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Abstract: In this work, a practical approach for a decision support system for the electric arc furnace
(EAF) is presented, with real-time heat state monitoring and control set-point optimization, which
has been developed within the EU-funded project REVaMP and applied at the EAF of Sidenor in
Basauri, Spain. The system consists of a dynamic process model based on energy and mass balances,
including thermodynamic calculations for the most important metallurgical reactions, with particular
focus on the modelling of the dephosphorisation reaction, as this is a critical parameter for production
of high-quality steel grades along the EAF process route. A statistical scrap characterization tool is
used to estimate the scrap properties, which are critical for reliable process performance and accurate
online process control. The underlying process models and control functions were validated on the
basis of historical production and measurement data of a large number of heats produced at the
Sidenor plant. The online implementation of the model facilitates the accurate monitoring of the
process behaviour and can be applied for exact process end-point control regarding melt temperature
as well as oxygen, carbon and phosphorus content. Embedded within a model predictive control
concept, the model can provide useful advice to the operator to adjust the relevant set-points for
energy and resource-efficient process control.

Keywords: electric arc furnace; process models; process control; scrap characterisation; scrap
mix optimisation

1. Introduction

The electric arc furnace (EAF) is the most important aggregate for steelmaking by
recycling of secondary raw materials. The scrap used as a charge material in the EAF is
characterised by a high variability in metallic yield, chemical composition and melting
behaviour. This is essential to be considered in context with online monitoring and control
of the EAF process. Within the framework of the Horizon 2020 project “Retrofitting
Equipment for Efficient Use of Variable Feedstock in Metal Making Processes” (REVaMP),
for the steel use case at Sidenor Aceros Especiales in Spain, a decision support tool was
developed, which allows the operator, on the one hand, to characterize the properties of
the different scrap types in use and, on the other hand, to use this information for scrap
mix optimization as well for model-based monitoring and control of the EAF process. The
overall target of this decision support tool is to reduce the overall energy consumption
while reliably achieving the target values of the EAF process, and to facilitate as much
as possible the use of low-quality scrap types for the production of high-quality steel
grades. Both aspects contribute to the aims of the Green Deal of the EU, reducing the CO2
emissions of steel production and at the same time strengthening the circular economy. The
development of this decision support tool was based on previous work of the authors in
the two areas described below.
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A statistical modelling approach for characterising the properties of the steel scrap
in use by means of a multi-linear regression was first developed within the project FLEX-
CHARGE [1], which was funded in the European RFCS steel research fund. Within this
project, the first version of a scrap mix optimization software based on a simplex optimiza-
tion was also developed. It is evident that a scrap mix optimization facilitates a reduction
in EAF production costs and an improvement in steel quality and environmental impact at
the same time [2,3]. The developed solutions were based on MATLAB stand-alone applica-
tions, whereas within the REVaMP project, a user-friendly web-based solution with direct
database access was developed. Recently, this statistical approach was extended towards
an online supervision of scrap properties to detect significant deviations in expected scrap
quality on a short-term basis [4,5].

The dynamic EAF process model of VDEh-Betriebsforschungsinstitut BFI, which is
based on analytical mass and energy balance calculations, was developed in a first version
as part of the RFCS EAFDynCon project [6] for a DC EAF for use in carbon steel production.
Besides its application at several AC EAFs with scrap-based carbon steel production, it has
also been applied in an EAF with continuous feeding of DRI [7] and in a small stainless
steelmaking plant [8].

Nowadays, such models are widely used for simulation, online monitoring and
dynamic control of the EAF steelmaking process. A good overview on offline simulation
models for the EAF is given in [9], a detailed simulation model is, e.g., described in [10]. The
online application of dynamic EAF models is based on cyclic and acyclic measurements and
on a real-time version of statistical or analytical process models, which are normally part of
a level-2 automation system. Numerous dynamic models for online application have been
developed for the EAF process based on analytical mass and energy balance models [11–14]
and statistical models based, e.g., on neural networks and fuzzy logic [15–19]. The main
focus of these models is to predict online the current status of the melt with respect to steel
temperature as well as steel and slag composition, and to use this information, e.g., for
end-point control. More recent applications are dealing with the issues of auto-calibration
of model parameters [20,21] and the optimization of operating patterns for electrical and
chemical energy input [22].

