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Abstract: The laser parameters and additive materials were investigated for the laser–additive man-
ufacturing of titanium alloys. A pre–placed metal–strip–based method for 3D printing titanium
components was proposed. Before laser processing, the metal strips were fixed to a Grade 5 tita-
nium substrate using resistance spot welding. The effect of the processing conditions (laser power:
1.5–3.0 kW; scanning speed: 3–9 mm·s−1; one or three layers; 1, 6, or 12 passes; Grade 2 and Grade 5
as additives) on the microstructures, oxidation resistance, and wear resistance of the as–printed
samples was investigated. The results showed that the microstructure consisted of α′ martensite,
oxygen–stabilized α, transformed β that contains coarse and fine acicular α, titanium oxides, and
carbides. Cracks were observed, particularly near the upper surface of the three–layer samples. The
cracks were suggested to have formed due to cumulative residual stresses and the formation of
oxygen–stabilized α and α′ martensite that might cause embrittlement. Both oxidation and wear
tests were conducted to verify the improved performance. After 55 h of oxidation, the as–printed
samples showed mass gains of 0.029–0.035 g·cm−2, which were smaller than those of the substrate
(0.039 g·cm−2).

Keywords: titanium; metallography; laser processing; wear resistance; oxidation resistance

1. Introduction

In materials processing, the performance of a product is influenced by the chemical
composition of the material [1–8], the processing method [9,10], the equipment, and the
parameters [11]. Materials such as iron, copper, aluminum, and titanium have a wide
range of applications in manufacturing, construction, electronics, and other industries. The
high specific strength and stiffness of titanium alloys mean they were extensively used in
aircraft, spacecraft, and rockets as well as in biomedical implants where a light weight,
a high strength, toughness, temperature resistance, and biocompatibility are important
properties [1,12].

Hartbower et al. [12] evaluated the feasibility of as–welded titanium alloys for missile
applications. In addition, the use of titanium alloys as thermal protection in hypersonic
aircraft and the ignition of titanium alloys in aerodynamic heating were investigated [13].
Tobe et al. [14] proposed a novel deployable rocket nozzle utilizing the superelasticity of
titanium. Prestat et al. [15] summarized the applications of titanium alloys in the fields of
orthopedics and dentistry. However, Bai et al. [16] suggested that the “inverse relationship”
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between hardness and toughness has limited the application of titanium. A potential
solution to this problem is additive manufacturing.

The methods used for additive manufacturing—including laser, arc, or electron beam
deposition or hybrids thereof—were summarized by Kruth et al. [17]. A significant effort
has been made to address the challenges related to dimensional accuracy and to make
additive manufacturing a production technique. Beese et al. [18] reviewed the additive
manufacturing of titanium parts by directed energy deposition and powder–bed fusion.
Denlinger et al. [19] suggested that an accumulation of distortion occurred during the
build process, and the distortion and residual stress levels decreased with the increasing
dwell time. Ghouse et al. [20] optimized the laser parameters and scanning strategies and
increased the fatigue strength. Wang et al. [21] proposed the laser metal deposition (LMD)
method based on the wire–based additive manufacturing process.

Murr et al. [22] reported that a relatively high dislocation density contributed to the
residual hardness. Juechter et al. [23] proposed a selective electron beam manufacturing
(EBM) process for fabricating complex titanium components. Karlsson et al. [24] suggested
that the final oxide was formed in the chamber after melting. Bambach et al. [25] exploited
the advantages of additive manufacturing and forging operations by combining both
processes. Soro et al. [26] investigated the surface modification of titanium lattice structures
using selective laser melting (SLM) and a chemical post–treatment. Thijs et al. [27] further
investigated SLM and reported specific conditions, short interactions, high temperature
gradients, and high localization. Hollander et al. [28] used a direct laser–forming method
to produce metal on the titanium substrate for application as a hard tissue biomaterial.

