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Abstract: Photocatalytic technology based on the specific band structure of semiconductors offers a
promising way to solve the urgent energy and environmental issues in modern society. In particular,
hydrogen production from water splitting over semiconductor photocatalysts attracts great attention
owing to the clean source and application of energy, which highly depends on the performance
of photocatalysts. Among the various photocatalysts, TiO2 has been intensively investigated and
used extensively due to its outstanding photocatalytic activity, high chemical stability, non-toxicity,
and low cost. However, pure TiO2 has a wide band gap of approximately 3.2 eV, which limits its
photocatalytic activity for water splitting to generate hydrogen only under ultraviolet light, excluding
most of the inexhaustible sunlight for human beings. Fortunately, the band gap of semiconductors
can be manipulated, in which introducing oxygen defects is one of the most effective measures to
narrow the band gap of titanium oxides. This review considers the fundamentals of photocatalytic
water splitting for hydrogen production over TiO2, discusses the latest progress in this field, and
summarizes the various methods and strategies to induce oxygen defects in TiO2 crystals. Then, the
next section outlines the modification approaches of oxygen-deficient titanium oxide (TiO2−δ) to
further improve its photocatalytic performance. Finally, a brief summary and outlook of the studies
on TiO2−δ photocatalysts for water splitting to produce hydrogen are presented.
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1. Introduction

The exploitation and utilization of fossil fuels, such as coal, oil, and natural gas,
facilitates the development of industrialization and urbanization. However, fossil fuels
are non-renewable resources with limited reserves, which will certainly become scarce. In
addition, the use of fossil fuels has dramatically induced negative effects on the ecological
environment. For instance, carbon dioxide emitted during fossil fuel burning is one of the
main greenhouse gases. The industrial by-products and wastes cause severe pollution to
the environment. Some pollutants even harm human health by accumulating through the
food chain [1,2]. Hence, it is necessary and urgent to develop sustainable energy to replace
fossil fuels. Renewable energy sources, such as solar energy, wind power, and geothermal
power, are being developed and widely used. However, the replacement of fossil fuels still
remains elusive due to the restriction on techniques and the economy [3–5].

Among the many candidates, hydrogen energy is considered as one of the most
promising energy carriers. Hydrogen is one of the most abundant elements on earth, and
hydrogen energy can be obtained from a variety of natural resources. Moreover, hydrogen
has superb combustibility, a high ignition point (585 ◦C), and a high heat of combustion
(1.42 × 105 kJ·kg−1). Compared with most of the common fuels, it has unparalleled su-
periority (see Table 1). Additionally, the combustion product of hydrogen contains only
water (see Equation (1)), while the burning of fossil fuels will produce a large quantity
of carbon dioxide, sulfur oxide, nitrogen oxide, and so on, which are associated with a
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series of severe environmental issues, including greenhouse effects, photochemical smog,
and acid rain [6,7]. Comparatively, hydrogen is certainly a clean, efficient, and sustainable
energy source with tremendous prospects for development. Nowadays, more than 95% of
hydrogen in industry is produced from fossil energy, such as natural gas, petroleum, and
coal. However, these traditional processes for hydrogen production have low efficiency and
emit a large amount of exhaust gases such as carbon dioxide [7–9]. Producing hydrogen by
water electrolysis is also an important method to prepare hydrogen on a large scale, but it
will consume a large amount of electric energy [10,11]. Fortunately, the emergence of photo-
catalytic technology provides a new option for hydrogen production: producing hydrogen
by photocatalytic water splitting. The abundant water resources and inexhaustible solar
energy on Earth provide significant advantages for hydrogen production methods [12].

H2 (g) +
1
2

O2 (g) = H2O (l)→→ ∆H = −285.8 kJ·mol−1 (1)

Table 1. Heat of combustion and ignition points of some commonly used fuels [13].

Fuels Heat of Combustion
(kJ·mol−1)

Heat of Combustion
(kJ·kg−1)

Ignition Point
(◦C)

hydrogen 285.8 1.42 × 105 585
coal - 8.36 × 103~3.06 × 104 300~700

gasoline - 4.31 × 104 427
diesel - 4.26 × 104 220

kerosene - 4.31 × 104 80
natural gas - 3.89 × 104 kJ·m−3 650

wood - 1.2 × 104 200~290
ethanol 1366.8 2.97 × 104 12

methane 890.3 5.55 × 104 538
butane 2653 4.56 × 104 365
acetone 1788.7 3.08 × 104 465
graphite 393.7 3.28 × 104 ~650

Photocatalysts are the key for producing hydrogen efficiently from the photolysis
of water. In literature, TiO2 was the first reported photocatalyst, which has been studied
extensively and already applied in some specific areas due to its high photocatalytic activity,
non-toxicity, good stability, low cost, and so on. Since the 1990s, the TiO2 photocatalyst
has made great progress in the fields of photodegradation of environmental pollutants
and photocatalytic water splitting to produce hydrogen [14–16]. However, the utilization
rate of solar energy by TiO2 photocatalyst is very low due to the fact that TiO2 can be
excited only by short-wavelength ultraviolet light, which accounts for only approximately
5% of solar light. This drawback urges scientists to develop methods to modify TiO2
photocatalysts which can be driven by visible light. Among them, ion doping, construct-
ing heterojunctions, noble or transition metals decoration, dye sensitization, structural
designing, and construction of oxygen defects have proven effective strategies [17–20]. In
particular, the construction of oxygen defects is one of the most efficient ways to manipulate
the band gap of titanium oxides. Literature surveys indicate that oxygen-deficient titanium
oxide (TiO2−δ) can absorb more visible light than stoichiometric TiO2, and the formation
of oxygen defects in titanium oxide could also enhance its electrical conductivity, thus
facilitating the transfer of photogenerated electrons [21,22]. As a result, many TiO2−δ-based
photocatalysts with superb performance have been developed to generate hydrogen from
water splitting [23,24]. In fact, oxygen defects are often consciously or unconsciously intro-
duced into TiO2 in various modifying processes. Hence, some approaches, including but
not limited to ion doping, deposition of noble metals, and loading on supports, are often
adopted to enhance the photocatalytic activity of TiO2 jointly with introducing oxygen
defects [25–29].
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Therefore, in this review, the mechanism of photocatalytic hydrogen production by
water splitting over TiO2 is firstly discussed in detail. Then, the effect of introducing
oxygen defects on the photocatalytic activity of TiO2 is analyzed. The last part of this
section provides a brief overview of the research progress in photocatalytic water splitting
to generate hydrogen over TiO2−δ-based photocatalysts. In Section 2, a variety of methods
to introduce oxygen defects into TiO2 are summarized, and their merits and shortcomings
are analyzed. This will guide proper techniques to develop TiO2−δ based materials. In the
following Section 3, we will discuss the modification methods of TiO2 photocatalysts in ad-
dition to the introduction of oxygen defects, such as ion doping, deposition of noble metals,
dye sensitization, and so on, which are helpful for further enhancing the photocatalytic
activity of TiO2−δ. Finally, the perspectives and existing challenges of photocatalytic water
splitting into hydrogen over TiO2−δ based photocatalysts are presented in the short section
of Conclusions and Outlooks.

