus, α  = 4.77 and α  = 4.51, which are the averages of the shape parameters for the L 
and H regions, given in Table 4. The estimates for the power law exponents are the 
negative reciprocal of the appropriate slopes, that is, ρ  = 1.25 and ρ  = 6.76. The final 
estimates are found by considering the medians on Figure 10 when σ = 176.6 or 54.0 MPa. 
Thus, β   = 1.03 × 10−7 1/[cyc-(MPa)ρL] and β   = 3.23 × 10−18 1/[cyc-(MPa)ρH]. As seen in 
Figure 10, the 0.5 percentile line is an acceptable lower confidence bound for the L region. 
All the data lie to the right of the lower bound. For the H region the 0.5 percentile is an 
excellent lower bound for all the data except for the one value discussed above. It is 
impossible to determine, for data this old, why that single data is so far from the rest of 
the fatigue data when σ = 73.6 MPa. Nevertheless, the lower bound for the two regions 
seems reasonable. The 2.5 percentile lower bound is not shown because it is not 
acceptable, as it has several data to the left of the bound for both the L and H regions. For 
the aluminum wire fatigue data, Equation (11) for each region is a reasonable 
representation of the data. 

cycles, N
5x103 104 2x104 5x104 105 2x105 5x105 106 2x106

st
re

ss
, σ

 (M
Pa

)

40
50
60
70
80

100
120
140
170
200
230
260
300

life data
medians
estimated median
estimated 2.5 percentile
estimated 0.5 percentile

Figure 9. S-N data for annealed electrolytic copper wire [6] with estimated median, 2.5 percentile,
and 0.5 percentile lines.

Metals 2023, 13, x FOR PEER REVIEW 14 of 17 
 

 

 
Figure 10. S-N data for annealed aluminum wire [6] with an estimated bilinear regression for the 
medians and the 0.5 percentile lines. 

4. Discussion 
The data that were investigated herein were stress–life fatigue data for annealed 

aluminum wire and annealed electrolytic copper wire [5]. These historic data were 
selected for consideration because of the ample sample sizes of magnitude 20 produced 
for each of a significant number, i.e., 10, of applied stress amplitudes. These two datasets 
were considered because they exhibit different statistical behavior which is manifest on 
both the S-N graphs and the probability plots. The two sets of data were analyzed using 
traditional statistical S-N analysis and the MSE for lower confidence bounds. The basic 
conclusion is that these methodologies work quite well, if the S-N data are well behaved. 
This is the case for the annealed electrolytic copper wire. The annealed aluminum wire, 
however, has too much scatter for that modeling to be applicable. 

Subsequently, the two sets of data were modeled statistically by using a two-
parameter Weibull cdf. These analyses incorporated MLE and the KS and AD goodness-
of-fit tests. The two-parameter Weibull cdf is an outstanding choice to characterize the 
annealed electrolytic copper wire data. Furthermore, the lower confidence bound 
estimation using the MLE Weibull estimates is extremely good as well. Again, these data 
are quite regular. For the annealed aluminum wire data the MLE for the two-parameter 
Weibull cdf is acceptable for engineering purposes. Also, the lower bound estimate is quite 
good, except for one data point, which may be somewhat of an outlier. Unfortunately, that 
single data point is not on the conservative side. Further investigation would be 
warranted. 

The third approach for statistically analyzing the two sets of data is time-dependent 
modeling that merges the S-N behavior into the cdf. The cdf is built by using a hazard 
function, breakdown rule, and load function. The reason for this format is that the 
statistical parameters may be load-dependent, which leads to more generality in the 
modeling. For these examples, however, the parameters were assumed to be constant. The 
basic form of the cdf is the same as the cdf for reliability given a hazard rate. Because of 
the flexibility and scope of the Weibull cdf for life assessment, the hazard function was 
assumed to be the form of a Weibull hazard. The power law breakdown law was also well 
suited. Because the fatigue loading was constant amplitude, it was assumed that the 

cycles, N
5x103 104 2x104 5x104 105 2x105 5x105 106 2x106

st
re

ss
, σ

 (M
Pa

)

40
50
60
70
80

100
120
140
170
200
230
260
300

life data
medians
bilinear estimate
estimated 0.5 percentile

Figure 10. S-N data for annealed aluminum wire [6] with an estimated bilinear regression for the
medians and the 0.5 percentile lines.