The additive (or filler) material was found to be another important factor affecting the
mechanical properties. Verma et al. [29] used an in situ modification method to improve
the wear resistance of titanium parts with incremental additions of boron. Lu et al. [30]
improved the wettability of nickel with copper, the microstructure, and the surface quality
of laser–fabricated parts due to welding metallurgy and improved the wettability of copper
with titanium carbide. Guo et al. [31] found that the Al–rich layer prevented oxygen
diffusion and improved oxidation resistance. Fox et al. [32] fabricated tantalum coatings
on titanium substrate to improve the interface compatibility. Dutta et al. [33] found that
additive manufacturing offered economic advantages over the conventionally processed
material. Trevisan et al. (Ref. [34]) discussed the wire–feed strategy based on the SLM,
EBM, and LMD methods. Tapoglou et al. [35] successfully controlled the oxygen content in
microstructures using bath and bag shielding strategies. Kelly et al. [36] established the
relationships between post–processing, microstructure, and fatigue strength.

The directed energy deposition (DED) process with a strip–shaped material has the
advantages of flexibility, a low cost, and a high utilization rate. Moghimian et al. [37]
evaluated the reusability and recycling of titanium alloy powder in DED. Amado et al. [38]
investigated the use of pure titanium sponge powders as an alternative in DED.

The present work aims to verify the feasibility of the proposed metal–strip–based
laser–additive DED process and provide a method that allows researchers and engineers to
design additive materials, which may expand the diversity of the available strip additive
materials. The additive layers were prepared on the surface of a Grade 5 (Gr5) titanium
substrate using an additive manufacturing method with pre–placed commercially pure
Grade 2 (Gr2) titanium and Grade 5 (Gr5) titanium wires. The investigation focused on
the effects of laser parameters and additive materials on the microstructure, oxidation
resistance, and wear resistance.

This paper reports the wire–fed additive manufacturing process, especially on the wire
feeding setup, which is indispensable to wire–fed additive manufacturing. The innovation
of this paper lies in the use of two types of wires, TA2 and TC4, as additive materials and
proposes a laser wire–fed additive manufacturing method based on pre–placed wire strips.
The layer formation, high–temperature oxidation resistance, and wear resistance of the
samples produced by this method under different process parameters are investigated.
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2. Materials and Methods

The chemical composition (wt %) of the 6 mm thick Grade 5 titanium substrate
(100 mm× 100 mm) is shown in Table 1. The additive materials were strips of commercially
pure Grade 2 and Grade 5 titanium. These metal strips were prepared using DK7730 wire
electrical–discharge machining (Haishu, Ningbo, China). The substrates and metal strips
were polished with silicon carbide abrasive paper to remove the oxide layer. The metal
strips were resistance–spot–welded on the substrate before additive manufacturing. The
manufacturing details were as follows (see Figure 1a,b):

1. The Grade 5 alloy substrate was placed on a conductive metal plate.
2. One pole of a Hotspot II Heavy Duty Welder (DCC, DCC Corporation, Camden

County, NJ, USA) was connected to the conductive metal plate. The strip–shaped
additive materials were pre–placed side by side on the substrate and clamped.

3. Resistance spot welding of the additive layer was conducted using the other pole of
the spot welder. The distance between two adjacent welding spots was 300 mm, and
the energy was 180 J per pulse.

4. Different passes, layers, and laser parameters—as shown in Table 2—were chosen as
the main variables to assess how these factors affect the structure and properties of
the resulting specimens.

Table 1. Chemical composition (wt %) of commercially pure Grade 2 titanium (Gr2) and Grade 5
titanium (Gr5).

Element
Substrate Additives (Metal Strips)

Gr5 Gr2 Gr5

Iron (Fe) 0.4 0.30 max 0.4
Oxygen (O) 0.2 0.25 max 0.2
Carbon (C) 0.1 0.08 max 0.1
Aluminum (Al) 5.5–6.75 − 5.5–6.75
Nitrogen (N) 0.05 0.03 max 0.05
Vanadium (V) 3.5–4.5 − 3.5–4.5
Hydrogen (H) 0.0125 0.015 max 0.0125
Titanium (Ti) Remainder Remainder Remainder
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Figure 1. Schematics of the metal–strip–based laser–additive manufacturing setup. (a) Pre–placed
metal strip fixture. (b) The experimental setup for laser–additive manufacturing. (c) Samples in the
gas shield chamber and (d) after laser–additive manufacturing.
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Table 2. Laser parameters on Gr5 titanium substrate with pre–placed Gr5 and Gr2 metal strips as
additives; the size of the metal strips was 100 mm × 3 mm × 1 mm.

