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Abstract: Near-alpha titanium alloys are widely used in aeroengine blades due to their excellent
specific strength and mechanical properties. The mechanical properties of near-α titanium alloys are
closely related to the evolution of the microstructure and precipitates. In this paper, the microstructure
and mechanical properties of a new type of multi-component near-α titanium alloy sheet after rolling,
700 ◦C aging, and 800 ◦C aging were studied. The results show that the strength of the alloy after
aging at 700 ◦C increases from 1156 MPa to 1304 MPa, respectively, but decreases to 1246 MPa with
the aging temperature increasing. The ductility of the alloy aged at 700 ◦C is lower than that of the
rolled state, but the ductility increases slightly with the aging temperature increasing. The effect
of aging heat treatment on the microstructure and precipitation behavior of alloy plates has been
studied and compared with alloys before aging. After heat treatment, the content of primary α
decreases from 25% to 5%, respectively. Two kinds of silicide precipitate at different positions, with
the large-size spherical silicide being (Ti, Zr, Nb)5Si3, and the small-size fusiform silicide being (Ti, Zr,
Nb)6Si3, respectively. Ti3Al was precipitated in the primary α phase, during the aging process. The
silicides exhibit the strengthening effect on the alloy, but the effect weakens when the silicides grow
up. The loss in ductility is mainly attributed to the precipitation of the α2 phase after aging treatment.
However, ductility is improved after applying higher aging temperatures as the size of the α2 phase
becomes smaller, and the distribution of them tends to become dispersed.

Keywords: near-α high-temperature titanium alloy; microstructure; heat treatment; silicides; α2 phase

1. Introduction

Due to the excellent high-temperature performance of the near-α titanium alloy, it has
been successfully applied in the aerospace field. Near-α titanium has been successfully
applied in the aerospace field due to its excellent extreme-temperature performance [1].
Under the condition of solid solution aging (STA), the hardening precipitated phase, in-
cluding silicide and the Ti3Al phase has a certain strengthening effect on the alloy [2,3].
Numerous reports have shown that the volume fraction, grain size, morphology, and
distribution of the precipitation phase exhibit great effects on the mechanical properties of
titanium alloys [4,5].

Near-α titanium alloys widely used at present can be classified as the Ti-Al-Sn-Zr-Mo-
Si series [6]. These alloys are characterized by the addition of silicon to improve the tensile
and creep properties at high temperatures [7]. Some typical near-α titanium alloys, such as
the Ti6242S (Ti-6Al-2Sn-4Zr-2Mo-0.08Si, wt.%) alloy, the TIMETAL 834 (Ti-6Al-4Sn-3.5Zr-
0.5Mo-0.7Nb-0.3Si, wt.%) alloy, the Ti60 (Ti-5.8Al-4.8Sn-2Zr-1Mo-0.85Nd-0.35Si, wt.%) alloy,
and the Ti65 (Ti-5.8Al-3.8Sn-3.5Zr-0.5Mo-0.4Si-0.3Nb-2.0Ta-1W-0.05C, wt.%) alloy contain
appropriate amounts of silicon. Silicon can significantly improve the strength and creep
properties of near-α titanium alloys [8]. Hence, a moderate amount of Si is generally added
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in high-temperature titanium alloys. Si typically exists in the form of solid solution and
silicide in high-temperature titanium alloys, which can be converted into each other under
certain conditions. Two kinds of silicide, including Ti5Si3 (S1 type) and Ti6Si3 (S2 type) exist
in the form of high-temperature titanium [9,10]. Silicide precipitates are mainly involved in
the process of heat treatment, heat exposure, and hot working along with the evolution
of microstructure [11]. Aluminum mainly plays a role in stabilizing the α phase and
providing solid solution strength in the near-α titanium alloy. Around 7 wt.% (11.8 at. %)
of the Al component was generated by phase separation, which meant at temperatures
of 500–700 ◦C, crystallographic ordering of Al can occur, and lead to precipitation of the
Ti3Al (α2) phase [12]. Commonly, the strength and creep resistance of the titanium alloy
can be improved by the α2 precipitate-strengthening mechanism. However, as with any
other intermetallic phase, the α2 phase is brittle, and leads to a reduction in its ductility. In
order to limit the proportion of α2 precipitated from the DO19 structure, the Al content was
controlled at about 6% [13].

