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Abstract: Modern electronic information technology has led social life into inevitable electromagnetic
pollution, making microwave absorbing materials more and more important. Herein, dielectric-
conductive ZnO/C hybrid composite absorbents were prepared by two-step carbonization with ZnO
powders and glucose as critical materials. The electrical conductivity, complex permittivity, and
reflection loss were analyzed to study the dielectric and microwave absorption properties. Results
show that the prepared ZnO/C composite absorbents exist in the form of rod-like ZnO dispersed
in the irregular block carbon, and the complex permittivity of the composite absorbents can be
adjusted via varying the carbonization temperature. The minimum reflection loss of −25.64 dB
is achieved at 1.8 mm thickness for the composite absorbent with 50 wt.% absorbent content as
the final carbonization temperature is 750 ◦C, and the optimum effective absorption bandwidth is
2.21 GHz at 9.64–11.85 GHz. The excellent microwave absorption properties of ZnO/C composite
absorbents are attributed to the combination actions of dipole polarization, conductance loss, and
interface polarization, which is significant for the purposeful design of superior microwave-absorbing
materials with dielectric and conductive absorbents.

Keywords: carbonization; complex permittivity; dielectric-conductive coupling; microwave absorp-
tion; ZnO/C absorbents

1. Introduction

The extensive applications of electromagnetic waves play important roles in the
improvement of military and civil electronic equipment [1,2]. However, more attention
has also been paid to the electromagnetic interference problems, which not only lead to
the failure of electronic device but also endanger the health of humans [3]. Therefore,
eliminating or attenuating the incident electromagnetic waves as much as possible has
attracted more attention of the researchers all over the world [4,5].

Microwave absorbents have become one of the efficient ways to solve the problems of
electromagnetic radiation, which makes them great values in the military and civil fields.
Common microwave absorbents include ferromagnetic absorbents, carbon absorbents,
ceramic absorbents, etc. Among these candidates, carbon absorbents have attracted ex-
tensive attentions due to their low cost, light weight, and favorable electrical conductivity.
However, the actual applications of pure carbon materials have been limited because of
their intrinsic high electrical conductivity and the resulting impedance mismatch [6]. By
comparison, these problems can be efficiently solved by the application of composite ab-
sorbents, and a series of studies on carbon series composite absorbents have also been
reported [7–9]. Park et al. prepared Fe3O4@C composite nanoparticles with yolk-shell
structure with the hydrothermal polymerization carbonization method [10]. It was found
that the multiple reflections and interfacial polarization effects caused by the core-cavity
and cavity-shell interfaces greatly improved the microwave absorption properties. Xu et al.
prepared TiO2/C composite absorbents through a one-step hydrogenation-carbonization
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method, and the prepared composite absorbents exhibit excellent microwave absorption
properties with the minimum reflection loss of −73.2 dB [11]. Up to now, the composite
absorbents with carbon component present favorable electromagnetic characteristics com-
posited with other materials, and it seems to be a much more effective way to adjust the
complex permittivity and improve microwave absorption properties.

Recently, the research of carbon series absorbents using biomass materials as carbon
sources has attracted extensive attention [12–14]. Among them, glucose [15], sucrose [16],
and other biomass materials possess great application potential in the field of microwave
absorption due to their low cost, wide sources, and safe chemical components. Wu et al.
prepared magnetite dendrite (MDS)/sugar carbon (SC) nanocomposites with sucrose
as carbon source and Fe2O3 as magnetite precursor, and the optimal reflection loss is
−49.90 dB (d = 1.9 mm) [16]. Meanwhile, ZnO has been widely used in the fields of
solar cells, photocatalysis, electronics, and gas sensors as a type of dielectric material with
simple preparation, controllable structure, and wide band gap (3.37 eV). However, the
application of ZnO as microwave absorbent has been limited due to its low electrical
conductivity [17,18].

In view of the evident difference in intrinsic dielectric properties between ZnO and
carbon materials, dielectric-conductive coupled ZnO/C composite absorbents could not
only take advantage of the excellent dielectric characteristics of ZnO but also effectively ad-
just the impedance matching of carbon materials. Therefore, this study proposes to prepare
ZnO/C composite absorbents by a simple two-step carbonization method. Specifically, the
composite absorbents were in a negative pressure state to discharge the gas timely in the
process of pre-carbonization, and the atmosphere of inert gas was given to improve the
critical temperature of the carbothermal reduction reaction during the final carbonization.
The thermogravimetric, X-ray diffraction, Raman spectra, X-ray photoelectron spectroscopy,
morphology, complex permittivity, and electrical conductivity of the prepared dielectric-
conductive coupled ZnO/C composite absorbents with various carbonization temperatures
were characterized, and the microwave absorption properties were systematically assessed.