Samples Substrate Additive
(Metal Strips) Layers Passes Laser Power

(kW)
Scanning Speed

(mm·s−1)

P1

Gr5 Gr2

1 12 1.5 6

P2 1 12 2.5 6

P3 1 1 2.5 6

P4 1 1 2.5 8

P5 1 1 2.5 6

P6 1 1 2.5 8

T1 Gr5 Gr5 1 6 2.5 6

T2 Gr5 Gr5

1 6 2.5 6

2 6 2.5 6

3 6 2.5 6

T3 Gr5 Gr2

1 6 2.5 6

2 6 2.5 6

3 6 2.5 6

T4

Gr5 Gr2

1 6 1.5 6

T5 1 6 2.0 6

T6 1 6 2.5 6

T7 1 6 3.0 6

T8 1 6 2.5 3

T9 1 6 2.5 9

The equipment used for laser–additive manufacturing (Figure 1b) was a 5 kW maxi-
mum output YLS–5000 (IPG, Oxford, MA, USA) fiber laser with an ABB–IRB 4600 (ABB,
Zürich, Switzerland) robot and BIMO QBH (HIGHYAG, Kleinmachnow, Germany) laser
processing head. Argon was used as the shielding gas at 25 L·min−1 flow rate to protect
the specimen from oxidation. The dimension of laser facular was 5 mm × 5 mm, and the
laser scanning strategy (Figure 1c) was reciprocating scanning. The laser parameters are
shown in Table 2, and the as–printed samples are shown in Figure 1d. The selection of
laser parameters was mainly based on the experiments. Samples P1–P6 were used for laser
parameter selection, and samples T1–T9 were used for further investigation.

The metallographic specimens were etched with Kroll’s reagent (HF:HNO3:H2O = 2:5:93)
for 15 s. The microstructure was studied using TESCAN VEGA3 (TESCAN, Kohoutovice,
Czech Republic) and S–3400N (Hitachi, Tokyo, Japan) scanning electron microscopes.
Surface and internal defects of the as–printed layers were non–destructively evaluated
by X-ray radiography. During the radiographic examination, 12 tests were performed in
accordance with GB/T3323–2005A III, using an XXG–2005 X-ray source (EBP, Shanghai,
China) at 110 kV.

X-ray diffraction measurements of oxidation layers were conducted on an X’Pert
PRO X-ray diffractometer (PANalytical, Almelo, The Netherlands) with Cu–Kα radiation
(λ = 0.15406 nm). Scans were performed from 10◦ to 90◦ with a step size of 0.02◦.

The wear resistance of the specimens was measured with steel as the friction pair
using a HT–1000 high–temperature tribometer (CETR, Campbell, CA, USA) under dry wear
conditions. The test parameters were sliding time, 30 min; friction pairs, 6 mm diameter
GCr15 steel balls; radius of rotation, 2 mm; sliding velocity, 280 rpm·min−1; and load,
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1120 g. From the values stored in the databank, coefficient of friction (COF) vs. time plots
and mean COF values were obtained.

The high–temperature oxidation resistance of the specimens was evaluated using
SXL–1700C box electric furnaces (SIOMM, Shanghai, China) maintained at 800 ◦C for 55 h
with sample dimensions of 10 mm × 10 mm × 1 mm. Sample oxidation was measured
every hour for the first 10 h, then every 2 h over the next 20 h, and finally every 5 h during
the remaining hold time.