2. Fundamentals of Producing H2 by Photocatalytic Water Splitting over TiO2

2.1. Mechanism of Photocatalytic Water Splitting to Generate H2

Photocatalysis technology is based on the special energy band structure of semicon-
ductors. In ground state, the valence band (VB) of a semiconductor is fully occupied by
electrons and the conduction band (CB) is empty. There is a quantized and discontinuous
band gap between the low energy VB and high energy CB. The band gap energy (Eg) of
semiconductors is narrower than that of insulators (>5 eV). Therefore, the electrons in
VB of a semiconductor can be excited and leap into CB when it is stimulated by photons
with certain energy (higher than Eg), leaving the same number of holes in VB (Figure 1).
Photogenerated electrons (eCB

−) and holes (hVB
+) possess strong reducing and oxidizing

abilities, respectively, and will migrate quickly to the surface of photocatalysts to participate
in redox reactions [30]. The photocatalysts can directly decompose water when they are
suspended in water, which does not require a complex reaction system. Photocatalytic
water splitting over semiconductors generally involves the following five steps: (i) water
molecules are adsorbed on the surface of a photocatalyst; (ii) the electrons in VB leap into
CB, producing eCB

− and hVB
+ under the irradiation by light; (iii) the photogenerated eCB

−

and hVB
+ transfer to the surface of the photocatalyst; (iv) the eCB

− reduces H+ into hydro-
gen and hVB

+ oxidizes H2O to oxygen, which are commonly referred to as the hydrogen
evolution reaction and oxygen evolution reaction; and (v) the produced hydrogen and
oxygen are desorbed from the surface of the photocatalyst. Among them, steps II–IV are the
rate-determining steps on the photocatalytic water splitting (see Equations (2)–(5)). As the
O2 dissolved in water will markedly compete eCB

− with the hydrogen evolution reaction,
sacrificial agent is added into the system to improve the photocatalytic efficiency. The
commonly used sacrificial agents include EDTA-2Na, methanol, and so on. In those cases,
hVB

+ will be quickly captured by sacrificial agents instead of reacting with H2O because a
single-electron process usually is faster than an O2 evolution reaction.

Semiconductor + 2hv→ 2e− + 2h+ (2)

2H+ + 2e− → H2 (3)

2H2O + 2h+ → O2 + 2H+ (4)

Overall reaction: H2O + 2hv→ H2 (g) + O2 (g) (5)
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Figure 1. Schematic illustration of the energy band structure of semiconductors.

During photocatalytic water splitting, only the photons carrying energy greater than
the Eg value of a semiconductor can excite the valance electrons into CB. As the Eg value of
TiO2 is approximately 3.2 eV, only ultraviolet light with a wavelength less than 380 nm can
excite its valance electrons. Next, apart from moving to the surface of the semiconductor to
participate in redox reactions, those excited electrons will also recombine with the holes,
releasing light and/or heat energy. The recombination of eCB

− and hVB
+ is the deactivation

process of the photogenerated carriers, which does not contribute to the photocatalytic
water splitting and should be avoided as much as possible (Figure 2a). Moreover, the
reducing ability of eCB

- depends on the bottom of CB (CB minimum) and the oxidizing
ability of hVB

+ relies on the top of VB (VB maximum). The necessary conditions for
photocatalytic water splitting are that the CB minimum is more negative than the reduction
potential of H+/H2 (0 V vs. NHE at pH = 0) and the VB maximum is more positive than
the oxidation potential of H2O/O2 (1.23 V vs. NHE at pH = 0). This requires an Eg value
of no less than 1.23 eV, covering the oxidation-reduction potential of H2O. In fact, the Eg
value of photocatalysts for photocatalytic water splitting is generally required to be more
than 1.9 eV due to the influence of mechanical and thermodynamic losses. Specifically, the
CB minimum and VB maximum of TiO2 are approximately −0.2 and 3 eV, respectively [31].
Therefore, TiO2 can split water into hydrogen and oxygen efficiently through photocatalysis
(Figure 2b).
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2.2. Impact of Oxygen Defects on the Photocatalytic Activity of TiO2

As mentioned above, TiO2 can only absorb ultraviolet light because of its wide band
gap. However, a large proportion (about 50%) of the solar spectrum is visible light. Thus,
enhancing the capability of harvesting visible light is an effective way to improve the
photocatalytic performance of TiO2. In the literature, it was reported that the original
white TiO2 would be turned black after it was thermally treated with H2, indicating that
the light absorption capability of the reduced TiO2 (actually TiO2−δ) was significantly
enhanced. Moreover, it has been proven that the light absorption spectrum edge of TiO2−δ
will shift to a long wavelength as the density of oxygen defects increases (Figure 3a) and
the corresponding Eg decreases (Figure 3b) [21,32,33]. When there is an oxygen vacancy,
one atom of oxygen in TiO2 is bonded with three Ti atoms, and two redundant electrons
are shared by the surrounding three Ti atoms (see Figure 3c). A portion of Ti4+ will be
converted into Ti3+ after trapping the redundant electrons. The appearance of Ti3+ species
in the nonstoichiometric TiO2−δ is generally considered as the main reason that causes
its absorption to visible light. Ti3+ species caused by oxygen defects can introduce new
intermediate defect states (shallow donor) below the bottom of CB and modify the band
gap structure of TiO2 (Figure 3d), which means that TiO2−δ has a narrower band gap and
thus can absorb visible light [34–37].
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On the other hand, the presence of oxygen vacancies enlarges the lattice spaces of TiO2.
As a result, the resistance to electron transfer will decrease. A low resistance for electron
transfer is beneficial for the quick transfer of photogenerated electrons, thus suppressing
the recombination of photogenerated eCB

− and hVB
+ [38]. For example, Hao et al. [39]
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prepared an oxygen-deficient blue titanium oxide, reporting that the prepared TiO2−δ
electrode would present a much lower charge transfer resistance (87 Ω) compared with its
TiO2 counterpart (356 Ω) [39]. Additionally, the bridging oxygen vacancies tend to cause
the Ti 3d defect state in the band gap of TiO2. The Ti interstitials in the near-surface region
can provide the electronic charges that the photocatalytic reactions need [40]. As a result,
TiO2−δ will present a higher photocatalytic performance than TiO2.

2.3. Brief Overview on Photocatalytic Water Splitting to Generate H2 over TiO2−δ

Since the earliest report on light-driven water splitting by Fujishima and Honda in
1972 [41], semiconductor photocatalysis has attracted great attention in the field of catalysis.
However, for quite a long period, semiconductor photocatalysis developed at a mild speed
and many studies were focused on the photodegradation of pollutants [42,43]. After
entering the 21st century, studies on semiconductor photocatalysis have grown explosively
and quite a lot of photocatalysts with excellent performance have been developed [25,44]. In
particular, although oxygen vacancy was reported to generate a defect state in the band gap
of TiO2 leading to a narrower band gap of TiO2−δ in 1980s, TiO2−δ-based photocatalysts
were promptly developed and applied to water splitting until recently [45–47].

In earlier times, oxygen defects were often introduced into TiO2 unconsciously during
the modifying process, and it was then discovered that those titanium oxides with oxygen
defects perform better on photocatalysis than those without oxygen defects. Therefore,
researchers began to develop oxygen-deficient titania photocatalysts and explored the
detailed mechanisms of how oxygen defects influence the photocatalytic performance of
titanium oxides [37,48]. In 2008, Sasikala et al. [49] synthesized a series of Sn- and Eu-doped
TiO2 (Ti1−(x+0.001)Eu0.001SnxO2−δ, where 0.05 < x < 0.3) nanoparticles, which showed an
onset of light absorption at approximately 450 nm and high activity for hydrogen generation.
Liu et al. [50] subsequently reported an oxygen-deficient anatase TiO2 nanosheet with a
dominant (001) crystalline plane, indicating that a special electron transfer process on the
reconstructed surface of TiO2 substantially enhanced the hydrogen evolution rate from
photocatalytic water splitting. TiO2 treated by H2 at high temperatures also presented
enhanced photocatalytic activity for water oxidation and high apparent quantum efficiency
for O2 evolution (41% under light irradiation at 365 nm) [51]. An electron-beam irradiated
titania film shows a wider range of absorbed light and higher efficiency of hydrogen
production owing to the oxygen vacancies or defects enhancing mobility and separation
of electrons and holes [52]. Other oxygen-deficient TiO2 samples can be obtained by
using the ion layer gas reaction (Spray-ILGAR) technique, microwave induced reduction,
and the solution plasma process. They show high photocatalytic hydrogen evolution
activity [53,54]. In summary, many TiO2−δ-based photocatalysts have been developed, but
most of them are used to degrade pollutants and only a limited number of them are used to
split water [22,23,27,55–57]. Among these limited reports, thermal treatment in hydrogen
is the most widely used method of introducing oxygen defects in TiO2 [22]. The introduced
oxygen defects in TiO2 are generally combined with other strategies, such as ion doping
and composition with other semiconductors, to achieve high hydrogen evolution activity,
which has been the focus of recent studies [47,58–61].