The proposed cdf for each of the two regions is Equation (11), which assumes a Weibull
hazard function, power law breakdown, and constant amplitude load. The estimated
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parameters are obtained similarly to those described for the copper wire above. Thus,
α̂L = 4.77 and α̂H = 4.51, which are the averages of the shape parameters for the L and
H regions, given in Table 4. The estimates for the power law exponents are the negative
reciprocal of the appropriate slopes, that is, ρ̂L = 1.25 and ρ̂H = 6.76. The final estimates
are found by considering the medians on Figure 10 when σ = 176.6 or 54.0 MPa. Thus,
β̂L = 1.03 × 10−7 1/[cyc-(MPa)ρL] and β̂H = 3.23 × 10−18 1/[cyc-(MPa)ρH]. As seen in
Figure 10, the 0.5 percentile line is an acceptable lower confidence bound for the L region.
All the data lie to the right of the lower bound. For the H region the 0.5 percentile is
an excellent lower bound for all the data except for the one value discussed above. It is
impossible to determine, for data this old, why that single data is so far from the rest of the
fatigue data when σ = 73.6 MPa. Nevertheless, the lower bound for the two regions seems
reasonable. The 2.5 percentile lower bound is not shown because it is not acceptable, as it
has several data to the left of the bound for both the L and H regions. For the aluminum
wire fatigue data, Equation (11) for each region is a reasonable representation of the data.

4. Discussion

The data that were investigated herein were stress–life fatigue data for annealed
aluminum wire and annealed electrolytic copper wire [5]. These historic data were selected
for consideration because of the ample sample sizes of magnitude 20 produced for each
of a significant number, i.e., 10, of applied stress amplitudes. These two datasets were
considered because they exhibit different statistical behavior which is manifest on both the
S-N graphs and the probability plots. The two sets of data were analyzed using traditional
statistical S-N analysis and the MSE for lower confidence bounds. The basic conclusion is
that these methodologies work quite well, if the S-N data are well behaved. This is the case
for the annealed electrolytic copper wire. The annealed aluminum wire, however, has too
much scatter for that modeling to be applicable.

Subsequently, the two sets of data were modeled statistically by using a two-parameter
Weibull cdf. These analyses incorporated MLE and the KS and AD goodness-of-fit tests. The
two-parameter Weibull cdf is an outstanding choice to characterize the annealed electrolytic
copper wire data. Furthermore, the lower confidence bound estimation using the MLE
Weibull estimates is extremely good as well. Again, these data are quite regular. For the
annealed aluminum wire data the MLE for the two-parameter Weibull cdf is acceptable for
engineering purposes. Also, the lower bound estimate is quite good, except for one data
point, which may be somewhat of an outlier. Unfortunately, that single data point is not on
the conservative side. Further investigation would be warranted.

The third approach for statistically analyzing the two sets of data is time-dependent
modeling that merges the S-N behavior into the cdf. The cdf is built by using a hazard
function, breakdown rule, and load function. The reason for this format is that the statistical
parameters may be load-dependent, which leads to more generality in the modeling. For
these examples, however, the parameters were assumed to be constant. The basic form of
the cdf is the same as the cdf for reliability given a hazard rate. Because of the flexibility
and scope of the Weibull cdf for life assessment, the hazard function was assumed to be the
form of a Weibull hazard. The power law breakdown law was also well suited. Because
the fatigue loading was constant amplitude, it was assumed that the loading was constant.
The annealed electrolytic copper wire data is modeled extremely well by the proposed
approach. As with the other statistical methods, the reason that the method works so well
for the annealed electrolytic copper wire is that the data are very well behaved. The sample
scatter and the median behavior for each given value of σ is relatively consistent. The
annealed aluminum wire, however, is not as well behaved. In fact, the data required the
use of a bilinear power law breakdown law. The estimate for the data was the best for those
considered in this effort. The only caveat is that the single possible outlier is still below the
lower confidence bound, but it is much closer than with the other methods used.
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5. Conclusions

The efficacy and utility of the generalized cdf given in Equation (7) has been demonstrated
herein. Its versatility is an underlying strength. Certainly, its use or consideration for the cdf
is warranted for characterization of other sets of fatigue life data. The mathematical form of
the cdf is sufficiently robust that its use is minimized only by parameter estimation. Models
that explicitly incorporate stress into the cdf must be evaluated carefully. If there are minimal
data for each given stress, or an insufficient number of different stresses in the experimental
program, the model development is difficult. While Equation (7) is still applicable in these
cases, the uncertainty in the modeling is exacerbated. Accuracy always improves as the amount
of data increases. All things considered, the proposed approach has sufficient promise that
further investigation and analysis is certainly warranted. Consequently, it is recommended
that this cdf be considered for other life testing applications.
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