2. Materials and Methods
2.1. Materials

Glucose (C6H12O6, 99%) and ethylenediamine (EDA, C2H8N2, 98%) were purchased
from Tianjin Yili Chemical Reagent Factory, Tianjin, China, and Tianjin Damao Chemical
Reagent Factory, Tianjin, China, respectively. Zinc nitrate (Zn(NO3)2·6H2O, 99%) and
ethanol were acquired from Tianjin Fengchuan Chemical Reagent Technology Co., Ltd.,
Tianjin, China, and polyvinyl alcohol (PVA, [C2H4O]n, 95%) was supplied by Foshan
Shangshan Chemical Co., Ltd., Foshan, China. All the chemicals were analytical grade and
used as received.

2.2. Preparation of ZnO Powders

ZnO was prepared by the hydrothermal method. Firstly, 1 g Zn(NO3)2·6H2O was
added to the deionized water at a concentration of 0.0625 mol/L, and EDA was then added
to the Zn(NO3)2 solution slowly with magnetic stirring, and the molar ratio of Zn2+ to EDA
was 1:1. Next, the mixed solution was transferred into a reaction tank and held in an oven
at 120 ◦C for 10 h. Following this, the white precipitates were centrifuged and washed for
three times with ethanol and deionized water. Finally, the samples were dried, ground, and
screened using a 100-mesh screen, and thus the ZnO was obtained.

2.3. Preparation of ZnO/C Composite Absorbents and C Powders

A beaker containing 30 mL polyvinyl alcohol solution with 1 wt.% PVA content was
placed on a magnetic stirrer. Then, 8 g glucose powders were added slowly, and continuous
stirring of 10 min at 30 ◦C was performed to fully dissolve the glucose. Subsequently,
0.5 g ZnO was slowly added to the above solution and stirred for 30 min. After that, the
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temperature of the solution was raised to 45 ◦C, and the water was evaporated to obtain
the precursor solution.

The precursor solution needs to be cured before carbonization. In the following, the
above precursor solution was put into a vacuum oven at 180 ◦C for 10 h, and the sample
was recorded as PZO. Then, the PZO sample was fully ground and placed in the tubular
furnace for carbonization treatment. In the pre-carbonization stage, the tubular furnace was
vacuum pumped to discharge the gas generated in the reaction process. The heating rate
was set at 2 ◦C/min, and the pre-carbonization temperature and time of all the samples are
400 ◦C and 60 min, respectively. In the stage of final carbonization, the sample obtained
above was carbonized with the heating rate of 5 ◦C/min in argon atmosphere at 650 ◦C,
700 ◦C, and 750 ◦C. The ZnO/C composite absorbents were mixed with paraffin, and the
corresponding paraffin-matrix composite samples filled with 50 wt.% ZnO/C absorbent
content were named as CZO50-650, CZO50-700, and CZO50-750, respectively. Meanwhile,
the paraffin-matrix composite samples filled with 40 wt.% and 60 wt.% ZnO/C absorbent
(carbonized at 750 ◦C) content were named as CZO40-750 and CZO60-750. In addition, pure
glucose was carbonized to obtain carbon powders in the same experimental process. The
parameters of carbonization and ZnO/C absorbent content are shown in Table 1, and the
synthesis process of the investigated ZnO/C composite absorbents is exhibited in Figure 1.

Table 1. Carbonization parameters of ZnO/C composite absorbents.

Samples Final Carbonization
Temperature (◦C)

Final Carbonization
Time (min)

Absorbent Content
(wt.%)

CZO50-650 650 90 50
CZO50-700 700 90 50
CZO50-750 750 90 50
CZO40-750 750 90 40
CZO60-750 750 90 60
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Figure 1. Schematic illustration of the synthesis process of ZnO/C composite absorbents.