In addition to controlling the composition, the proportion of the primary and sec-
ondary lamellar α phase in the matrix, and the size and distribution of micro and nano
precipitates, including silicide and the α2 phase can also be changed by adjusting the aging
temperature and time. Thus, the properties of the alloy can be improved as a result. For
example, A. Radecka [14] found that the morphology of ordered Ti3Al particles precipi-
tated at 550~700 ◦C is different. The dislocation must pass through the coherent interface
between the Ti3Al particle and the matrix, which results in the effect of strengthening
the matrix. After the application of the solution and aging treatment of Ti65, (Ti, Zr)6(Si,
Sn)3 silicide precipitates along α/β interface, and Ti3Al particles are dispersed in the α
matrix with a particle size of about 1.4 nm. Finally, the ultimate tensile strength of the
Ti65 alloy can reach to 1253 MPa [15]. In this study, the microstructure and mechanical
properties (strength and plasticity) of a new multicomponent near-alpha titanium alloy
were affected by hot working and solution aging treatment. Through the analysis of the
microstructure characteristics, tensile properties, fracture morphology, and the interaction
between the dislocations and precipitates before and after the hot working of the alloy, the
mechanism of strength and plasticity changes of the alloy was thoroughly elucidated. This
work provides guidance for developing thermal exposure and ensuring thermal stability of
near-α titanium alloys.

2. Materials and Methods

In this study, a new multi-component near-alpha titanium alloy Ti-6.5Al-2.5Sn-9Zr-
0.5Mo-0.25Si-1Nb-1W-0.1Re with 5 kg was acquired using the induction skull melting
(ISM) [16] technique three times to ensure the homogeneity of alloy. The β transus tempera-
ture (Tβ) was determined as 1003 ◦C with metallographic analysis. The casting-riser of 5 kg
ingot was cut with the wire-electrode cutting technique, and then the ingot was adopted to
the blooming forge at 980 ◦C, which takes place at the α + β phase region. After blooming
forging, the ingot was preserved in a box-type resistance furnace at 980 ◦C for 40 min.
Then, the secondary forging process was performed, with the reductions being 40%, 30%,
and 30% on the directions perpendicular to three orthogonal planes, respectively. Next,
these processes were repeated for a further two times. Reheating at 980 ◦C for 10 min was
conducted after every two steps of forging processes. Air cooling was adopted after this
secondary forging stage. The final dimensions of ingot was 185 mm × 46 mm × 30 mm.
The rectangular specimens were hot-rolled with a total height reduction of 60% through
12 passes on the rolling direction (RD). The final dimension of the rolled plate in all direction
was 425 mm × 50 mm × 12 mm, and the specimen was air-cooled after all passes.

The raw materials of the unaged and aged samples were all obtained from hot-rolled
plates. The mill model was a YZ-2310 two-high mill. The roll diameter of the mill was
310 mm, the maximum bite amount of the roll was 30 mm, and the rolling speed was
15 RPM, respectively. Three kinds of samples were assessed in this experiment. Two rough
samples were solution treated at 990 ◦C for 1 h and then cooled in the air. Subsequently, they
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were aged at 700 ◦C and 800 ◦C for 4 h separately, followed by air cooling (AC). Another
sample was left unaged. The geometric size of the tensile sample at room temperature is
shown in Figure 1. The tensile specimens with the size of 20 × 30 mm (parallel to RD) and
gauage length (L0) of 25 mm were assessed on a DDL50 universal testing machine along
the TD direction with the strain rate of 5 × 10−4s−1 at room temperature.
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Figure 1. Geometrical dimensions of the tensile specimens at room temperature.