3. Methods of Introducing Oxygen Defects in TiO2

3.1. Reductive Treatment

Reductive treatment is the most direct way to introduce oxygen defects in TiO2.
TiO2 can be reduced into TiO2−δ by adding a proper reducing agent. Among the many
reductants, H2 is the most widely used option because of its strong reducing ability without
introducing impurities [22,62–65]. However, H2 treatment is usually carried out at high
temperatures and the explosion limit of H2 falls in a very wide range of 4.0~75.6 vol.%.
In other words, the operation of H2 treatment on TiO2 is quite dangerous and requires
very accurate processes. Moreover, treating TiO2 with H2 is usually a time-consuming task.
For example, Xu et al. [66] reported black TiO2 through H2 treatment in a 20.0 bar of H2
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atmosphere at approxmately 200 ◦C for 5 days. Zhang et al. [67] prepared defective TiO2−δ
hollow microspheres also by high-temperature H2 reduction for 3 h at 550 ◦C. Wierzbicka
et al. [68] synthesized a reduced “grey” brookite TiO2 photocatalyst by hydrogenating it at
500 ◦C, showing a remarkable noble metal free photocatalytic H2 evolution performance,
substantially higher than that of hydrogenated anatase or rutile TiO2. The density of
defects can be adjusted by tuning the H2 treatment temperature, soaking time, and H2
concentration. For instance, Samsudin et al. [69] put TiO2 into a continuous flow of 1 atm
of pure H2 at 500 ◦C for different times, finally obtaining TiO2−δ with different densities
of oxygen defects. They indicated that with time of H2 treatment, the density of oxygen
defects increased, the color of the products becomes deeper from white to dark gray and
to bluish gray (Figure 4a), and the light absorption ability of the resultant TiO2−δ was
significantly enhanced (Figure 4b). However, more defects do not always guarantee better
photocatalytic performance. Here, the photocatalytic performance of TiO2 hydrogen treated
for 24 h is inferior to that of the sample treated for 12 h. This might be due to more defects
acting as recombination centers of photogenerated carriers. Thus, the control of oxygen
defect density in TiO2 is also important. In addition, because treating TiO2 with H2 will not
introduce other impurities, the shallow donor levels of Ti3+ are the major factor narrowing
the band gap of titanium oxides. The increased electron density on the catalyst surface led
by Ti3+ and oxygen vacancies is also beneficial for improving photocatalytic performance.
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Apart from H2, some other gases have been also used as reductants. For example,
NH3 is also often used to reduce TiO2. Chen et al. [56] synthesized a N-doped and oxygen-
deficient TiO2 photocatalyst by heating the commercially available pure TiO2 in a NH3
atmosphere at 550 ◦C for 5 h. It is easy to introduce N into TiO2 (N doping) when using
NH3 as the reducing agent. Similarly, Ihara et al. [70] prepared a N-doped oxygen-deficient
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titanium oxide by calcinating the hydrolytic product of Ti(SO4)2 with ammonia in dry air
at 400 ◦C for 1 h. Additionally, some familiar reducing substances such as carbon, NaBH4,
and Li can be also used to prepare oxygen-deficient TiO2 [71]. Guan et al. [72] prepared a
product of oxygen-deficient TiO2 by a three-step process, which showed strong absorbance
over the whole visible-light region. In their process, a Ti coating was first pretreated in
carbon powder at 1073 K for 2 h, which was then oxidized at 1073 K for 15 h in air. Next,
the obtained samples were treated in carbon powder again at 973 K for 30 min, finally
obtaining the product of oxygen-deficient TiO2. Zhao et al. [73] first prepared TiO2 anatase
nanorods by a two-step hydrothermal method. Then, the obtained sample was mixed
with NaBH4 (1:1 in mole) in a mortar and thermally treated in Ar at 300 ◦C for 30 min,
finally acquiring the reduced anatase nanorods. Interestingly, Martinze et al. [74] prepared
a reduced blue TiO2 by using Li foil and TiO2 which were solved in ethylene diamine,
stirring in anhydrous and dark conditions for 1440 h. Treating with these non-hydrogen
reductants avoids the risk of explosion compared with hydrogen treatment.

In addition, providing an anoxic environment in the treatment process of TiO2 can also
result in the same effect as adding reducing agents. For example, Pereira et al. [75] obtained
oxygen-deficient TiO2 films with enhanced visible and near-infrared optical absorption
by periodically interrupting the O2 gas supply in the process of magnetron sputtering.
Dhumal et al. [76] synthesized oxygen-deficient titanium suboxide (TiOx with x < 2)
nanoparticles by using a diffusion flame aerosol reactor under an oxygen lean environ-
ment in the formation zone of particles. Xiao et al. [77] reported the formation of oxygen
vacancies in TiO2 during the process of calcining TiO2 in Ar or N2 atmospheres. Kushwaha
et al. [78] prepared a black oxygen-deficient TiO2-graphite nanocomposite by calcining
Ti-EDTA complex under hypoxic conditions. Singh et al. [36] investigated the effect of
thermal treatment on TiO2 thin films under an oxygen anoxic environment, reporting a
reduction in the band gap of 0.36 eV.

3.2. Pulsed Laser Irradiation

The excimer laser is a powerful tool and is often used to manipulate the composition
and structure of material surfaces. Pulsed laser irradiation is a simple process for producing
black, oxygen-deficient TiO2. A photochemical reduction reaction will take place during
the pulsed laser absorption, thereby resulting in the evolution of oxygen deficiencies. The
absorption of focused laser irradiation accompanied by fast heating/cooling processes
will promote the formation of a porous surface [79–81]. As mentioned before, the dangers
involved in hydrogenation operation greatly limit its application, while hydrogen plasma
irradiation overcomes this shortcoming well [82,83]. For example, Wang et al. [82] synthe-
sized a black titania with a core/shell structure (TiO2@TiO2−xHx) assisted by hydrogen
plasma and its photocatalytic activity for water splitting and cleaning pollutants was much
better than that of TiO2. In addition, Nd:YAG, ArF, KrF, and XeCl excimer lasers are also fre-
quently used methods besides hydrogen plasma [84,85]. Nakajima et al. [85] indicated that
the TiO2 crystal surface would be successfully reduced through ArF, KrF, and XeCl excimer
laser irradiation, forming an oxygen-deficient TiO2−δ layer with a thickness of 160 nm.
Moreover, as shown in Figure 5a, the resistance of TiO2 decreased after laser irradiation.
Significant diffuse scattering around the (220) reflection for a wide range of Qx (0.04~0.04)
over the irradiated sample (Figure 5b) indicated a strong local lattice distortion near the
surface of the sample. Pulsed laser irradiation is very suitable for surface treatment. It is
simple to get high reductive efficiency based on photochemical reactions due to high-power
laser irradiation. Meanwhile, the resultant surface of photocatalysts generally has a large
specific surface area which is beneficial for improving photocatalytic performance.
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3.3. Pulsed Laser Deposition