3. Results
3.1. Geometry Formation and Defects

After additive manufacturing, the as–printed layers are evaluated for layer formation,
incomplete fusion, microcracking, or possible cracks and porosity. Figure 2 shows the
defects in the as–printed samples T1–T9 by X-ray radiography. Porosity (red circles in
Figure 2a) and cracks (red arrows in Figure 2b) are typical defects. Samples T2 (three
layer, Gr5) and T3 (three layer, G2) are whiter and brighter (black circles in Figure 2b,c)
because multilayer additive manufacturing leads to greater sample thickness. The top layer,
middle layer, and bottom layer can be observed in Figure 2c. For laser powers of 1.5 kW
(T4) and 2.0 kW (T5), a lack of fusion (blue arrows in Figure 2d,e) is observed between
adjacent tracks. When the laser power is increased to 2.5 kW (T6, Figure 2f) and 3.0 kW (T7,
Figure 2g), the lack of fusion is no longer observed. A comparison of samples T8 and T6
shows that a slower scanning speed leads to excess additive (yellow arrow in Figure 2h).
Excessive heat input increases the surface fluctuation of the samples, as the melting width
and melting depth become too large. The geometry of the layer is found to be affected by
the additives, number of layers, and laser parameters. The laser power influences the fusion
of the additives, microcracking, and possible cracks. A greater scanning speed increases
efficiency but with a higher risk of porosities and poor geometry formation.
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Figure 2. Defect examination for the as–printed samples of (a) T1, (b) T2, (c) T3, (d) T4, (e) T5, (f) T6,
(g) T7, (h) T8, and (i) T9 by X-ray radiography. Cracks can be seen on the upper surface of T2 (b),
which was prepared using multilayer additives.
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3.2. Microstructures and Phase Constituents

Figure 3a,b show the interface between the as–printed layers and the substrate under
optical microscopy and scanning electron microscopy, respectively. The images are taken
from the vertical cross–section of sample T6 (one layer; six passes). Figure 3a shows the
first, second, third, fourth, fifth, and sixth passes from left to right. A thin surface layer, as
highlighted by the dashed red lines, can be clearly distinguished as the interface between
the as–printed layer and the substrate. The magnified image in Figure 3c shows the three
typical regions: the surface region, transition region, and substrate. The microstructure in
three regions, D, E, and F, is shown in Figure 3d, e, and f, respectively. The microstructure
of the surface (region D in Figure 3c) consists of an α plate (white, slightly elongated
grains; inset in Figure 3d), an acicular α′ martensite, residue β, and some equiaxed primary
α phases. The lamellar layers are fine and closely arranged. As indicated by the red
circles, more α was observed near the upper surface because of the additive Gr2 and
oxygen–stabilized α formation. In the transition region (Figure 3e), the microstructure is
consisted of transformed β that contains acicular α and α′, and α is at the transformed
β grain boundaries. Coarser grains are observed at the interface of the additive layer
and the substrate (Figure 3f). Figure 3g–i show scanning electron micrographs and the
morphologies of regions G, H, and I in Figure 3b, respectively. Of the three regions, the
lamellar structure in Figure 3i has the largest size.
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Figure 3. A cross–sectional image of the as–printed sample T6 (1 layer) on a titanium substrate using
(a) optical microscopy and (b) scanning electron microscopy. (c) A magnified optical image showing
the surface layer, transition layer, and substrate. Magnified microstructures of (d) region D; the inset
shows the microstructures of upper surface region J, (e) region E, and (f) region F in (c). SEM images
showing the microstructures and morphologies of (g) region G, (h) region H, and (i) region I in (b).
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Compared with the one–layer sample, the three–layer sample in Figure 4a,b shows
a thicker additive layer and high dilution and exhibited a typical multilayer additive
appearance. The first layer had six metal strips, the second layer had five metal strips,
and the third layer had four metal strips. Since the additive metal strips that were stacked
from bottom to top successively decreased (6–5–4), the shape of the as–printed layers
appeared convex. Cracks are visible near the upper surface layer because of the multilayer
thermal cycles. The microstructure in Figure 4c shows coarser α grains in an α′ martensite
matrix. The microstructure in Figure 4c consists of three constituents: (1) residual β
and strip α phases with dendritic growth formed near the upper surface (Figure 4d);
(2) in the middle of the image, coarser needle–like α phase in a matrix of α′ martensite
(Figure 4e); (3) the microstructure near the substrate is of the residual β and acicular α