The microstructure characteristics and the precipitation behavior of the samples were
assessed using scanning electron microscope (SEM), energy dispersive X-ray spectroscopy
(EDS), and transmission electron microscopy (TEM). Specimens used for TEM tests were
fabricated by the two-jet electro-chemical polishing processes using the electrolyte of 5%
perchloric, 35% butanol, and 60% methanol at −20 ◦C and 53 V, respectively. In this study,
The content of the equiaxed αP in the alloy was calibrated using Image Pro plus version
6.0 software.

3. Results
3.1. Microstructure Evolution during Aging Process

The SEM images of the as-casting microstructure are shown in Figure 2. The as-casting
alloy exhibits a typical Widmanstätten structure, and the average size of the prior β grain
is about 261 µm. In Figure 2a, clear triangular grain boundaries which is marked by a
yellow arrow can be seen at the prior β grain. In addition, in Figure 2b, large α phase
clusters are interlaced within the β grain. [17]. The SEM images of the alloy after the
rolling and different heat treatment systems are shown in Figure 3, respectively. Large β
grains and obvious β grain boundaries, as shown in Figure 1, have been broken down and
disappeared. The rolling state of the alloy exhibits the typical characteristics of a duplex
microstructure. Figure 3a shows that the equiaxed α-phase was mainly concentrated in
a linear form. Due to the dynamic recovery and recrystallization [18] during the rolling
process, a number of fine α lamellae were densely arranged in the equiaxed α grain gap [19].
Therefore, the rolled microstructure of the alloy was mainly composed of the equiaxed α
phase, the secondary strip α, and the residual β phase. The microstructure of the alloy sheet
clearly changed after aging. As shown in Figure 3b, compared with the rolled alloy, the
content of the equiaxed α phase reduced from 25% to 5%, respectively, while the content
of the β transition microstructure (lamellar α phase and grain boundary phase) increased
significantly. As shown in Figure 3b, after heat treatment, the content of equiaxed α phase
decreases from 25% to 5%, while the content of β transition structure (lamellar α phase
and grain boundary phase) significantly increases compared with the rolled alloy. After
increasing the aging temperature, the content of equiaxial α phase did not change much, as
shown in Figure 3c. Combined with the TEM images in Figure 4, it can be seen that the
secondary lamellar α phase markedly grows. The lamellar width of the secondary lamellar
α phase also increases with the increase in the aging temperature. It is known that the
size and content of the α lamellae can affect the yield strength by changing the distances
between the boundaries for dislocation motion. When comparing the TEM images of the
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unaged and aged alloys, it can be found that the entanglement and interlacing of the α
layer and the dislocation after rolling in the unaged alloys is not so clear. After aging at
700 ◦C in Figure 4b, the α lamellar prevent the dislocation movement, and dislocation itself
accumulates [20] at the boundary of the adjacent α lamellar crystals. With the increase in
the aging temperature, the interlacing effect observed between the dislocation and lamellar
is further enhanced in combination with Figure 4c,f, A high-density dislocation structure
similar to the dislocation wall is then formed as a result [21].
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3.2. Evolution Process of Nano-Precipitation