2.4. Characterization

The synchronous thermal analyzer (SDT650, TA instruments, New Castle, DE, USA)
was used to analyze the thermal stability of the samples. The phase composition was
detected by X-ray diffraction (XRD, Bruker AXS D8) using Cu Kα radiation (40 kV, 40 mA)
at a scanning speed of 10◦/min, and the element composition was further verified by
X-ray photoelectron spectroscopy (XPS, K-Alpha+, Thermo Scientific, Waltham, MA, USA).
Raman spectroscopy (Nanofider 30) was used to evaluate the samples using hydrogen
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ion laser with a wavelength of 632.8 nm. The surface morphology was characterized by
scanning electron microscopy (SEM, Hitachi S-4800), and the element distribution was
performed by the energy spectrum analyzer (EDS). In addition, the vector network analyzer
(E8362B, VNA, Agilent, Palo Alto, CA, USA) was used to measure the complex permittivity
in the frequency range of 8.2–12.4 GHz with the sample size of 22.86 × 10.16 × 2.0 mm by
the waveguide method. The direct current (DC) conductivity of the samples was tested
with a four-probe resistivity tester (HPS2662).

3. Results and Discussion
3.1. Thermogravimetric Analysis

Figure 2 shows the thermogravimetric (TG) and derivative thermogravimetric (DTG)
curves of glucose and PZO samples. It can be observed that the TG curve of glucose tends
to be flat as the temperature is higher than 404 ◦C, indicating that the glucose has been well
decomposed and carbon products are obtained. In addition, a rapid decline in the quality
of PZO between 783 ◦C and 925 ◦C can be observed, and the phenomenon can be explained
by the carbothermal reduction reaction for our investigated ZnO/C composite absorbents,
which is shown in Equation (1) and it is described as follows [19,20]:

ZnO(s) + C(s)
∆→ Zn(g) + CO(g) (1)
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Moreover, the content of residual PZO is 25 wt.% as the temperature is higher than
925 ◦C, which is much higher than that of the carbon products (12 wt.%) obtained after the
pyrolysis of glucose, indicating the existence of ZnO in the sample.

3.2. XRD, Raman, and XPS Spectrum Analysis

Figure 3a–c shows the XRD patterns of ZnO/C composite absorbents with different
final carbonization temperatures in the angular range from 10◦–80◦, 10◦–30◦, and 38◦–46◦,
respectively. As shown in Figure 3a, the XRD curves of the samples cured at 180 ◦C and
pre-carbonized at 400 ◦C met the standard characteristic peaks of ZnO (JCPDS No. 36-1451).
Meanwhile, the diffraction peaks of ZnO could also be observed in the samples obtained by
the final carbonization temperature of 650 ◦C, 700 ◦C, and 750 ◦C. However, the intensity of
ZnO diffraction peaks increases firstly and then decreases with the increase in carbonization
temperature. In addition, a large amount of organic matter for the samples cured at
180 ◦C and pre-carbonized at 400 ◦C can be observed in terms of the wide diffraction
peak at 2θ = 19.77◦ and 2θ = 13.04◦. As shown in Figure 3b,c, the wide diffraction peaks
corresponding to (002) and (100) of the samples after two-step carbonization treatment can
be observed, and they belong to amorphous carbon [21–23]. Furthermore, the diffraction
peak intensity of the sample at (002) and (100) crystal planes increases evidently with the
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increase in the final carbonization temperature, which can be attributed to the increase in
the graphitization degree for the carbon products.
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Raman spectroscopy of ZnO/C composite absorbents with different carbonization
temperatures is shown in Figure 3d. It can be observed that the obvious D and G bands in
the Raman spectrum of the samples after two-step carbonization can be observed, indicating
the formation of partial graphitized structure during the process of final carbonization.
It is well known that the ratio of I(D band)/I(G band) could characterize the disorder and
graphitization degrees of carbon materials, and the lower I(D band)/I(G band) values represent
fewer lattice defects and a much higher graphitization degree [24,25]. Figure 3e exhibits
the I(D band)/I(G band) values of ZnO/C composite absorbents fabricated with different
carbonization temperatures. It is evident that the corresponding I(D band)/I(G band) values of
the samples with final carbonization temperatures of 650 ◦C, 700 ◦C, and 750 ◦C are 1.0623,
1.0321, and 1.0061, respectively. Therefore, the graphitization degree presents an increasing
trend with increasing the carbonization temperature, which is consistent with the XRD
results as shown in Figure 3a–c.