with the same orientation (Figure 4f). Therefore, the microstructure in the as–printed layers
consists of different constituents of α (Ti–Al), (Ti–V), and α′ martensite. More martensitic
microstructure and a greater level of residual stresses in the three–layer samples may
have increased the embrittlement, which is suggested as the reasons for the cracks. In
comparison with traditional powder–based or wire–based methods, the three–layer sample
has a higher dilution due to a greater heat input. The laser power and laser scanning speed
are the primary variables that control the dilution. In the present work, due to the fixture
of the additive materials, the laser power and laser scanning speed control the amount of
substrate that is melted and mixed in the pool.
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Figure 4. A cross–sectional image of the as–printed samples T2 (three–layer) on a titanium substrate
using (a) optical microscopy and (b) scanning electron microscopy. (c) A magnified optical image
showing the as–printed layers and the interfaces of the as–printed layers and substrate. Magnified
microstructures of (d) region D, (e) region E, and (f) region F in (c). (g) SEM image of the as–printed
layer/substrate interface; magnified image of (h) region H and (i) region I in (g).
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Figure 5a–d show the diffusion (in–depth orientation) results of elemental titanium
(Ti), aluminum (Al), and vanadium (V) in samples T2 (three layers, Gr5), T3 (three layers,
Gr2), and T6 (one layer, Gr2). The energy dispersive X-ray spectroscopy (EDS) data for
the labeled lines, ST, OP, KL, and MN, are shown in Table 3. In the 3 mm depth from the
surface layers, Ti and V decreased to a 1.2 mm depth, and Al no longer varies. Near the
as–printed layer/substrate interface, the Ti, Al, and V in samples T2 and T3 remained
unchanged. Therefore, both the one– and three–layer samples have a 1.2 mm thick titanium
depletion region.
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Figure 5. Line scan results of Ti, Al, and V diffusion (a) near the surface layer (in–depth orientation)
in samples T3 (three layers) and (b) T6 (1 layer) using Gr2 as additive. (c) Near the as–printed
layer/substrate interface (in depth orientation) in samples T2 (Gr5) and (d) T3 (Gr2) with three–layers.
The EDS of the labeled ST, OP, KL, and MN lines are shown in Table 3.

Table 3. EDS–determined chemical compositions of locations labeled in Figures 5 and 6. Carbon and
oxygen values are only qualitative, i.e., indicating the existence, not the exact amount.

Samples
Titanium Aluminum Vanadium Carbon Silicon Oxygen

Omitted
(at %) (wt %) (at %) (wt %) (at %) (wt %) (at %) (wt %) (at %) (wt %) (at %) (wt %)