From Figure 4d–f, it can be seen that large-scale phase particles are generated during
the rolling and aging processes. Combined with the EDS diagram in Figure 5, it can be
clearly seen that silicon is enriched in the particles, and thus it can be preliminarily judged
as silicide. After the selected area electron diffraction (SAED) spot calibration, its structure
can be determined as the (Ti, Zr)5Si3 phase with a densely packed hexagonal structure,
and the size of this phase is 0.3–1.2 µm [22,23]. Most of these silicides are distributed
between the α lamellar phase boundaries, while a minor part is distributed at the boundary
edge of the equiaxial α phase. The SAED pattern of the spherical silicide is shown in
Figure 6b. After aging at different temperatures, the morphology of the spherical silicide
has no obvious change, but the size increases from 700 nm to 800 nm, respectively, with
the increase of temperature. Figure 7 shows another silicide in the alloy, which is fusiform
in shape, with a length-to-diameter ratio of 2.8 and a size of 100–200 nm, respectively.
The crystal structure was subsequently identified as the (Ti, Zr)6Si3 [24] phase after SAED
diffraction spot calibration.
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Additionally, the superlattice spots imply that the Ti3Al-ordered phase encompassing
a HCP structure precipitates in the HCP titanium matrix [25,26]. By comparing the charac-
teristics of Ti3Al(α2) phase aged at different temperatures, as shown in Figure 8, in the alloy
aged at 700 ◦C, the size of the second phase Ti3Al is too small to be counted, and the Ti3Al
particles show a state of aggregation. When aging temperature rose to 800 ◦C, the size of
the Ti3Al(α2) phase particles negligibly changed, and the originally aggregated particles
became more dispersed. Therefore, with the increase in the aging temperature, the size of
the Ti3Al(α2) phase increases and the particles become relatively dispersed as a result.
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3.3. Mechanical Property Analysis

Figure 9 displays the mechanical properties of Cast-A, R-A, 700-A, and 800-A at RT,
respectively, along with a set of experimental data, including the corresponding values of
the tensile property parameters, ultimate tensile strength (UTS), yield strength (YS), and
elongation (EL) are summarized in Table 1. The tensile strength (UTS) of the alloy was
increased from 1156 MPa to 1304 Mpa, respectively, when comparing the curves of the
unaged and 700 ◦C/4 h aging. When the aging temperature increased, the tensile strength
(UTS) of the alloy sheet decreased to about 50 MPa. On the other hand, when examining
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the alloy from R-A to 700-A, elongation decreased from 12.0% to 9.1%, respectively. With
further increases in the temperature, only little changes in elongation were observed.
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Table 1. Tensile properties of alloy sheets at room temperature. In order to make a clear mark for the
sample, the alloy in each state is divided into 1 * and 2 * two samples.

Alloys YS (MPa) UTS (MPa) EL (%)

Cast-A 1 * 951 1088 7.7
Cast-A 2 * 957 1079 4.2

Average 954 1084 6.0

R-A 1 * 1069 1156 12.0
R-A 2 * 1056 1148 10.5

Average 1063 1152 11.3

700-A 1 * 1178 1304 9.1
700-A 2 * 1222 1275 8.3

Average 1200 1290 8.7

800-A 1 * 1118 1246 8.8
800-A 2 * 1105 1230 9.0

Average 1112 1238 8.9

3.4. Fracture Morphology

The differences in the tensile strength and elongation are also accompanied with the
differences in fracture morphology. As shown in Figure 10, the tensile fracture morphology
of the as-cast alloy on the whole is a brittle fracture. In Figure 10a, pits on the surface
of the fracture were observed, which were mainly caused by the common defects of the
as-cast structure. In addition, obvious tearing edges were also present on the fracture
surface. Combined with the elongation, it can be thereby preliminarily judged as a brittle
fracture, and due to the coarse grains and obvious grain boundaries in the alloy, it is mainly
an intergranular fracture. Figure 10b shows that the uneven stepped edge is the typical
characteristic of a brittle fracture. Figure 11 shows the SEM images of tensile specimens at
room temperature under rolled and aged conditions. According to the overall morphology
of the fracture in Figure 11a, the surface of the fracture was smoother than that of the
as-cast state, and there was no obvious tearing edge due to the absence of coarse original
grains in the microstructure after hot processing. Combined with the table of mechanical
properties listed in Table 1, Figure 11b shows that the fracture mode is a ductile fracture
with a large number of dimples in the fracture. The globular incoherent silicides (Ti,Zr)6Si3