Pulsed laser deposition (PLD) is a good technique to prepare functional thin films
by depositing the ablated substances on a substrate. The oxygen deficiency in the film
can be adjusted by controlling the partial pressure of O2 and laser power density. For
instance, Leichtweiss et al. [86] prepared oxygen-deficient titanium oxide films with an
average composition of TiO1.6 by PLD at room temperature, which presented high efficiency
for the water-splitting reaction. Kunti et al. [87] deposited TiO2-SiO2 composite films
on amorphous quartz substrates at different partial pressures of O2 by PLD technique,
revealing the generation of oxygen defects and Ti3+ states in the films. Moreover, ion-doped,
oxygen-deficient TiO2 films can be obtained by changing the humidity of the environment,
atmosphere, and ion implantation [88–90]. For instance, Socol et al. [90] fabricated N-doped
crystalline TiO2 thin films by PLD in N2 or N2-O2 mixtures. Nath et al. [91] synthesized
TiO1.5 nanoparticles by varying the focusing conditions of pulsed laser ablation. Rahman
et al. [92] prepared TiO2 nanostructures with different morphologies and incorporation of
oxygen vacancy defects on a Si substrate by a single-step, catalyst-assisted PLD method
(Figure 6). The morphology can be controlled by adjusting the deposition temperature
and template. The film materials with special morphological structures can be prepared
by PLD, thus adjusting the specific surface area of the catalysts. Ion doping can also be
achieved by changing the reacting atmosphere. Thus, the band gap of titanium oxides can
be reduced jointly by oxygen defects and ion doping.
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Figure 6. (a) Schematic models of TiO2 nanostructures grown on gold nanoisland (GNI)-modified Si
(100) templates at 675, 700, and 720 ◦C. (b) Photographs and XPS spectra of O 1 s, Ti 2p3/2, and Si
2p regions of TiO2 films consisting of nanobelts, corrugated nanowires (NWs), straight NWs, and
decorated NWs. (c) SEM images of TiO2 nanostructures grown in 20 mTorr Ar at 675–750 ◦C on
GNI-modified, H-terminated Si (GNI/H-Si), GNI-modified, RCA-cleaned Si (GNI/RCA-Si), and
GNI-modified, thermally-oxidized (GNI/Ox-Si) templates. The corresponding lower left insets show
schematic models of the as-grown nanostructures, and the upper right ones display the magnified
SEM images of the selected nanostructures [92].

3.4. Ion Doping

Due to the difference in electronegativity between various elements, the introduction
of impurity atoms into TiO2 will change the partial concentration of electrons in TiO2, thus
producing oxygen defects in it. For instance, Ti4+ will be converted into Ti3+ when the
oxygen atoms in TiO2 are replaced by highly electronegative F atoms due to the increased
electron density around Ti4+ caused by the doped F atoms [93]. As shown in Figure 7a,
clear Ti3+ signals can be observed in the EPR spectrum of fluorine-treated anatase. The
corresponding Raman spectra also display a slight shift to a higher frequency at the peak
of 144 cm−1, which is attributed to the presence of oxygen vacancies and Ti3+. The oxygen
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vacancies are spontaneously introduced during N doping [94]. Pu et al. [95] successfully
prepared N-doped, oxygen-deficient TiO2 microspheres through a two-step synthesis
method. Firstly, TiO2 microspheres are synthesized by solvothermal synthesis. Then, the
final oxygen-deficient titanium oxide products were obtained by electron beam irradiation
using urea as the nitrogen source, and the concentration of Ti3+ increased with an increasing
dose of the electron beam irradiation. Wang et al. [26] reported a N-doped TiO2 (TiO2−xNx)
by a simple wet method: hydrolyzing acidic tetra-butyl titanate in ammonia solution
followed by calcination at 350 ◦C for 1 h. Of course, the nitrogen source for doping
generally directly or indirectly originates from reducing NH3, which can also promote the
reduction of TiO2. Moreover, the doping of some metal ions, such as Eu3+, La3+, and Gd3+,
can introduce oxygen defects in TiO2 as well. Those ions with a lower valence than Ti4+ can
generate anion vacancies in TiO2 [96–98], thereby forming Ti3+. Zhang et al. [99] proved
that the formation energy of a vacancy on the La-doped TiO2 surface was lower than that
formed on the pure TiO2 surface treated in reducing conditions or oxidizing conditions
by calculation (Figure 7b). Wang et al. [96] synthesized 0.4 mol% Gd and 2.0 mol% La
co-doped TiO2 microspheres via a hydrothermal method, which exhibited enhanced visible-
light absorption. The doped La3+ and Gd3+ create abundant oxygen deficiencies and
surface defects in the sample, decreasing the excitation energy of TiO2. Doping TiO2 with
highly electronegative elements will inevitably result in oxygen defects. Thus, introducing
oxygen defects during the ion-doping process usually occurs unconsciously and controlling
the density of oxygen defects is a great challenge. However, scientists can combine the
advantages of ion doping and oxygen defects to improve the photocatalytic performance
of TiO2 [100,101].
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3.5. Plasma-Assisted Deposition

Plasma-enhanced chemical vapor deposition (PECVD) has the features of low deposi-
tion temperature, high purity, uniform thickness and composition of films, as well as easy
control of reaction parameters. It can be used to prepare various metal films, inorganic
films, and organic films. The structure and properties of films can be adjusted by controlling
reaction conditions. Specifically, highly active species can be produced by plasma treatment
under mild conditions. For example, Hatanaka et al. [102] prepared TiOx:OH films using
a remote PECVD technique, which showed high photoconductivity. Sakai et al. [103]
obtained oxygen-deficient TiO2 anatase films by using oxygen plasma-assisted reactive
evaporation by increasing the supply of titanium atoms, and the resultant oxygen-deficient
TiO2 films showed excellent hydrophilicity, which was conducive to thorough contact with
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water and facilitated its splitting reaction. Li et al. [104] introduced numerous oxygen
deficiencies and Ti3+ defects on the surface of TiO2 nanoparticles via Ar plasma. Similarly,
Hojo et al. [105] also successfully introduced oxygen defects in a TiO2:Nb film by annealing
the sample with Ar plasma irradiation. Recently, Kawakami et al. [106] reported a kind
of anatase/rutile mixed phase TiO2 nanoparticle with many oxygen deficiencies, which
were obtained by annealing the sample with low-temperature O2 plasma. There are also
excited species, such as ozone and OH generated during the plasma discharge in water.
Thus, the plasma-liquid interaction has been widely applied to prepare nanomaterials. For
instance, An et al. [107] prepared gray hydrogenated TiO2 spheres using a plasma-modified
sol-gel system. Mizukoshi et al. [108] obtained a blue TiO2 containing oxygen defects by
generating discharge plasma in an aqueous ammonia solution containing TiO2 powder.
TiO2 was reduced by a reducing species, such as hydrogen radicals generated during the
plasma discharge process in aqueous ammonia. The color of TiO2 was gradually deep-
ened with treating time and the capacity of light absorption was enhanced simultaneously,
mainly because of the increasing amount of oxygen defects in the samples. Apart from
introducing oxygen defects, plasma-assisted treating also leads to more bridging/terminal
oxygen groups adsorbed on the surface of the samples, thus facilitating the charge transfer
and suppressing the recombination of electrons and holes.

3.6. Ultrasonic-Assisted Techniques

Ultrasonic spray pyrolysis is a simple, low-cost, and scalable technique [54,109–112].
In the literature, Nakaruk et al. [110] successfully prepared fully dense TiO2 films with
oxygen deficiencies by using ultrasonic spray pyrolysis and proved that the concentration
of oxygen deficiencies could be controlled by changing the annealing temperature. Oxygen
vacancies can also be directly induced in TiO2 by low-frequency ultrasound (LFUS) treating
because the high-speed particle collisions and shock waves from LFUS can impact the
atomic arrangement in the TiO2 lattice. For instance, Osorio-Vargas et al. [113] prepared
visible-light responsive TiO2-based photocatalysts by dispersing P25 powder into water
and exposed this to a LFUS environment for 6 h. Bellardita et al. [114] reported that
ultrasonic treating P25 powder dispersed in water induced oxygen deficiency in TiO2, thus
narrowing the bandgap of TiO2 from 3.18 to 3.04 eV.