To further study the element composition and chemical state of the samples, XPS
was carried out and the results are shown in Figure 4. The total spectra in Figure 4a
illustrates the existence of Zn, O, and C elements, indicating the successful preparation
of ZnO/C composite absorbents by the two-step carbonization method. As shown in
Figure 4b, the peaks of 1022.15 eV and 1045.16 eV correspond to Zn 2p3/2 and Zn 2p1/2
orbits, respectively [26]. In addition, three peaks with binding energies of 284.22 eV,
285.14 eV, and 289.75 eV, corresponding to C-C bond, C-O bond, and C=O bond, can be



Metals 2023, 13, 1220 6 of 15

observed for the C 1s spectrum in Figure 4c. It is worth mentioning that the C-O and C=O
bonds mainly come from the residual organic matter during the carbonization process of
glucose. Moreover, the symmetrical peaks of the XPS spectrum corresponding to O 1s is
observed in Figure 4d. The peak at 532.10 eV is related to the original lattice oxygen of ZnO,
while the peak at 535.81 eV represents C=O bond, which is related to the chemisorption
oxygen caused by surface hydroxyl groups [27].
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3.3. Surface Morphology and EDS Analysis

Figure 5 exhibits the SEM and EDS images of the prepared samples. As shown in
Figure 5a, the ZnO with the length of ~2 µm and the diameter of ~0.2 µm prepared by
the hydrothermal method presents a uniform rod-like structure. The carbon in the pre-
carbonized ZnO/C composite absorbents exists in the form of an irregular block, and the
rod-like ZnO particles are randomly distributed in the block carbon, as shown in Figure 5b,c.
Because of the intensive stir of ZnO and glucose with the cohesive action of PVA solution in
the preparation process, a large amount of glucose adheres to the surface of ZnO particles.
However, as many more glucose molecules adhere to the ZnO surface, glucose molecules
also bond with each other, resulting in the formation of large carbon blocks. In addition, it
is speculated that more rod-like ZnO exists in flake carbon, and thus a compact composite
structure is formed.

As shown in Figure 5d–i, the SEM images of ZnO/C composite absorbents were
obtained by two-step carbonization with different temperatures, and the rod-like ZnO still
exists in the interior of irregular block carbon. The distribution of Zn, C, and O elements in
the EDS images as observed in Figure 5j demonstrates the existence of ZnO and carbon in
the ZnO/C composite absorbents. It is worth noting that the O element was distributed in
the whole image of the scanned surface, indicating the existence of many oxygen-containing
functional groups in ZnO/C composite absorbents, and it is consistent with the analysis
results of XPS spectrum, as shown in Figure 4.
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3.4. Complex Permittivity and Electrical Conductivity

Figure 6 shows the curves of complex permittivity and loss tangent (tanδε) of ZnO/C-
filled paraffin composite samples with frequency at different carbonization temperatures
and ZnO/C absorbent content. As shown in Figure 6a,b, as the temperature increases
from 650 ◦C to 700 ◦C and 750 ◦C, the real part values of complex permittivity are in the
range of 9.71–10.23, 12.78–13.22, and 15.35–16.16, while the imaginary part values of the
corresponding complex permittivity are in the range of 0.72–0.94, 0.84–1.47, and 4.04–4.49,
respectively. The real and imaginary parts of complex permittivity increase evidently with
the increase in carbonization temperature from 650 ◦C to 750 ◦C. Figure S1 in the attach-
ment shows the complex permittivity of the samples after curing treatment at 180 ◦C and
pre-carbonization treatment at 400 ◦C. The complex permittivity of the samples without
two-step carbonization is quite low, which is almost close to the complex permittivity of
the paraffin. Therefore, the precursor without carbonization treatment presents poor mi-
crowave absorption properties. Figure 6d,e shows the complex permittivity of carbon-filled
paraffin composite samples or ZnO/C-filled paraffin composite samples with different C or
ZnO/C absorbent content. Interestingly, although the complex permittivity of ZnO-filled
paraffin composite sample (as shown in Figure S2) is much lower, the complex permit-
tivity of ZnO/C-filled paraffin composite samples is significantly improved. In addition,
the tanδε values of the samples are calculated according to the complex permittivity of
ZnO/C-filled paraffin composite samples and C-filled paraffin composite samples, which
are presented in Figure 6c,f. It can be observed that the tanδε of the samples increases with
the increase in the final carbonization temperature and the ZnO/C absorbent content.