Metals 2023, 13, 1231 8 of 13

was considered as a brittle precipitate [26,27], which generally contributes to the expansion
of the quasi-cleavage area. The globular incoherent (Ti, Zr)6Si3 silicide plays the role of the
origin of micro cavities, from which these cavities grow and coalesce to form dimples [28].
During the aging process of 700 ◦C/4 h, as shown in Figure 11e, the number of dimples
decreased significantly, while the number of silicides also decreased. However, the biggest
change in the aging state compared with the rolling state was that the content of the lamellar
α structure increased. Therefore, these clear lamellar clusters can be observed in the tensile
fracture of the 700 ◦C/4 h aging state. These clusters increase strength and provide a
good degree of ductility. Therefore, after 700 ◦C/4 h aging, the alloy still maintains a high
elongation of 9.13%. After 800 ◦C/4 h aging, the size of dimples and the number of quasi
cleavage planes increased, while the number of dimples decreased.

Metals 2023, 13, x FOR PEER REVIEW 9 of 14 
 

 

silicides (Ti,Zr)6Si3 was considered as a brittle precipitate [26,27], which generally 
contributes to the expansion of the quasi-cleavage area. The globular incoherent (Ti, 
Zr)6Si3 silicide plays the role of the origin of micro cavities, from which these cavities grow 
and coalesce to form dimples [28]. During the aging process of 700 °C/4 h, as shown in 
Figure 11e, the number of dimples decreased significantly, while the number of silicides 
also decreased. However, the biggest change in the aging state compared with the rolling 
state was that the content of the lamellar α structure increased. Therefore, these clear 
lamellar clusters can be observed in the tensile fracture of the 700 °C/4 h aging state. These 
clusters increase strength and provide a good degree of ductility. Therefore, after 700 °C/4 
h aging, the alloy still maintains a high elongation of 9.13%. After 800 °C/4 h aging, the 
size of dimples and the number of quasi cleavage planes increased, while the number of 
dimples decreased. 

 
Figure 10. Tensile fracture morphology of the casting state. 

 
Figure 11. Tensile fracture morphology: (a–c) unaged; (d–f) aged at 700 °C for 4 h; and (g–i) aged at 
800 °C for 4 h. 

Figure 10. Tensile fracture morphology of the casting state.

Metals 2023, 13, x FOR PEER REVIEW 9 of 14 
 

 

silicides (Ti,Zr)6Si3 was considered as a brittle precipitate [26,27], which generally 
contributes to the expansion of the quasi-cleavage area. The globular incoherent (Ti, 
Zr)6Si3 silicide plays the role of the origin of micro cavities, from which these cavities grow 
and coalesce to form dimples [28]. During the aging process of 700 °C/4 h, as shown in 
Figure 11e, the number of dimples decreased significantly, while the number of silicides 
also decreased. However, the biggest change in the aging state compared with the rolling 
state was that the content of the lamellar α structure increased. Therefore, these clear 
lamellar clusters can be observed in the tensile fracture of the 700 °C/4 h aging state. These 
clusters increase strength and provide a good degree of ductility. Therefore, after 700 °C/4 
h aging, the alloy still maintains a high elongation of 9.13%. After 800 °C/4 h aging, the 
size of dimples and the number of quasi cleavage planes increased, while the number of 
dimples decreased. 

 
Figure 10. Tensile fracture morphology of the casting state. 

 
Figure 11. Tensile fracture morphology: (a–c) unaged; (d–f) aged at 700 °C for 4 h; and (g–i) aged at 
800 °C for 4 h. 
Figure 11. Tensile fracture morphology: (a–c) unaged; (d–f) aged at 700 ◦C for 4 h; and (g–i) aged at
800 ◦C for 4 h.