3.7. Calcination under Anoxic Conditions

Thermal treatment atmosphere exerts an important influence on the formation of
oxygen deficiencies [115–118]. The ratio of O and Ti in the resultant titanium oxides will
be less than 2 when there is not enough oxygen in the preparation process. For instance,
Albetran et al. [119] revealed that the color of titania changed from white to gray and
black as the ratio of Ar/air of the thermal treating atmosphere increased (Figure 8a),
and the light absorption of the corresponding products was also improved (Figure 8b).
Sang et al. [120] fabricated oxygen-deficient TiO2 nanotube arrays by calcining in nitrogen,
or a mixture gas of 5% hydrogen in nitrogen, which exhibited higher photocurrent density
and smaller charge transfer resistance than that of the samples calcined in air (Figure 8c,d).
This is because the large lattice spaces caused by oxygen vacancies decreases the electrical
resistance for electron transfer. Qi et al. [121] prepared a defective TiO2 sample with
oxygen deficiencies by thermally treating TiO2 at 200 ◦C under vacuum conditions. The
defect concentration in the sample is positively proportional to the thermal treatment time.
Li et al. [122] reported an oxygen-deficient dumbbell-shaped anatase TiO2−x product. In
detail, a TiCl3-HAc mixed solution was solvothermally treated at 180 ◦C for 5 h and the
solvothermally synthesized product was calcined under vacuum at 400 ◦C for 1 h.
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Figure 8. (a) Digital photograph and (b) band gaps of the electrospun TiO2 nanofibers prepared by
non-isothermally heating from 25 to 900 ◦C at 10 ◦C/min in argon–air mixtures [119]. (c) Photocurrent
density vs. the applied potential of the TiO2 nanotube arrays annealed in air (TNT-A), N2 (TNT-
N), and 5% H2/N2 mixture gas (TNT-H) under ultraviolet light (365 ± 15 nm) irradiation and the
control tests in the dark [120]. (d) Electrochemical impedance spectroscopy plots of the anodized
TiO2 nanotubes annealed in air (TNT-A), N2 (TNT-N) and 5% H2/N2 mixture gas (TNT-H) under
ultraviolet light illumination [120].

3.8. Molten Salt Calcination

Du et al. [118] reported a facile strategy based on molten salt calcination to construct
oxygen deficiencies in TiO2. A flower-like TiO2 precursor was synthesized via a solvother-
mal method using tetrabutyl titanate and acetic acid (HAc)/N,N-dimethyl formamide
(DMF) as the titanium source and solvent, respectively. The as-prepared precursor was
mixed with eutectic salts of LiCl/KCl (45/55 by weight) and calcined in a muffle furnace at
400 ◦C for 2 h. The lattice oxygen of TiO2 was consumed during the calcination because of
the low partial pressure of O2 in the molten salt, thereby introducing numerous oxygen
deficiencies and Ti3+ in the final product.

In summary, up to now, hydrogen reduction is still the most extensively used method
to prepare oxygen-deficient TiO2 owing to the strong deoxidizing ability and purity. How-
ever, it is time consuming and has high energy consumption and a high explosion risk.
Thus, some other reductants such as carbon, NH3, and Li are also used to reduce TiO2
in the literature. Synthesizing titanium oxide in an anoxic environment is widely used
because it is easily implemented. Pulsed laser irradiation is a simple process for producing
oxygen-deficient TiO2; however, this is more suitable for treating films because the radiation
response mainly happens in the surface layer. Similarly, oxygen-deficient TiO2 films can be
easily obtained through adjusting the partial pressure of O2 and the laser power density of
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PLD. Introducing oxygen defects through ion doping is a natural process and the density
of oxygen defects mainly depends on the doped species of ions and their concentration.
Plasma discharge in water will provide reductively excited species, which can easily reduce
TiO2. However, it is currently not widely applied. Oxygen-deficient TiO2 can be prepared
by ultrasonic spray pyrolysis or by calcinating under anoxic conditions, and the density of
oxygen deficiencies can be controlled by controlling the experimental temperature. Molten
salt calcination is simple and easily operated. Introducing oxygen defects improves the
photocatalytic performance of TiO2 in 2 major ways: one is narrowing band gap to absorb
more light, and the other is changing the lattice structure to decrease resistance to electron
transfer. Table 2 compares the different methods of introducing oxygen defects in TiO2.

Table 2. Comparison of different methods of introducing oxygen defects in TiO2.

Methods Advantages Disadvantages Ref.

Reduced by H2

Strong reducing ability, no
impurities introduced, and easy
control on the density of oxygen
defects by adjusting reaction time.

High temperature, high energy
consumption, time-consuming,
and high risk.

[65,67–69]

Reduced by chemical
reductants such as NH3,
NaBH4, and carbon

Mild reaction conditions and low
energy consumption.

Difficult control on the density of
oxygen defects and easy
introduction of impurities.

[56,70–72]

Prepared in anoxic
environment

Convenient operation and can
easily obtain products in
large quantities.

High temperature, high energy
consumption, and
time consuming.

[78,79,82]

Pulsed laser irradiation
High reactivity and reducing
efficiency and
convenient operation.

Special equipment needed. [88,91,92]

Pulsed laser deposition

Convenient operation, easy
control on the density of oxygen
defects by adjusting the partial
pressure of O2 and laser power
density, and easily obtains special
morphological structures
of products.

Special equipment needed. [80,81]

Ion doping Mild reaction conditions and
wide selection of approaches.

Unconsciously introduces oxygen
defects without controllling their
density and easily
introduces impurities.

[95,97,98,100,101,107]

Plasma-assisted deposition
Mild and controllable reaction
conditions which is suitable for
preparing films.

Special equipment needed and
low productivity. [104,106]

Ultrasonic-assisted techniques Convenient operation, low cost,
and scalable.

The density of oxygen defects is
not easily controlled. [54,109,112,114]

Calcination under
anoxic conditions

Convenient operation and easy to
control the density of oxygen
defects by adjusting the partial
pressure of O2.

High temperature, high energy
consumption, and
time consuming.

[117,120,121]

Molten salt calcination
Convenient operation and easily
obtains products in
large quantities.

Special TiO2 precursor needed. [118]

4. Modification Methods of TiO2−δ Photocatalysts

TiO2−δ has been proven to perform better than stoichiometric TiO2 in the process
of photocatalytic water splitting. Many strategies such as ion doping, constructing het-
erojunction and deposition of noble metals have been proved to effectively improve the
photocatalytic activity of TiO2. Thus, the photocatalytic activity of TiO2−δ should be
enhanced further by these strategies.
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4.1. Ion Doping

Ion doping can introduce defects into TiO2 which could act as the capture traps of photo-
generated carriers, thereby suppressing the recombination of photogenerated eCB

− and hVB
+.

The lattice distortion caused by the doped atoms with different ionic sizes would increase the
asymmetry of the crystal structure, which could promote the separation of photogenerated eCB

−

and hVB
+. Additionally, the energy band structure of TiO2 can be effectively manipulated by

ion doping. The narrowed band gap can extend the light absorption and enhance the utilization
efficiency on solar energy of the resultant photocatalysts.

4.1.1. Metal Ion Doping

The doping of transition metals has been proven an effective method for regulating the
band positions of TiO2. The main principle is to insert an additional energy level between
the original conduction band and valence band. For example, Sheng et al. [123] reported a
Pd-doped TiO2, revealing that the photogenerated eCB

− and hVB
+ were efficiently separated

after Pd doping. Sasirekha et al. [124] prepared a Ru-doped anatase TiO2 supported on silica
by a solid-state dispersion method, which performed well in the photocatalytic reduction
of carbon dioxide. Gao et al. [125] indicated that the doping of Mo, Pd, Ru, and Rh could
narrow the band gap of TiO2, thus enhancing the probability of activation by visible light.
Their theoretically calculated results through density functional theory revealed that the
impurity states of 4d electrons would form new degenerate energy levels, thus narrowing
the band gap of TiO2. Thalgaspitiya et al. [126] synthesized mesoporous composites of
M-doped titanium dioxide (M = Mn, Co, Ni, Mo, and W) with reduced graphene oxide
(rGO), indicating that the indirect band gap of the composites could be adjusted into the
range of 2.20–2.48 eV.