However, so far, these modelling approaches have not sufficiently addressed the
prediction of the dephosphorisation reaction in the EAF, although this is becoming more
important when also producing high-quality steel grades via the EAF steelmaking route.
So far, mainly offline simulation models for EAF dephosphorisation [23,24] have been
developed and validated with process data from single heats, and some strategies for an
improved slag practice were derived. Several investigations performed outside Europe
focused on dephosphorisation when using DRI as a charge material [25].

Within this paper, the results of the REVaMP project work for the steel use case are
presented with respect to a web-based toll for scrap characterisation and a dynamic EAF
process model for online monitoring and control, addressing in detail the dephosphorisa-
tion reaction in the EAF.

2. Materials and Methods
2.1. Characterisation of Steel Scrap

The fundamental raw material at the electric steelmaking plant of Sidenor is steel
scrap from three different origins:

• Post-consumer scrap: Old scrap from the demolition of the metal structure of industrial
buildings, machinery, railway and naval scrap, used cars, etc.;

• Pre-consumer scrap: Industrial or new scrap that is generated in processing industries
that use steel as raw material in their manufacturing processes;

• Internal recoveries: Scrap generated along the steelmaking process itself, in melt shops,
rolling mills and other processes inside Sidenor premises.

Pre-consumer scrap is usually very clean in its chemical composition, and its variability
is lower compared to post-consumer scrap. However, its use is, due to its high price, mainly
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limited to the production of high quality steel grades. Well managed, internal recoveries
can also provide a stable chemical composition that can lead to huge savings on ferroalloys
additions. The critical scrap types are the post-consumer scraps with only roughly known
composition and high variability in their properties.

As a first step, multi-linear regressions were performed based on 2019 process data
regarding used scrap types, achieved meltdown analysis and tap weight, with the objective
of visualizing statistically the variability of the 11 scrap grades currently in use at Sidenor. In
Figure 1 is shown as example of the copper content of each of the 11 scrap types, visualized
as a so-called violin diagram with average contents and their statistical distributions.
Similar figures were created for all other important elements included in the scrap, such as
Mn, Cr, P, etc., as well as for the overall metallic yield.
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Figure 1. Copper content variability by scrap type at Sidenor.

In particular, the post-consumer scrap types D and E show high Cu contents with a
large variability.

These investigations of Sidenor were the basis for VDEh-Betriebsforschungsinstitut
(BFI) to develop a web-based tool for easy and comfortable assessment of scrap properties
(metallic yield, element composition, specific meltdown energy requirement) on the basis
of database access for the above-mentioned process data. Figure 2 shows exemplarily the
Graphical User Interface (GUI) for selection of the evaluation period via heat numbers. A
multi-linear regression calculation determines the properties of the different scrap types
with mean value and standard deviation. The accuracy of the characterisation is visualised
by a graph plotting the predicted versus the measured and analysed values of tap weight,
steel analysis and electrical energy consumption, respectively. The latter one is shown in
the graph of Figure 2b. Also, the error standard deviation of this prediction is provided.

In this web application, a scrap mix optimization tool is also included, which directly
applies the currently identified characteristics of the scrap types in use to calculate the cost
and quality optimal scrap mix for each steel grade to be produced [26]. The optimization
allows us not only to minimize the scrap purchase costs, but also the costs for meltdown
of the different scrap types, as a scrap type which may be cheap on the scrap market
can turn out to be an expensive scrap type when considering the costs for the required
meltdown energy.
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2.2. Dynamic EAF Process Model

The above-mentioned parameters for characterisation of the scrap types in use are
also important inputs for a dynamic model for the EAF process in order to monitor and
predict the process behaviour regarding the heat state with respect to the melt temperature
as well as the composition of steel and slag.