A–T1 (85.15) (91.68) (6.26) (3.80) (2.52) (2.89) (6.07) (1.64) — — — — —

B–T1 (77.84) (89.32) (6.34) (4.10) (1.24) (1.51) (5.36) (1.54) — — (9.22) (3.53) —

C–T3 (99.93) (99.96) (0.07) (0.04) — — — — — — — — —

D–T3 (98.99) (98.96) (0.06) (0.03) (0.95) (1.01) — — — — — — —

E–T6 (74.33) (90.05) (0.15) (0.10) (0.11) (0.14) (8.42) (2.56) (0.90) (0.64) (16.09) (6.51) —

F–T6 (60.73) (85.64) (0.40) (0.32) — — (37.95) (13.42) — — — — Na

KL–T2 (83.46) (92.95) (2.01) (1.26) (0.97) (1.15) (4.39) (1.22) — — (9.17) (3.41) —

MN–T3 (93.68) (97.71) (0.37) (0.22) (0.61) (0.68) (5.33) (1.40) — — — — —

OP–T6 (90.87) (97.16) (0.47) (0.28) (0.27) (0.31) (8.4) (2.25) — — — — —

ST–T3 (86.39) (95.96) (0.35) (0.22) (0.14) (0.16) (13.12) (3.66) — — — — —
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As shown in Figure 6a and Table 3, EDS analysis of one of the fine acicular grains
in sample T1 (indicated by A) shows that the bright grain is enriched with Ti, Al, and V
and contains carbon. In addition to Ti, Al, V, and C, the neighboring matrix also contains
oxygen (indicated by B). Therefore, the fine acicular phase is suggested as the α′ martensite
in the β matrix. This matrix includes fine α. This result is attributed to grain refinement by
laser–additive manufacturing. The faster cooling rate may have caused the acicular α to be
finer than the original plate–like α. As shown in Figure 6b, the equiaxed grain (indicated
by C) has a chemical composition of 99.93% Ti and 0.07% Al; therefore, the equiaxed grain
is suggested as the α solid solution of Al in Ti. The matrix near α (indicated by D) contains
98.99% Ti, 0.06% Al, and 0.95% V, which is a solid solution of V in Ti (β). Figure 6c shows
the coarser needle phase (indicated by E) and an intergranular phase (indicated by F). The
former contains more oxygen, and the latter contains carbon. Oxygen–stabilized α and TiC
are suggested to be these two phases.
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Figure 6. EDS analysis of the labeled locations given in Table 3. (a) Sample T1, (b) Sample T2, and
(c) Sample T6.

3.3. Oxide Resistance at 800 ◦C

Figure 7a shows the mass gain of the as–printed samples T1–T9 and the substrate over
an extended time exposure (0–55 h) at 800 ◦C in air. The curves show the same trend in
the mass change during high–temperature oxidation. Figure 7a shows that the oxidation
mass gain rate of the substrate is higher than that of the as–printed samples T1–T9. The
differences in oxidation resistance between the as–printed samples T1–T9 are smaller than
those between the as–printed samples and the substrate.
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Figure 7a shows that the oxidation resistance of the as–printed samples has changed
with increasing laser power. The as–printed sample T7 (3 kW) exhibits the lowest mass
gain per unit area. The mass gain per unit area of sample T6 (2.5 kW) is slightly lower than
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that of samples T4 (1.5 kW) and T5 (2.0 kW) during the early stage of oxidation. However,
the mass gain per unit area is slightly higher than that of T5 and remains almost the same
as that of T4 20 h later.

The as–printed sample T8 (3 mm·s−1) has a better oxidation resistance than samples
T6 (6 mm·s−1) and T9 (9 mm·s−1). The mass gain per unit area of T6 is roughly the same as
that of T8 within 35 h of the beginning of oxidation. However, T8 shows a better oxidation
resistance after 35 h. The oxidation resistance of T9 is consistently lower than that of T6
and T8.

A comparison of the curves in Figure 7a shows that the mass gain per unit area of the
samples with Gr2 (T3 and T6) as the additive material is lower than that of the sample with
Gr5 (T1 and T2) as the additive material in the early stage. With increasing oxidation time,
a reversed trend in the mass gain per unit area is observed for the one– and three–layer
samples. However, the reversal occurred in approximately 45 h for the one–layer sample,
whereas it occurred in approximately 16 h for the three–layer sample.

Specimens from the oxidized surface of the substrate Gr5 titanium and the as–printed
samples T1–T9 are analyzed by XRD for crystal structures, as shown in Figure 7b. The
primary phase identified is TiO2. The observed peaks such as (110), (101), and (211) are the
typical three strong peaks of rutile titanium dioxide. In addition to TiO2, Al2O3 and V2O3
are also observed in the oxidized surface of the as–printed layers. A clear peak widening is
observed for the as–printed samples T1–T9 compared with the substrate. Peak widening is
due to grain refinement. Compared with the Gr5 substrate, the peaks of the crystal plane
(111) of the deposit layers shifted to the left.