Rare earth ions have rich energy levels and unique features of 4f electronic transitions,
providing unique opportunities for manipulating the band gap of semiconductors by
elemental doping. For instance, Wang et al. [127] fabricated samples of La3+- or Yb3+-doped
TiO2 supported on r-GO, reporting that the anionic vacancies in the TiO2 lattice caused
by La3+ and Yb3+ would generate Ti3+, thus enhancing the visible-light response of the
samples. Stengl et al. [128] prepared several samples of rare earth (La, Ce, Pr, Nd, Sm, Eu,
Dy, Gd)-doped TiO2, which were all visible-light sensitive. Fang et al. [129] synthesized
rare earth ion (Er3+ and/or Yb3+)-doped TiO2 photocatalysts by a hydrothermal method,
indicating that the doping of Er3+ and/or Yb3+ could decrease the recombination rate of
photogenerated electron-hole pairs, finally leading to a higher photocatalytic efficiency of
TiO2. In addition, the phase transition from anatase to rutile can be significantly delayed
by the doping of rare earth ions [130,131].

Alkali metal and alkali earth metal ions were also used to improve the photocatalytic
activity of TiO2. Liu et al. [132] prepared a mesoporous Na-doped titanium dioxide with
a band gap of 3.08 eV. The doped Na ions could enter into the (004) crystalline plane of
anatase TiO2, finally leading to the dislocation defects in TiO2. Lv et al. [133] successfully
fabricated AM-TiO2−x samples (AM = Mg, Ca, Sr, and Ba), revealing that the CB position
of TiO2 became more negative after AM doping, thus improving the hydrogen production
ability of TiO2. The separation of carriers and transfer efficiency were also dramatically
promoted (Figure 9a–c).

4.1.2. Nonmetallic Ion Doping

The doping of nonmetallic ions can expand the light-absorption region of TiO2 and
suppress the recombination of photogenerated eCB

− and hVB
+. Normally, the p orbital in

the most outer electronic layer of the doped ions would hybridize with the 2p orbital of O in
TiO2, forming new shallow levels near the top of the valence band. For example, N doping is
widely studied because the ion radius of N is closest to that of O [134,136–138]. Li et al. [136]
prepared a N-doped TiO2 which performed better in photocatalytic hydrogen evolution
than the undoped TiO2 under the same conditions (Figure 9d). Yuan et al. [139] prepared
a N-doped TiO2 with a high specific surface area by heating a mixture of urea and TiO2.
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The absorption spectrum of the N-doped TiO2 shifted to the wavelength of 600 nm and the
sample showed high photocatalytic activity on hydrogen evolution. Momeni et al. [140]
prepared S-doped TiO2 nanostructure photocatalyst films which performed well in the re-
moval of RhB and hydrogen generation under visible-light radiation. Carmichael et al. [141]
reported B-doped titanium dioxide films with a hydrogen evolution rate of 24 µL·cm−2·h−1,
which far exceeded the undoped TiO2 at 2.6 µL·cm−2·h−1. Wu et al. [142] fabricated F-
doped TiO2 particulate thin films, which could be applied in the photodegradation of
organic pollutants and photoinduced splitting of water into hydrogen under the irradiation
of either UV or visible light.
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and (b) gaps in TiO2 and alkaline earth metal-doped TiO2 [133]. (c) Photocatalytic H2 production
from water splitting over TiO2 and alkaline earth metal-doped TiO2 under the condition of adding Pt
as a co-catalyst [133]. (d) Photocatalytic H2 generation over TiO2 doped with different amounts of
N [129]. (e) Photocurrent response curves of TiO2, B-doped TiO2, N-doped TiO2, and (B,N)-co-doped
TiO2 to visible light [134]. (f) Photocatalytic H2 generation over (FexCo1−x)-co-doped TiO2 [135].
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4.1.3. Multiple Ion Co-Doping

Different ions have different impacts on TiO2; thus, the co-doping of multiple ions is
an effective method to obtain higher photocatalytic activity. In the literature, Zhu et al. [143]
studied the electronic and optical properties of C-, Mo-, and (Mo,C)-co-doped anatase TiO2
using the first principle calculations. The results show that the optical absorption edges
of the (Mo,C)-co-doped TiO2 will shift towards the visible-light region. Diao et al. [144]
reported K, Na, and Cl co-doped rutile TiO2, exhibiting good photocatalytic degradation
of gaseous formaldehyde under visible-light irradiation. Li et al. [134] reported the photo-
catalytic activity for hydrogen production over (B,N)-co-doped TiO2 under visible-light
irradiation. N doping extends the absorption edge to the visible-light region and B doping
acts as the shallow trap for photogenerated electrons to prolong the life of the electrons and
holes. Consequently, stronger photocurrents were observed on (B,N)-co-doped TiO2 than
those of N-doped TiO2, B-doped TiO2, and undoped TiO2 (Figure 9e). Barakat et al. [135]
prepared FexCo1−x-co-doped titanium oxide nanotubes, achieving distinct enhancement of
the visible-light absorption capacity (Figure 9f). Filippatos et al. [145] even reported a pho-
tocatalyst of H, F, and Cl co-doped titanium dioxide with a high hydrogen production rate.

In short, improving the photocatalytic performance of TiO2 by ion doping is mainly
based on introducing defects, changing the lattice structure, and adjusting the band gap.
Metal ion doping also affects the electron distribution and lattice size. Nonmetallic ions,
such as N-, S-, and P-doping, generates new shallow levels by the hybridization of Ti
2p orbital with O 2p, thus narrowing the band gap of TiO2. Ion doping can be achieved
through lots of ways, so it is easy to carry out in various experimental environments.
However, the results may be quite different when using different doping methods.

4.2. Composite

The heterostructure formed by the recombination of two or more semiconductors
with matched energy band structures can effectively improve the separation efficiency of
photogenerated eCB

− and hVB
+. As shown in Figure 10, there are usually four types of

heterostructures based on different relative positions of the energy band, including type
I, type II, type III, and the Z-scheme system [146,147]. The built-in electric field formed
along the interface will promote the transfer of electrons. Additionally, the combination
with narrow band semiconductors could allow TiO2 to respond to visible light.

For instance, Smith et al. [148] synthesized a nanotubular composite of TiO2-WO3.
This composite demonstrated an increase of 46% in water-splitting efficiency compared
to TiO2 nanotubes prepared under similar conditions. Choudhury et al. [149] prepared
ultra-thin PdO-TiO2 composite films which could be used to photogenerate hydrogen
efficiently from methanol/water for a long period of time. Navarrete et al. [150] synthe-
sized β-Ga2O3/TiO2 composite photocatalysts for H2 production from a water/methanol
mixture (Figure 11a). The high activity is attributed to the slow charge recombination
of the photogenerated eCB

− and hVB
+ (Figure 11b). Gholami et al. [151] confirmed that

the activity of the ZnO-TiO2 composite for photodegradation of bentazon was better than
that of ZnO and TiO2 separately. Chen et al. [152] constructed a NiO/TiO2 heterojunc-
tion on the surface of TiO2 film. The strong inner electrical field effectively separates
the photogenerated electron-hole pairs, and thus the composite exhibited much better
photocatalytic activity than the original TiO2 film (Figure 11c,d). The graphene-TiO2 com-
posite has been widely studied because of its excellent mobility of charge carriers, large
specific surface area, flexible structure, high transparency, and good electrical and thermal
conduction [153–159]. Zhang et al. [157] prepared a TiO2/graphene sheet composite by a
sol-gel method, exhibiting a hydrogen evolution rate of 8.6 µmol·h−1 which was nearly
two times that over the commercially available Degussa P25 (4.5 µmol·h−1). Fu et al. [159]
constructed a g-C3N4/graphene-CNTs/TiO2 Z-scheme photocatalytic system, in which the
graphene CNTs effectively promoted the transfer of photogenerated carriers, thereby gen-
erating a stronger photocurrent (Figure 11e,f). The built-in electric field along the interface
of the composite can promote the transfer of electrons, thus suppressing the recombination
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of photogenerated eCB
− and hVB

+. Therefore, scientists could purposefully design the
structure of composites according to the band structure of semiconductors, which can
reduce the uncertainty of experiments.
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4.3. Surface Noble Metal Deposition