This dynamic process model, which was developed by BFI in previous projects [5,27],
describes the energetic status of the melt by dynamic mass and energy balance calculations,
with integration of thermodynamic calculations for the most important metallurgical
reactions like decarburisation and dephosphorisation. In Figure 3, the structure of the
process model with the main function blocks, and the most important input values is shown.

Metals 2023, 13, x FOR PEER REVIEW 4 of 12 
 

 

  
(a) (b) 

Figure 2. GUI for selection of heats to be evaluated and accuracy of prediction (a) and evaluation 
results for electrical energy consumption (b) of the web-based tool for scrap type characterisation. 

In this web application, a scrap mix optimization tool is also included, which directly 
applies the currently identified characteristics of the scrap types in use to calculate the cost 
and quality optimal scrap mix for each steel grade to be produced [26]. The optimization 
allows us not only to minimize the scrap purchase costs, but also the costs for meltdown 
of the different scrap types, as a scrap type which may be cheap on the scrap market can 
turn out to be an expensive scrap type when considering the costs for the required melt-
down energy. 

2.2. Dynamic EAF Process Model 
The above-mentioned parameters for characterisation of the scrap types in use are 

also important inputs for a dynamic model for the EAF process in order to monitor and 
predict the process behaviour regarding the heat state with respect to the melt tempera-
ture as well as the composition of steel and slag. 

This dynamic process model, which was developed by BFI in previous projects [5,27], 
describes the energetic status of the melt by dynamic mass and energy balance calcula-
tions, with integration of thermodynamic calculations for the most important metallurgi-
cal reactions like decarburisation and dephosphorisation. In Figure 3, the structure of the 
process model with the main function blocks, and the most important input values is 
shown. 

 
Figure 3. Structure of the BFI dynamic process model for the EAF. Figure 3. Structure of the BFI dynamic process model for the EAF.

The model calculates the total weight and composition (steel and slag) of the melt from
the scrap, carbon and slag formers charged with the scrap basket, as well as carbon and lime
injection via shell injectors. From the specific meltdown energy of each material, the total
required energy is calculated. For the scrap types, the composition and meltdown energy
requirement are determined using the above-mentioned tool for scrap characterisation.
Within this, it is also considered that the non-metallic part of the scrap is added to the slag
phase. The energy input comprises the electrical and the chemical energy input. The latter
one consists of the energy input by burner gas and the oxygen input through door lances
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and shell injectors and for post-combustion purposes. The Sidenor EAF is equipped with
3 burners, which can be operated in a jet mode to introduce oxygen into the steel bath,
and 2 carbon lances for carbon supply and generation of a foamy slag. The energy losses
comprise losses via off-gas, water cooling of panels and roof and overall radiation losses.
The difference between energy inputs and losses gives the actual energy content of the melt,
which relates to the meltdown energy requirement of the materials to calculate the current
melt temperature.

The steel and slag composition are dynamically calculated by considering the dif-
ferent material inputs as well as chemical reactions due to oxidation and reduction via
oxygen and carbon inputs, respectively. The rate of these oxidation and reduction pro-
cesses is implemented proportional to the oxygen and carbon inputs. This approach
considers that decarburisation can be performed directly through oxygen input via lances
and injectors, but also indirectly via reduction of FeO in the slag. Thermodynamic equi-
libria are considered for elements where this simplified approach is not sufficient, e.g.,
for dephosphorisation.