Metals 2023, 13, 1231 9 of 13

4. Discussion
4.1. Effect of Precipitation on the Overall Strength of the Alloy

The interaction mechanism between these precipitates and dislocations was analyzed
and explained through characterizing the samples using SEM, TEM, and the tensile test.
Two kinds of silicide have been defined in the previous article [28,29]. The structure of
these two silicides is a hexagonal structure. The chemical formula of large-size silicides is
(Ti,Zr)5Si3 (a = 0.7429, c = 0.5139), and the size ranges from 0.3~1.2 µm, respectively. The
chemical formula of the small-size silicide is (Ti,Zr)6Si3 (a = 0.7010, c = 0.3680), and the size
ranges from 100 nm to 200 nm, respectively. The precipitation state of the silicide will have
a certain effect on the strengthening of the alloy. The strengthening mechanism of the alloy
needs to be analyzed in the three stages of alloy rolling, 700 ◦C aging, and 800 ◦C aging,
respectively. The first is the rolling stage, Due to the rolling temperature of 980 ◦C, which is
close to the β transition point, the equiaxed α content can effectively controlled at about
25% after forging near β [30], meaning that the alloy can obtain a better match of strength,
plasticity, and toughness than the casting state. According to Table 1, the reason for the
obvious improvement in the strength and plasticity of the alloy after rolling is the change of
the Weissmann microstructure to a bimodal microstructure. Figure 12 shows that large-size
silicides were found between αp and αs. Additionally, no obvious nailing effects on the
silicide and dislocation entanglement were found in the microstructure of the rolled alloy.
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At 700 ◦C for 4 h, the increases in strength of the aged sheet can be attributed to
interface strengthening [31], interfacial silicide, and Ti3Al precipitation strengthening.
As shown in Figure 13a, a few dislocations were distributed inside and in between the
secondary lamellar α, which was combined with the dislocation strengthening formula:

τ = τ0 + αGbρ1/2

The parameters in the formula are expressed separately (ρ: dislocationdensity;
G : shearmodulus; b : Bergdahlvector; and : coefficient) [32]. It can be seen that τ
increases as ρ increases. Figure 13b shows that the dislocation cut through the silicide
particles, which thereby hinders the subsequent slip and produces a strengthening effect as
a result. Figure 13c shows that a small-size silicide (Ti,Zr)6Si3 was precipitated between
the αs, and there is an obvious dislocation entanglement around it. Some dislocations
were found to cut through the silicide particle. Therefore, when the dislocation encounters
particles and slips are obstructed, the external shear stress must therefore be increased to
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overcome the increase in the dislocation line tension caused by dislocation bending. Elastic
interaction occurs between the coherent stress field of the precipitated particles and the
stress field of dislocation, and certain strengthening effects occur when dislocation passes
through the coherent strain zone. Another nano precipitate, Ti3Al, is precipitated after
solution aging treatment. The selected area diffraction pattern indicates that the ordered α2
phase precipitated from the αmatrix. The dark-field micrograph of Ti3Al and its selected
area diffraction pattern are shown in Figure 8. where the particle size is small, certain
aggregation occurs, and the size of the Ti3Al particle cluster formed by the aggregation is
about 2 nm. Ti3Al particles can improve the strength of the matrix through the strain field
generated by the dislocation interaction [33].
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As the aging temperature rises to 800 ◦C, the content and size of the equiaxed α phase
negligibly changed. Compared with the alloy aged at 700 ◦C/4 h, the contribution of
the equiaxed α phase was deemed to be little. As shown in Figure 13d, a high-density
dislocation wall was formed between the lamellar phases, resulting in the production of a
clear dislocation strengthening effect. Figure 13e shows that no significant changes were
observed in the shape or size of the silicide. From Figure 13f, high-density dislocations
accumulated in the αp, which can markedly strengthen the matrix as a result. Combined
with Table 1, the most obvious change observed after the aging temperature rose was
the decrease in strength, especially in the yield strength, which decreased by 80 MPa on
average. This was mainly because the yield strength, i.e., the dislocation overcomes the
stress required by the surrounding Coriolis air mass. As the temperature increases, the
nailing effect of the Coriolis air mass on the dislocation is weakened, and the force required
for dislocation slip is subsequently reduced, which is represented by the reduction in the
yield strength on a macro level. In addition, the α2 phase was also observed within the
matrix of the alloy aged at 800 ◦C/4 h, as shown in Figure 8. The size of the nanoscale
precipitated phase did not change much, but the distribution state became more dispersed.
As a result, the motion of dislocation was hindered by the dispersed precipitated particles,
signifying that the strength of the alloy will be significantly improved. Previous studies
have stated that the dispersion of the α2 phase with a fine size distribution contributes to
the strengthening of the alloy [34].
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4.2. The Precipitate Effects on the Overall Ductility in the Alloy