The photogenerated carriers will be redistributed when the surface semiconductor
comes into contact with metal. The electrons will transfer from the n-type semiconductor to
metals because of the lower Fermi levels of metals. Moreover, the surface plasmon polari-
tons can enhance the light response of TiO2 [160–163]. In the literature, Zheng et al. [164]
investigated the photocatalytic performance of TiO2 deposited with Au, Ag, and AuAg
bimetallic nanoparticles. The results showed that the local surface plasmon resonance
of noble metals improved the photocatalytic activity TiO2 under visible-light irradiation.
Luo et al. [165] reported a visible-light-driven responsive Au/rGO/hydrogenated TiO2 nan-
otube array ternary composite with a high hydrogen evolution rate of 45 mmol·cm−2·h−1.
The visible-light harvesting was significantly improved by the Au nanoparticles due to the
localized surface plasmon resonance effect. Ag, Pd, and Rh have also been used to modify
TiO2 by depositing them on its surface [61,166–169]. For example, Ge et al. [167] decorated
Ag nanoparticles onto vertically aligned TiO2 nanotube arrays. The Ag-decorated TiO2
can efficiently drive photocatalytic water splitting under visible-light irradiation owing
to the surface plasmon resonance of Ag. Due to the local surface plasmon resonance, the
photocatalytic performance of noble-metal-modified TiO2 is significantly greater than that
of the modified TiO2 by other methods such as ion doping and composites. However, the
high cost incurred by expensive noble metals restricts the application of this strategy.
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Ga2O3/TiO2), TG10 (10% Ga2O3/TiO2) photocatalysts, and TPt reference (Pt modified TiO2) [150].
(b) Mechanism for H2 production over the TG5 photocatalyst [150]. (c) Transient current response
curves of TiO2 and NiO/TiO2 nanocomposite under ultraviolet light irradiation [152]. (d) Schematic
diagram on the energy band of a p-NiO/n-TiO2 heterojunction structure [152]. (e) Transient current
response curves of 3D g-C3N4/graphene-CNTs/TiO2 samples with different amounts of TiO2 under
an Xe lamp [159]. (f) Schematic diagram of the photocatalytic processes over 3D g-C3N4/graphene-
CNTs/TiO2 [159].

4.4. Dye Sensitization

The excitation potential of some dyes is more negative than the CB potential of TiO2.
Thus, the light response range of TiO2 can be effectively expanded by dye sensitization.
Dye molecules can deliver photogenerated electrons to the CB of TiO2 and then the elec-
trons transfer further to participate in reactions [170–172]. For example, Shi et al. [171]
prepared Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO2 for efficient photo-
catalytic H2 production under visible-light irradiation. Vallejo et al. [170] reported the
enhancement on light absorption and photocatalytic activity over rGO-TiO2 thin films
after they were sensitized by natural dyes extracted from Bactris guineensis (Figure 12).
In fact, lots of dyes have been used to sensitize TiO2, such as complexes of Fe (II) and
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polypyridyl, quinacridone, hydroxoaluminum-tricarboxymonoamide phthalocyanine, and
so on [173–175]. Dye sensitization is easy to realize and has a low cost. Although many
natural dyes can be used as raw materials for the sensitization of TiO2, sensitized TiO2 is
not always stable which limits its wide application.
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and (b) TiO2-GO thin films sensitized with anthocyanin that was extracted from the fruit of Bactris
guineensis (TiO2-GO-CO). The samples A, B, C, and D were prepared by adding 0.15%, 0.26%, 0.51%,
and 1.1% GO in mass into TiO2. (c) Schematic illustration of the energy levels for the TiO2-GO thin
films sensitized with natural dye [170].

4.5. Loading on Supports

Loading on supports is an effective way to solve the problems of agglomeration
and tough recycling of TiO2 nanoparticles. In addition, the supporting materials of
high electrical conductivity could provide channels for quick transfer of electrons,
thereby decreasing the recombination rate of photogenerated eCB

− and hVB
+. For example,

Li et al. [176] reported a catalyst of nitrogen-doped carbon nanofiber supporting MoS2/TiO2,
in which the photogenerated electrons could quickly transfer to the carbon fiber along
the basal plane of MoS2. Many natural materials are preeminent supports, so it is not
essential for scientists to design and construct supports with special structures. In literature,
zeolite, SiO2, and carbon materials are frequently used as the supporting materials for
TiO2 [177–182]. Najafabadi et al. [180] reported four kinds of zeolites (Na-Y, Na-mordenite,
H-Y, and H-beta) supporting TiO2, which all exhibited high hydrogen evolution rates.
For the Na-Y zeolite supporting TiO2, the rate reached 250.8 µmol·g−1·h−1, which was
almost three times that of Degussa P25 (84.2 µmol·g−1·h−1) under the same conditions.
Kim et al. [182] prepared TiO2 supported by SiO2, showing much higher photocatalytic
activity than pure TiO2 which could be attributed to the large specific surface area. Ti-O-Si
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bonds modified the narrow band gap and the local structure. Loading on supports is
frequently associated with other reactions such as ion doping and forming heterojunctions.
Thus, it can combine the advantages of varied strategies. Yin et al. [183] synthesized Bi
plasmon-enhanced mesoporous Bi2MoO6/Ti3+ self-doped TiO2 microsphere heterojunc-
tions. The formation of heterojunctions, Ti3+, and surface plasmon resonance (SPR) of
Bi jointly achieved high catalytical activity of TiO2 under visible light. Xing et al. [184]
combined ion doping with supports and synthesized a F-doped-TiO2−x/MCF composite,
which exhibited high photocatalytic activity for hydrogen evolution.

4.6. Crystal Facet Engineering

The exposed facets of traditional TiO2 photocatalysts are the thermodynamically
stable (101) facets. However, the specific surface energy of (001) facets is higher than that of
(101) facets, implying that the (001) facets have higher reaction activity. In addition, the
uncoordinated Ti5c atoms in the (001) facets can narrow the band gap of TiO2. Therefore,
exposing more (001) facets will help to improve the photocatalytic performance of TiO2,
which is generally realized by controlling the synthesis conditions [185,186]. For instance,
Wang et al. [187] synthesized a series of (001) facet-dominated TiO2 nanosheets with high
visible-light photoactivity by a simple hydrothermal method at different temperatures.
Shang et al. [188] synthesized graphene-TiO2 nanocomposites with dominantly exposed
(001) facets through various dosages of graphite oxide (GO) and hydrofluoric acid (HF) during
a facile solvothermal process. The well-conductive and highly reactive (001) facets enhanced the
photocatalytic properties and facilitated the separation of photogenerated carriers.

As a summary, Table 3 lists the hydrogen evolution efficiency from photocatalytic
water splitting over typical titanium oxide-based photocatalysts. Obviously, noble-metal-
modified TiO2 photocatalysts have incomparable advantages on hydrogen evolution over
the other titanium oxide-based counterparts. However, the searches for alternative non-
noble metals are still one of the focuses in this field because of the high cost and scarcity of
noble metals. Additionally, combining multiple modification methods can achieve better
results than using a single method. Table 3 lists also lists some typical non-TiO2-based
photocatalysts for comparison. As can be seen, noble-metal-modified TiO2 photocatalysts
obviously perform much better than metal sulfides and phosphides in hydrogen evolution
reactions. The composites clearly perform better than single materials for TiO2, metal
sulfides, and phosphides.

Table 3. Hydrogen evolution efficiency of photocatalytic water splitting over various TiO2-based
photocatalysts in comparison with those of typical photocatalysts reported in the literature.

Catalyst Light Source Reaction Condition H2 Production
(mmol h−1)

Ref.