For Sidenor, the phosphorus content plays a critical role to achieve the quality of the
produced steel. Therefore, a special focus has been set on precise modelling of the phos-
phorus content during the EAF treatment. A mass transfer-limited approach was chosen
with an equilibrium correlation proposed by Assis et al. [28] to describe the phosphorus
distribution between steel and slag. Steel- and slag-side mass transfer are modelled via 1st
order differential equations as follows

d[%P]
dt

= − AρStkP,St

mSt

(
[%P]−[%P]∗

)
(1)

d(%P)
dt

= −
AρSlkP,Sl

mSl

(
(%P)−(%P)∗

)
(2)

and coupled via the mass balance and partition ratio:

d[%P]
dt

mSt +
d(%P)

dt
mSl = 0 (3)

LP =
(%P)∗

[%P]∗
(4)

with [%P] and (%P) as phosphorus concentration in the steel and slag phase, A as interfacial
area for the reaction, ρ as density, kP as mass transfer coefficient and m as mass. The indices
St and Sl indicate steel and slag phase, respectively, and * is the equilibrium concentration
at the interface. The phosphorus equilibrium concentration is derived from the phosphorus
partition coefficient LP, which is described by the following correlation [28]:

Log
(

f · LP

Fe2.5
t

)
= 0.068[(%CaO) + 0.42(%MgO) + 1.16(%P2O5) + 0.2(%MnO)] +

11570
T

− 10.52 (5)

It considers that the equilibrium conditions for dephosphorisation are favoured by a
lower melt temperature, as well as by higher contents of FeO, CaO and MgO in the slag
phase. Also, the effect of the concentrations of P2O5 and MnO in the slag phase is taken
into account.

3. Results and Discussion
3.1. Validation of the EAF Process Model

The model parameters of the dynamic process model of BFI were tuned using acyclic
and cyclic process data collected during the normal production of around 250 heats pro-
duced at the Sidenor EAF as input data. As such, a design of experiments was not applied
for model validation. For validation, measurements regarding melt temperature and steel
and slag composition were used. Model parameters are the corresponding scrap properties
as well as energy efficiency, reaction, mass transfer and equilibrium parameters. In the
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following, the validation results for the melt temperature and critical elements (carbon,
oxygen, phosphorus) are presented with statistical information about all evaluated heats
and the temporal development of the target variables in an example heat.

The calculated melt temperature results from the dynamic energy balance for the
Sidenor EAF. To verify the dynamic process model, the calculated temperature is compared
to the temperature measurements. In addition, the melting degree of the charged materials
is calculated. In Figure 4, the accuracy for all evaluated heats is given, including mean
value and standard deviation of the temperature prediction error.
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Figure 4. Calculated steel melt temperature and comparison with measurements for one example
heat: black dots indicate measurements (a); model accuracy of steel melt temperature calculation
(b): first measurement; (c): further measurements after adaption to first one.

An error standard deviation of around 25 K was achieved, which is a good accuracy
considering the energy throughput which has to be covered by the balance calculation. The
error standard deviation of 25 K corresponds to an error of roughly 1% with respect to the
energy balance calculation with an energy throughput of nearly 800 kWh/t of liquid steel.
The inhomogeneity of the melt is a further significant source of scatter. This is proven by
the fact that, sometimes, two consecutive temperature measurements with a time difference
of only one minute can show temperature differences of 20 K.

The carbon concentration in the steel phase is calculated based on the material inputs
and oxidation caused by the jet oxygen. Oxygen concentration in the melting phase is based
on the equilibrium with carbon, and during the refining phase, the driving force for oxygen
accumulation is defined by the difference between maximum solubility of oxygen and
current oxygen concentration. Further, oxygen is used for direct reaction with the carbon
injected via the carbon lances. In Figure 5, the development of carbon and oxygen content
for an example heat (a) and the accuracy for all evaluated heats (bottom) is depicted. Note
that the oxygen concentration is measured together with temperature, and therefore, more
data points for oxygen are presented. The dynamic process model adapts to the measured
oxygen value to increase the accuracy for further calculations, similarly to the temperature
modelling. The carbon and oxygen predictions are both very accurate for the investigated
heats, when considering that, for example, the carbon content of the charged scrap types
can only be roughly determined. The oxygen concentration in the steel is an especially
important quality indicator for Sidenor, and thus, it is important to provide an accurate
online calculation to reduce the number of required measurements.
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As described above, the phosphorus concentration is calculated as mass transfer
limited process based on equilibrium data between steel and slag phase. The equilibrium
behaviour is mostly seen towards the end of the EAF treatment as the temperature decreases
slightly, which shifts the equilibrium towards the steel side and results in the increase in
phosphorus concentration (Figure 6, top). The overall statistics for all evaluated heats are
depicted below for the steel and slag phase.