Figure 7a shows the DC conductivity as the final carbonization temperature of ZnO/C-
filled paraffin composite samples are 650 ◦C, 700 ◦C and 750 ◦C. With the increase in
the final carbonization temperature, the DC conductivity curve of the samples shows an
upward trend, which is ascribed to the increased graphitization degree of carbon products.
In addition, it can be seen from Figure 7b that the DC conductivity increases with increasing
ZnO/C absorbent content, and the DC conductivity of C-filled paraffin composite samples
is significantly higher than those of ZnO/C-filled paraffin composite samples. As is known
to all, the increase in DC conductivity could significantly improve the conductance loss
ability and thus enhance their microwave absorption properties [28,29]. Therefore, the
increase in graphitization degree and ZnO/C absorbent content obviously affects the DC
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conductivity of the samples, playing an important role in regulating their microwave
absorption properties.
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3.5. Microwave Absorption Properties

According to the transmission line theory, the reflection loss of ZnO/C (C)-filled
paraffin composite samples can be calculated. The reflection loss is given by the following
relationships [30]:

Zin = Z0(µr/εr)
1/2tanh[j(2π f d/c)(µrεr)

1/2] (2)
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RL = 20lg|(Zin − Z0)/(Zin + Z0)| (3)

where Zin and Z0 (Z0 = 377 Ω) are the input impedance and the impedance of free space.
The µr (µr = µ′ − iµ′′ ) and the εr (εr = ε′ − iε′′ ) indicate the complex permeability and the
complex permittivity, respectively [31]; f is the frequency; d is the thickness; c is the speed
of light in vacuum (3 × 108 m/s).

Figure 8a–c exhibits the calculated reflection loss of ZnO/C-filled paraffin composite
samples with different final carbonization temperatures. As shown in Figure 8a, the mi-
crowave absorption performance of the sample is poor when the carbonization temperature
is 650 ◦C. As the carbonization temperature increases to 700 ◦C, the minimum reflection
loss reaches −5.50 dB (d = 1.8 mm) in 11.46 GHz, which is exhibited in Figure 8b. By
comparison, the reflection loss achieves −25.64 dB (d = 1.8 mm) and the corresponding
effective absorption bandwidth reaches 2.21 GHz in 9.64–11.85 GHz when the carboniza-
tion temperature reaches 750 ◦C, as shown in Figure 8c. From the 3D mapping surface in
Figure 8d, it can be observed that the frequency corresponding to the optimal reflection loss
moves to a lower frequency region with increasing the sample thickness. This phenomenon
can be illustrated by quarter wavelength theory, and the corresponding formula is given as
follows [27]:

tm =
nc

4 fm
√

µrεr
(n = 1, 3, 5, . . .) (4)

where tm is the matching thickness, c is the vacuum velocity, and fm is the matching
frequency. As can be seen form Formula (4), the matching thickness and the matching
frequency presents the opposite trend. Figure 8c,e,f presents the reflection loss of the
samples filled with 40 wt.%, 50 wt.%, and 60 wt.% ZnO/C absorbent content. Compared
with the sample with 40 wt.% and 60 wt.% ZnO/C absorbent content, the ZnO/C-filled
paraffin composite sample filled with 50 wt.% absorbent content presents the favorable
reflection loss of −25.64 dB and optimal effective absorption bandwidth of 2.21 GHz.
Table 2 exhibits the microwave absorption properties of ZnO/C composite absorbent and
some other reported composites filled with ZnO or C absorbents [32–40]. In contrast,
the investigated ZnO/C composite absorbent in this work presents favorable microwave
absorption properties.

Impedance matching and attenuation coefficient are important parameters in evaluat-
ing microwave absorption properties of the investigated microwave absorption materials.
The impedance matching (|Z| = |Zin|/Z0) with different carbonization temperature and
ZnO/C absorbent content calculated by Formula (2) is shown in Figure 9a,c, and the favor-
able impedance-matching values appear in |Z| = 1 (black line in Figure 9a,c). As shown in
Figure 9a, the impedance matching of ZnO/C-filled paraffin composite samples presents a
decreasing trend with the final carbonization temperature increases from 650 ◦C to 700 ◦C
and 750 ◦C, and the corresponding values vary in the range of 0.82–5.10, 0.66–3.72, and 0.64–1.20,
respectively. Compared with ZnO/C-filled paraffin composite samples with 40 wt.% and
60 wt.% ZnO/C absorbent content, the sample filled with 50 wt.% ZnO/C absorbent con-
tent shows the most favorable impedance matching, as shown in Figure 9c. In addition,
the attenuation coefficient is used to evaluate the attenuation ability of the material, and
the higher attenuation coefficient represents the stronger attenuation ability [41,42]. The
calculating formula of the attenuation coefficient is given as follows [39]:

α =

√
2π f
c
×

√
(µ′′ ε′′ − µ′ε′)2 +

√
(µ′′ ε′ + µ′ε′′ )2 (5)

Figure 9b,d present the attenuation coefficient of ZnO/C-filled paraffin composite
samples with different carbonization temperature and ZnO/C absorbent content, respec-
tively. As shown in Figure 9b,d, the attenuation coefficient increases continuously with
the increase in carbonization temperature and ZnO/C absorbent content, and the sample
CZO60-750 presents the highest attenuation coefficient. Based on the above comprehensive
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analysis of the impedance matching and attenuation coefficient, the sample with final
carbonization temperature of 750 ◦C and 50 wt.% absorbent content exhibits the most fa-
vorable reflection loss due to its excellent impedance-matching characteristic and favorable
microwave attenuation ability.

The schematic diagram of microwave absorption mechanisms of ZnO/C-filled paraffin
composite samples is shown in Figure 10. Firstly, the conductive network structure increases
the conductance loss of the investigated ZnO/C composite absorbents [43]. In addition,
ZnO and C form dielectric-conductivity coupling structure, the dipole polarization effect
of ZnO and the interfacial polarization effect among ZnO, carbon, and paraffin greatly
improve the microwave absorption properties. Furthermore, the multiple reflection of
electromagnetic waves among different absorbents furtherly promotes the loss capability
of the incident electromagnetic waves [44]. Finally, a unique micro capacitor structure
comprised of lots of parallel plates appears in the ZnO/C composite absorbent, which
enhances the loss capability. Generally, the excellent microwave absorption properties of
the investigated ZnO/C composite absorbents come from the combined action of dipole
polarization, conductance loss, interface polarization, and multiple reflection.
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Table 2. Microwave absorption properties of ZnO/C composite absorbent and some other reported
composites filled with ZnO or C absorbents.

Materials Thickness/mm
The Minimum

Reflection
Loss/Db

Bandwidth
(<−10 Db)/GHz Ref.

Carbon fibers 2.50 −49.4 10.8 [32]
Graphene 3.00 −4.30 4.32 [33]

CNT 2.00 −47.70 1.7 [34]
3D carbon

aerogel 2.50 −41.00 5.24 [35]

PEG@CMF/rGO/MoS2 2.10 −32.49 6.16 [36]
ZnO 3.10 −7.00 0 [37]

ZnO/Ni 3.00 −12.86 — [38]
ZnO/BaFe12O19 4.50 −48.60 2.30 [39]
Fe3O4@ZnO/RGO 4.50 −34.00 ~2.00 [40]

ZnO/C 1.80 −25.64 2.21 This work
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Figure 10. Schematic illustration for microwave absorption mechanisms of ZnO/C-filled paraffin
composite samples.

4. Conclusions

In summary, ZnO/C composite absorbents were prepared by a two-step carboniza-
tion method, and the regulation mechanism of the final carbonization temperature on
the microwave absorption properties of ZnO/C composite absorbents was studied. The
dielectric-conductive coupling structure composed of ZnO and C leads to the enhancement
of interface polarization, which greatly increases the microwave absorption properties.
Compared with other samples, ZnO/C-filled paraffin composite samples with final car-
bonization temperature of 750 ◦C and 50 wt.% absorbent content presents the appropriate
complex permittivity, excellent impedance-matching characteristic, and favorable atten-
uation ability, indicating the impressive microwave absorption properties with a mini-
mum reflection loss of −25.64 dB (d = 1.8 mm) and the maximum effective bandwidth of
2.21 GHz (RL < −10 dB, 9.64–11.85 GHz). This study shows that the composite comprised
of dielectric absorbent and conductive absorbent can hopefully effectively control the
impedance-matching characteristic and microwave attenuation ability, which is significant
for the purposeful design of superior microwave-absorbing materials with dielectric and
conductive absorbents.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/met13071220/s1, Figure S1: Complex permittivity of the samples
after curing treatment at 180 ◦C and pre-carbonization treatment at 400 ◦C. Figure S2: Complex
permittivity of ZnO-filled paraffin composite sample.
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