N-doped TiO2 >400 nm Water 0.315 [139]
N-doped TiO2 >420 nm EDTA-2Na solution 2.21 [134]
(B,N)-co-doped TiO2 >420 nm EDTA-2Na solution 10.45 [134]
(Sb,N)-co-doped TiO2 Xe lamp 10% aqueous TEOA solution 2.33 [189]
B-doped TiO2 365 nm 0.2 M HCl and absolute ethanol

aqueous solution (1:1)
0.099 [141]

N-doped TiO2 visible light H2S/0.25 M KOH solution 8.8 [137]
N-doped TiO2 Xe lamp 20% aqueous methanol solution 2.98 [136]
S-doped TiO2 Xe lamp 1 M NaOH aqueous solution 0.17 [140]
Fe-doped TiO2 solar light radiation triammonium phosphate

aqueous solution
4.01 [135]

Co-doped TiO2 solar light radiation triammonium phosphate
aqueous solution

9.82 [135]

(Fe,Co)-co-doped TiO2 solar light radiation triammonium phosphate
aqueous solution

17.41 [135]
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Table 3. Cont.

Catalyst Light Source Reaction Condition H2 Production
(mmol h−1)

Ref.

La-doped TiO2 Hg UVA lamp 12 M aqueous methanol solution 80 [190]
Ce-doped TiO2 visible light sulphide wastewater from refinery 6.789 [191]
H-doped TiO2 365 nm 25% aqueous methanol solution 0.286 [145]
F-doped TiO2 365 nm 25% aqueous methanol solution 0.0928 [145]
Cl-doped TiO2 365 nm 25% aqueous methanol solution 0.336 [145]
V-doped TiO2/rGO Xe lamp 20% aqueous methanol solution 0.12 [192]
N-doped Ni/C/TiO2 Hg lamp 30% aqueous methanol solution 0.383 [193]
Sr-doped TiO2−δ >400 nm water 1.092 [194]
TiO2−δ >420 nm 30% aqueous methanol solution 0.00058 [195]
Pt/TiO2−δ visible light 50% aqueous methanol solution 4.9 [47]
Ag-decorated TiO2 Hg lamp water 120 [196]
Au-decorated TiO2 254 nm aqueous methanol solution 106 [168]
Au,Pd-decorated TiO2 254 nm aqueous methanol solution 266 [168]
Au,Ni-decorated TiO2 254 nm aqueous methanol solution 256 [168]
Au,Co-decorated TiO2 254 nm aqueous methanol solution 171 [168]
Pd-decorated TiO2 254 nm aqueous methanol solution 59 [168]
Ni-decorated TiO2 254 nm aqueous methanol solution 20 [168]
Co-decorated TiO2 254 nm aqueous methanol solution 10 [168]
Cu(OH)2/TiO2 ultraviolet light 10% aqueous methanol solution 14.94 [197]
Cu/TiO2 UV lamp 25% aqueous methanol solution 5 [198]
Cu/TiO2 visible light 25% aqueous methanol solution 0.22 [198]
Co3O4@C/TiO2 365 nm 25% aqueous methanol solution 11.4 [199]
NiO/TiO2 Hg lamp glycerol and distilled water 1.2 [200]
g-C3N4/N-TiO2 Xe lamp 20% aqueous methanol solution 8.931 [201]
EosinY-sensitized
TiO2/ZrO2

Xe arc lamp 15% DEA aqueous solution 1.87 [202]

β-Ga2O3/TiO2 254 nm 50% aqueous methanol solution 0.244 [150]
N-doped TiO2/N-doped
graphene

Xe lamp 10% aqueous TEOA solution 0.039 [203]

FeO-TiO2/ACF visible light 20% aqueous methanol solution 6.178 [204]
TiO2/ACF visible light 20% aqueous methanol solution 1.672 [204]
Cu-doped TiO2 with
preferred (001) orientation

Xe lamp 10% aqueous methanol solution 0.81 [205]

g-C3N4/TiO2 with
preferred (001) orientation

>420 nm 10% aqueous TEOA solution 0.033 [206]

TiO2/graphene with
exposed (001) facets

Xe lamp 25% aqueous methanol solution 0.736 [207]

CdS >420 nm 0.5 M Na2S-0.5 M Na2SO3
aqueous solution

0.063 [208]

CdS-CoSx >420 nm 0.5 M Na2S-0.5 M Na2SO3
aqueous solution

0.1686 [208]

Pt/CdS >420 nm 1.0 M aqueous (NH4)2SO3 solution 1.158 [209]
ZnS Xe lamp 0.1 M Na2S-0.1 M Na2SO3

aqueous solution
0.04 [210]

Cu-ZnS/Zeolite Xe lamp 0.1 M Na2S-0.1 M Na2SO3
aqueous solution

0.48 [210]

ZnO/ZnS Xe lamp 0.064 M Na2S aqueous solution 0.228 [211]
ZnO Xe lamp 0.064 M Na2S aqueous solution 0.138 [211]
Ni2P >420 nm 0.35 M Na2S-0.25 M Na2SO3

aqueous solution
0.28 [212]

Ni2P/CdS >420 nm 0.35 M Na2S-0.25 M Na2SO3
aqueous solution

16.02 [212]

CoP visible light Na2S-Na2SO3 aqueous solution 1.75 [213]
CdS/CoP visible light Na2S-Na2SO3 aqueous solution 15.74 [213]
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5. Conclusions and Outlooks

(1) Oxygen-deficient titanium oxide (TiO2−δ) shows higher photocatalytic activity
than stoichiometric TiO2, which can be mainly attributed to the presence of Ti3+ species and
oxygen deficiencies. The Ti3+ species would lead to new intermediate defect states (shallow
donor) forming below the bottom of the conduction band of TiO2, which narrows the band
gap of TiO2. The presence of oxygen deficiencies can decrease the transfer resistance of
electrons. Resultantly, the photogenerated electrons can quickly transfer, thereby avoiding
recombining with holes.

(2) Reductive treatment is the most direct and effective method to introduce oxygen
defects in titanium oxides, for which H2 is the most common reductant, while other
reductants such as carbon, NaBH4, and NH3 can also be selected. Moreover, ion doping,
pulsed laser irradiation, calcination under anoxic conditions, plasma assistance, and so
forth, have also been proven efficient strategies for introducing oxygen defects into titanium
oxides. Other modification methods for TiO2, including ion doping, composite, surface
noble metal deposition, dye sensitization, and loading on supports are also exploited to
broaden the light-absorption region and suppress the recombination of photogenerated
eCB

− and hVB
+ for TiO2−δ. The photocatalytic activity of titanium oxides is hopefully

improved further by the combination of introducing oxygen defects with these modification
methods, which have reached some remarkable results.

(3) Hydrogen production by photocatalytic water splitting over TiO2−δ-based pho-
tocatalysts shows a strong development momentum. However, there exists at least three
major challenges at present. The first is how to control the concentration of oxygen defects
in TiO2−δ. Although the density of oxygen deficiencies can be controlled by adjusting
the conditions of the reduction treatment, the spontaneously introduced oxygen defects
during other modification processes, such as ion doping and surface treatment, are difficult
to control and predict accurately. Secondly, current studies on regulating energy band
structures mainly concentrate on enhancing light harvesting. Actually, the positions of
CB and VB are also critical for photocatalytic water splitting, especially the position of
CB. The CB position of TiO2 is very close to the reduction potential of H+/H2 (0 V vs.
NHE at pH = 0). The decrease in the CB minimum can lead to a wider light-absorption
region but the reducing ability of photogenerated electrons is also impaired at the same
time. If the CB minimum is more positive than the reduction potential of H+/H2, the
photocatalytic hydrogen evolution activity will take a mighty blow. Thus, regulating the
band gap of TiO2 is a challenging task because there are numerous factors that can affect the
band position of TiO2−δ during the modifying process. Combining theoretical calculation
prediction with precise control of synthesis conditions may be a solution to solve this issue.
In addition, the current studies pay little attention to the adsorption of reactants (H2O) and
the desorption of products (H2 and O2). The dissolved O2 and H2 can react with each other
at the cocatalyst surface. O2 dissolved in water will also compete photogenerated electrons
with the hydrogen evolution reaction. These factors weaken the efficiency of photocatalytic
hydrogen evolution. Therefore, this might be the next hot topic in studies of this nature.
Although photocatalytic hydrogen evolution remains in the laboratory stage, further study
may bring promising results.
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