In particular, the phosphorus content in the steel phase is accurately captured using the
described modelling approach. The calculated phosphorus content in the slag also depicts
the trend correctly but shows larger deviations than in the steel phase. Considering that the
slag phase is less homogeneous, the result is still satisfactory. This result confirms that the
selected approach for describing the dephosphorisation reaction in the EAF is suitable and
accurate enough to be used for an online monitoring of the phosphorus content evolution.
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Figure 6. Calculated phosphorus content (orange line) and comparison with measurement (black dot)
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3.2. Online Implementation for Process Monitoring

The dynamic process model is embedded for the simulation of historical heats within
the above-described web-based software tool. For online monitoring, it was implemented
within the process control system at Sidenor. A model shell uses the process data stored in
a database to initiate the heat state calculations within the model kernel. The calculation
results are returned to the model shell and written back into the database in time intervals of
one second. To provide the monitoring functionality to the plant operators, a user interface
was developed that displays the model input and output data during EAF operation (see
Figure 7).
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Figure 7. User interface for process monitoring with dynamic EAF process model at Sidenor, with
curve display of melt temperature and oxygen content (top), steel and slag weight (middle left), steel
composition (middle right), oxygen injection rate (bottom left) and slag composition (bottom right).

Charged materials, current operating conditions and the heat state in terms of melt
temperature as well as steel and slag weight and composition are visualized by trend
lines. A checkbox menu allows the user to decide which information shall be displayed
to improve clearness of the GUI. In addition to the live data, historical heats can also be
loaded and visualised in order to analyse the process and model performance from past
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EAF operation. Simultaneously, logging files are created on the local machine that are used
to evaluate the model accuracy and to optimize the model parameters with the help of
offline tools.

The good model accuracy in predicting melt temperature and steel composition was
confirmed when evaluating the results achieved with the online implementation of the
model. This is exemplarily shown for the melt temperature and the phosphorus content in
Figure 8.
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3.3. Model-Based Decision Support

A direct application of the online process model for decision support is for end-point
control. The operator can monitor the process behaviour with the evolution of the melt
temperature and the most important elements, and on this basis, they can decide when the
targets of the process have been achieved and the melt can be tapped from the EAF.

Furthermore, the dynamic process model is also used during the refining phase to
predict the further evolution of the melt temperature and important element contents like
oxygen and phosphorus, and a model predictive control (MPC) approach proposes optimal
control set-points to achieve the desired target values. As a prediction horizon, a time
window of 5 min with 10 s time-step intervals has been chosen as a compromise between
computation time and sufficient forecasting time for the operator. Regarding the control
options, oxygen and carbon injections as well as lime injections were identified as suitable
variables. The set-points for these variables are restricted with respect to common operating
practices, which yields three possible set-points for the oxygen injection and four for the
carbon injection. Possible lime injections are implemented in 100 kg steps up to a maximum
value of 500 kg. For the cost function for optimization, the oxygen and phosphorus content
of the liquid steel were identified as critical quality indicators. Additionally, the tapping
temperature of 1640 ◦C can be included as a further target value, but it is less penalized
than the quality indicators. The changes in control set-points are also penalized to avoid
fluctuating control suggestions.