The ductility of the whole alloy was closely related to the change in the alloy matrix
and the second phase. The change in the ductility of the alloy was also divided into
three stages. The first was the change from the as-cast stage to the rolled stage, resulting in
significant improvements to the ductility of the alloy. With the observation of changes in
the microstructure of the alloy from the Widmanstätten structure to a binary microstructure,
this thereby marks the clear improvements in ductility. After aging at 700 ◦C for 4 h,
the elongation in the alloy sheet was found to be lower than that in the rolled state.
Furthermore, Figure 10b,c, show that the content of the equiaxed α phase decreased from
25% to 5%, respectively, and that the content of the β transition microstructure clearly
increased. Therefore, the elongation of the alloy decreased as a result. The α2 (Ti3Al) phase
was formed in the alloy. Due to the anisotropy of the α2 phase, it is easy to localize slip,
resulting in the poor ductility of the alloy. When aging temperature was increased to 800 ◦C,
as shown in Figure 3, the morphology and content of the equiaxed α phase negligibly
changed. In addition, the morphology and size of the globular incoherent silicide did not
change much compared with that observed in 700 ◦C, indicating that it has little influence
on the ductility of the alloy. However, as shown in Figure 8, the distribution of the α2 phase
in the matrix became more diffuse. Combined with the previous researches, the α2 phase,
with a small size and uniform precipitation distribution in the matrix not only contributes
to the strengthening of the alloy [35], but also does not reduce the ductility of the alloy,
which is consistent with the experimental results.

5. Conclusions

In this study, the strength of the alloy was greatly improved by the aging treatment.
Through the characterization and analysis of the microstructure, phase precipitation behav-
ior, dislocation slip characteristics, and fracture morphology, the strengthening and tough-
ening mechanisms of the alloy were revealed. The following conclusions can be drawn:

(1) Compared with the as-cast alloy, the microstructure of the matrix changes from the
Weihtenstein structure to a duplex structure after rolling. The primary β grains are
broken, the content of equiaxed α phase is 25%, and the secondary lamellar α phase is
formed. After solution at 990 ◦C and aging at 700 ◦C, the content of equiaxed α phase
decreases to about 5%;

(2) The strength of the new multicomponent near-alpha titanium alloy is improved by
aging at 700 ◦C for 4 h. The UTS increased by 12.0% (from 1152 MPa to 1290 MPa,
respectively), and the elongation decreased by 2.7% (from 11.3% to 8.3%, respectively).
With increasing the aging temperature to 800 ◦C, the elongation slowly increased
(from 8.3% to 8.9%, respectively);

(3) The strength of the alloy is enhanced by the dispersion strengthening of the dual-
scale silicide precipitates, but this effect weakens with the growing up of the grain
size. The Ti3Al (α2) phase precipitates after aging exhibit adverse effects on the
ductility. However, the dispersion of the Ti3Al (α2) phase particles is conducive to the
recovery of the ductility at 800 ◦C aging. Although this paper ensures the plasticity
and improves the strength of the alloy to a certain extent, the thermal stability after
long-term use must also the focus of research if it is to be applied to aero-engine
components, and needs to be further explored in the future.
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