3.4. Wear Resistance

The wear resistance of different as–printed samples was examined by dry sliding
tests. Figure 8a shows the COF variations in the Gr5 substrate and as–printed samples
T1–T9 after dry friction for 30 min with a GCr15 steel (high–carbon chromium bearing steel)
friction pair at room temperature. In comparison with the substrate (Gr5), the as–printed
samples have a lower COF, except samples T1 and T3. The results also indicate that samples
T7, T2, and T6 have the lowest COF; T4, T5, T8, and T9 have average COF; and samples T1
and T3 have the highest COF.
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Figure 8b shows that after the running–in period, increasing the number of layers
reduced the COF of the additive sample with Gr5 additive strips, while the opposite was
observed for the sample with Gr2 additive strips. In comparison with T1 (single layer, Gr5)
and T3 (three layers, Gr2) samples, sample T6 (single layer, Gr2) and sample T2 (three
layers, Gr5) exhibited better wear resistance.
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4. Discussion
4.1. Effect of Processing Conditions on the Oxidation Resistance

The improved resistance to oxidation makes titanium a better fit for lightweight applica-
tions such as in the aerospace and automotive industries [39]. The results in Figure 7a show
that the as–printed titanium alloys have better oxidation resistance after laser processing.

The phase–oxide mechanism and active–passive transition region corresponding to
the passivation process are believed to be the oxidation–resistance mechanism [40,41].
First, increasing the laser power is helpful for oxidation resistance due to the phase–oxide
mechanism. However, the loss of alloy elements due to a high heat input from the laser
power reduces the oxidation resistance. Therefore, the oxidation resistance did not show
a positive correlation with the laser power. Second, additive materials play a key role in
the oxidation resistance of as–printed samples. Grade 5 titanium alloy has an excellent
oxidation resistance in air or in liquid [42], and it shows a better oxidation resistance after
laser scanning. Third, a fast laser scanning speed (9 mm·s−1) lowers the oxidation resistance
of as–printed samples. Sample T7 has better oxidation resistance when using the optimized
processing conditions: laser power: 3.0 kW; scanning speed: 6 mm·s−1.

4.2. Effect of Processing Conditions on the Wear Resistance

The results in Figure 9a show the influence of the laser power on the wear resistance
of the as–printed samples. When the laser power was 1.5 and 2.0 kW, the final COF of
the samples was 0.5 and 0.48, respectively—approximately equal to the 0.49 value of the
Gr5 substrate. When the laser power increased to 2.5 and 3.0 kW, the final COF was 0.43
and 0.38, respectively, which is significantly lower than the friction coefficient of the Gr5
substrate and has a better wear resistance. However, as indicated in Figure 8a, although
the laser power for samples T1 and T3 was 2.5 kW, neither of them obtained a better wear
resistance. Therefore, according to the coefficient of friction and the mass losses, a high
laser power, reasonable scanning speed, and cross–hatching strategy were confirmed to be
essential to achieve minimal metallurgical defects and full densification. When the laser
power was too high (3 kW) or too low (1.5 kW), the friction coefficient of the sample in
the running–in period was much higher than that after stability was reached. Figure 9b
shows the COF variation when the scanning speeds were 3 mm·s−1 (T8), 6 mm·s−1 (T6),
and 9 mm·s−1 (T9). It can be seen that the COF first decreased and then increased with the
decreased scanning speed, and the T6 sample, for which the scanning speed was 6 mm·s−1,
had the best wear resistance.
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Figure 10 shows a comparison of the wear mass losses in the as–printed samples and
the Gr5 substrate. The results show that the wear mass loss of the substrate was nearly 37%
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more than that of sample T7. Except for samples T2, T6 and T7, the wear mass losses of the
other samples are not much different from those of the substrate.
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Figure 10. Comparison of wear mass losses in the as–printed samples and the Gr5 substrate.

As shown in Figure 11, the Gr5 titanium alloy substrate material contains bright α
and dark β phases. After laser–additive manufacturing, martensitic α′ is the predominant
phase. The phase transformation is affected by the cooling rate through the laser scanning
speed [43]. The formation of martensitic α′ is one of the reasons for the improvement of the
wear resistance.
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Figure 11. Typical microstructures of Gr5 titanium alloy: (a) before laser–additive manufacturing;
(b) after laser–additive manufacturing.