In Figure 9, the result of the online applied MPC algorithm is depicted for an example
heat. The upper diagrams show the previously calculated (solid line) evolution of the
oxygen content in the refining phase. The red dashed line describes the forecasted evolution
based on the currently applied control set-points, whereas the green dashed line is based
on optimised control inputs.

It can be seen that the oxygen content stays below the target value when applying the
optimized control set-points. The lower part of the figure shows the control set-point values
for carbon, oxygen and lime injection. Solid lines indicate the applied set-points, whereas
the dashed lines depict the suggestions of the MPC control. It can be clearly seen in the
right part of the figure that when applying the optimal set-points, the oxygen content stays
safely below the targeted maximum value. This example proves that an MPC approach
based on a dynamic EAF process model is suitable for an online control of selected input
parameters of the EAF process. The calculation time of the dynamic model is low enough



Metals 2023, 13, 1332 10 of 12

to allow iterative calculations to be performed to determine the optimal control set-points
throughout the refining phase of the EAF process.
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4. Conclusions

A statistical model for scrap characterisation was combined with a scrap mix optimiza-
tion calculation and a dynamic process model to build a powerful decision support system
for EAF process engineers and operators. The online implementation of the model allows
the operator to perform accurate monitoring of the process behaviour and can be applied
for exact process end-point control regarding melt temperature as well as oxygen, carbon
and phosphorus content. Embedded within a model predictive control concept, the model
can provide useful advice to the operator to adjust the relevant set-points for energy and
resource-efficient process control.

The whole decision support system has been implemented at the EAF plant of Sidenor
Aceros Especiales in Spain and is currently being tested in an industrial environment.

The developed decision support system is a relevant contribution towards the dig-
italisation of the EAF process, covering not only the melting furnace itself but also the
scrap yard, with the selection of the optimal scrap mix. So far, mainly classical statistical
approaches and analytical process models have been used to set up this system. Currently,
several follow-up projects are running whereby methods of artificial intelligence and ma-
chine learning will be embedded into the solution [29,30]. This will, on the one hand,
further improve the prediction accuracy of the models, but on the other hand, it will also
enable the easy transfer of the decision support system to other EAF steel plants.

In the near future, it is expected that the EAF will play an even more important role
in steelmaking, due to the demand for decarbonization and circular economy solutions of
steelmaking. This underpins the requirement to provide flexible tools for the digitalization
of the EAF process.

Author Contributions: Conceptualization, W.K. and B.K.; methodology, W.K., B.K. and I.U.I.; soft-
ware, W.K., D.M.V. and A.A.A.; validation, all authors; writing—original draft preparation, B.K.;
project administration, B.K.; funding acquisition, B.K. and I.U.I. All authors have read and agreed to
the published version of the manuscript.

Funding: This research was funded by European Union’s Horizon 2020 research and innovation
program within the SPIRE PPP, grant number 869882.



Metals 2023, 13, 1332 11 of 12

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Malfa, E.; Nyssen, P.; Fillipini, E.; Dettmer, B.; Unamuno, I.; Gustafsson, A.; Sandberg, E.; Kleimt, B. Cost and Energy Effective

Management of EAF with Flexible Charge Material Mix. BHM 2013, 158, 3–12. [CrossRef]
2. Gyllenram, R.; Westerberg, O. The impact of scrap upgrading on EAF production cost and environmental performance. Stahl

Eisen 2016, 136, 32–36.
3. Bets, S.; Cesareo, E.; Rolando, A.; Venturi, F.; Fontana, P.; Mazarrello, B. OPTIMET: An advanced Charge Optimizing Model for

EAF steelmaking. In Proceedings of the 11th European Electric Steelmaking Conference, Venice, Italy, 25–27 May 2016.
4. Sandberg, E. Improved material efficiency utilizing cloud-based novel tools for on-lien supervision of EAF raw materials

pro-perties. In Proceedings of the 12th European Electric Steelmaking Conference, Sheffield, UK, 13–15 September 2021.
5. Kleimt, B.; Mier, D.; Maza, D. Early detection of deviations in charge material properties and adjustment for optimal scrap

usage in the EAF. In Proceedings of the 5th European Steel Technology and Application Days, ESTAD 2021, Stockholm, Sweden,
2 September 2021.

6. Kleimt, B.; Pierre, R.; Dettmer, B.; Deng, J.; Schlinge, L.; Schliephake, H. Continuous dynamic EAF process control for in-
creased energy and resource efficiency. In Proceedings of the 10th European Electric Steelmaking Conference, Graz, Austria,
25–28 September 2012.

7. Kleimt, B.; Pierre, R.; Gellert, S.; Kier, K.; Die, N.; Berg, P. Dynamic process control for energy efficiency improvement at an EAF
with DRI feeding. In Proceedings of the 12th European Electric Steelmaking Conference, Sheffield, UK, 13–15 September 2021.

8. Gassner, G.; Fuchs, P.; Schlautmann, M.; Stubbe, G.; Jendryssek, U.; Niehues, P.; Leyva, C.; Ojeda, A. Development and application
of model-based software tools for raw material and energy optimization at Cast Steel production—MORSE project. In Proceedings
of the 5th European Steel Technology and Application Days, ESTAD 2021, Stockholm, Sweden, 2 September 2021.

9. Hay, T.; Visuri, V.-V.; Aula, M.; Echterhof, T. A Review of Mathematical Process Models for the Electric Arc Furnace Process. Steel
Res. Int. 2021, 92, 2000395. [CrossRef]

10. Hernandez, J.; Onofri, L.; Engell, S. Modelling and Energy Efficiency Analysis of the Steelmaking Process in an Electric Arc
Furnace. Metall. Mater. Trans. B 2022, 53, 3413–3441. [CrossRef]

11. Logar, V.; Dovžan, D.; Škrjanc, I. Modelling and validation of an electric arc furnace: Part 1, heat and mass transfer. ISIJ Int. 2012,
52, 402–413. [CrossRef]

12. Logar, V.; Dovžan, D.; Škrjanc, I. Modelling and validation of an electric arc furnace: Part 2, thermo-chemistry. ISIJ Int. 2012, 52,
414–424.

13. Nyssen, P.; Ojeda, C.; Baumert, J.C.; Picco, M.; Thibaut, J.C.; Sun, S.; Waterfall, S.; Ranger, M.; Lowry, M. Implementation
and on-line use of a dynamic process model at the ArcelorMittal-Dofasco Electric Arc Furnace. In Proceedings of the METEC
InSteelCon, SteelSim 2011, Düsseldorf, Germany, 27 June–1 July 2011.

14. Placier, E. EAF Optimisation Technology for Stainless Steel Production with Dynamic Model Applications. In Proceedings of the
12th European Electric Steelmaking Conference, Sheffield, UK, 13–15 September 2021.

15. Baumert, J.-C.; Engel, R.; Weiler, C. Dynamic modelling of the electric arc furnace process using artificial neural networks. Metall.
Res. Technol. 2002, 99, 839–884. [CrossRef]

16. Carlsson, L.; Samuelsson, P.; Jönsson, P. Using Statistical Modelling to predict the Electrical Energy Consumption of an Electric
Arc Furnace producing Stainless Steel. Metals 2020, 10, 36. [CrossRef]

17. Wessels, T. Precise temperature Control with Artificial Intelligence. In Proceedings of the 12th European Electric Steelmaking
Conference, Sheffield, UK, 13–15 September 2021.

18. Kirk, T. Deep learning applied to online EAF process optimization: Challenges, results and possibilities. In Proceedings of the
12th European Electric Steelmaking Conference, Sheffield, UK, 13–15 September 2021.