As summarized in the Introduction, methods of preparation were proposed for surface
modification (Denlinger et al. [19], Zykova et al. [44], Obadele et al. [45], Wang et al. [46],
Deepak et al. [47], and Farabi et al. [48]). As indicated in Table 4, the methods include laser
DED, electron–beam additive manufacturing (EBMA), laser cladding, heat treatment, nitro-
gen treatment, and additive friction stir deposition. The performance parameters include
wear, oxidation resistance, residual stress and distortion, strength, hardness, and corro-
sion resistance. Compared with the previously reported additive layers, the as–fabricated
samples prepared in this work showed a better wear resistance and a higher oxidation
resistance: the lowest COF of the laser DED samples decreased by 22.4% compared with
that of the substrate, and the mass gain per unit area of most samples was 26.3% lower than
that of the substrate at 800 ◦C. The proposed pre–placed metal–strip–based laser–additive
manufacturing method allows for the custom design of additive materials, which is also
simpler, more flexible and feasible.
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Table 4. Comparison of methods and mechanical properties of as–fabricated samples between this
work and reported references.

Substrate Deposited
Metals

Methods of
Preparation

Mechanical
Properties Performance References

Gr5 Gr5
Gr2 Laser DED Wear and

oxidation

The lowest COF of laser DED sample
decreased by 22.4% compared
with substrate.
The mass gain per unit area of most
samples was 26.3% lower than that of the
substrate at 800 ◦C.

This work

Gr5 Gr5 Laser DED Residual stress
and distortion

Longer dwell times led to greater residual
stress and deformation. (Ref. [8])

Gr2 Gr5 with
5% Cu EBAM Strength

The tensile strength increased by about
20%, and the tensile strain decreased by
3 times.

(Ref. [32])

Gr5 Gr2 Laser cladding
Hardness and
corrosion
resistance

Within the scanning speed range of
0.4–0.8 m/min, the hardness value
increased, and the corrosion current
densities decreased as scan
speed decreased.

(Ref. [33])

Gr5 — Heat treatment
Microhardness
and corrosion
resistance

Furnace–cooling–TC4 microhardness:
28% higher
Air–cooling–TC4 microhardness:
75% higher
Corrosion resistance: air–cooling–TC4 >
TC4 > furnace–cooling–TC4.

(Ref. [34])

Gr2
Gr5 — Nitrogen treatment Hardness

Gr2 hardness increased by 3 times, and Gr5
hardness was 11% higher.
Gr2 nitrided thickness: 2.001 µm.
Gr5 nitrided thickness: 2.604 µm.

(Ref. [35])

Gr5 Gr5 Additive friction
stir deposition Strength

Ductility: 20%.
Yield strength: 1010 MPa.
Tensile strength: 1233 MPa.

(Ref. [36])

5. Conclusions

The laser–additive manufacturing process based on a pre–placed metal strip can
be used to fabricate as–printed layers on a titanium substrate. The additive fixation
problem was solved by a pre–placed metal strip with the help of resistant spot welding.
The proposed pre–placed metal–strip–based laser–additive manufacturing method allows
researchers and engineers to design custom additive materials

Microcracking and porosity are major challenges during the laser–additive manufac-
turing process. Inappropriate laser parameters, an excessive gap between metal strips,
and the detachment of the pre–placed metal strip joints led to pore formation. Cracks
appeared during the cooling of the three–layer samples because the increasing internal
stress exceeded the tensile strength of the titanium alloy. Crack formation can be prevented
by preheating the substrate and reducing the cooling rate.

The microstructure in the as–printed layers included α′ martensite, oxygen–stabilized
α, transformed β that contained coarse and fine acicular α, residual β, prior β grain
boundaries, and impurities. The sample T7 has better oxidation resistance when using the
following processing conditions: laser power: 3.0 kW; scanning speed: 6 mm·s−1.
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