19. Tomažic, S.; Andonovski, G.; Škrjanc, I.; Logar, V. Data-Driven Modelling and Optimization of Energy Consumption in EAF.
Metals 2022, 12, 816. [CrossRef]

20. Schlautmann, M.; Wolff, A.; Pierret, J.C.; Ansseau, O.; Zagrebin, V.; Illichmann, M.; Küster, O. Auto-calibration of model
parameters for long-term reliability of process control along the electric steelmaking route. In Proceedings of the 12th European
Electric Steelmaking Conference, Sheffield, UK, 13–15 September 2021.

21. Frittella, P. Monitoring and control of EAF process through KPI’s approach with self-learning strategies for autocalibration and
autoadaptation of process control rules. In Proceedings of the 12th European Electric Steelmaking Conference, Sheffield, UK,
13–15 September 2021.

22. Hay, T.; Echterhof, T. Use of a comprehensive electric arc furnace process model in the investigation of alternative and optimized
operating strategies. In Proceedings of the 5th European Steel Technology and Application Days, ESTAD 2021, Stockholm,
Sweden, 2 September 2021.

23. Li, Q.; Hong, X. Dynamic model and simulation of EAF steelmaking process. Acta Metall. Sin. 2003, 16, 197–203.
24. Borovsky, T.; Kijac, J.; Domovec, M. The slag composition influence on the dephosphorization and on the lifetime of Electric Arc

Furnace hearth refractory lining. Acta Met. Slovaca 2010, 16, 165–171.

https://doi.org/10.1007/s00501-012-0103-y
https://doi.org/10.1002/srin.202000395
https://doi.org/10.1007/s11663-022-02576-5
https://doi.org/10.2355/isijinternational.52.402
https://doi.org/10.1051/metal:2002144
https://doi.org/10.3390/met10010036
https://doi.org/10.3390/met12050816


Metals 2023, 13, 1332 12 of 12

25. Tayeb, M.A.; Fruehan, R.; Sridhar, S.; Pistorius, C. Dephosphorization model for a continuous DRI EAF process. In Proceedings of
the Materials Science & Technology (MS&T) Conference, Pittsburgh, PA, USA, 12–16 October 2014; pp. 143–151.

26. Pierre, R.; Kleimt, B.; Dettmer, B.; Schliephake, H. Quality and cost optimal charge material selection for the EAF. In Proceedings
of the 10th European Electric Steelmaking Conference, Graz, Austria, 25–28 September 2012.

27. RFCS Project “Optimization of Scrap Charge Management and Related Process Adaptation for Performance Improvement and
Cost Reduction” EUR 30537 EN. 2020. Available online: https://op.europa.eu/en/publication-detail/-/publication/f45c7766-
5a0c-11eb-b59f-01aa75ed71a1/language-en/format-PDF/source-289948522 (accessed on 23 July 2023).

28. Assis, A.; Fruehan, R.; Sridhar, S. Phosphorus Equilibrium between Liquid Iron and CaO-SiO2-MgO-FeO Slags. In Proceedings of
the AISTech, Atlanta, GA, USA, 7–10 May 2012; pp. 861–870.

29. Available online: https://s-x-aipi-project.eu/ (accessed on 1 June 2023).
30. Available online: https://alchimia-project.eu/ (accessed on 1 June 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://op.europa.eu/en/publication-detail/-/publication/f45c7766-5a0c-11eb-b59f-01aa75ed71a1/language-en/format-PDF/source-289948522
https://op.europa.eu/en/publication-detail/-/publication/f45c7766-5a0c-11eb-b59f-01aa75ed71a1/language-en/format-PDF/source-289948522
https://s-x-aipi-project.eu/
https://alchimia-project.eu/

	Introduction 
	Materials and Methods 
	Characterisation of Steel Scrap 
	Dynamic EAF Process Model 

	Results and Discussion 
	Validation of the EAF Process Model 
	Online Implementation for Process Monitoring 
	Model-Based Decision Support 

	Conclusions 
	References

