



# **A Review on Oxygen-Deficient Titanium Oxide for Photocatalytic Hydrogen Production**

Yan Chen<sup>1,2</sup>, Xiuli Fu<sup>2</sup> and Zhijian Peng<sup>1,\*</sup>



- <sup>2</sup> School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China
- \* Correspondence: pengzhijian@cugb.edu.cn; Tel.: +86-10-8232-0255

Abstract: Photocatalytic technology based on the specific band structure of semiconductors offers a promising way to solve the urgent energy and environmental issues in modern society. In particular, hydrogen production from water splitting over semiconductor photocatalysts attracts great attention owing to the clean source and application of energy, which highly depends on the performance of photocatalysts. Among the various photocatalysts, TiO<sub>2</sub> has been intensively investigated and used extensively due to its outstanding photocatalytic activity, high chemical stability, non-toxicity, and low cost. However, pure  $TiO_2$  has a wide band gap of approximately 3.2 eV, which limits its photocatalytic activity for water splitting to generate hydrogen only under ultraviolet light, excluding most of the inexhaustible sunlight for human beings. Fortunately, the band gap of semiconductors can be manipulated, in which introducing oxygen defects is one of the most effective measures to narrow the band gap of titanium oxides. This review considers the fundamentals of photocatalytic water splitting for hydrogen production over TiO<sub>2</sub>, discusses the latest progress in this field, and summarizes the various methods and strategies to induce oxygen defects in TiO<sub>2</sub> crystals. Then, the next section outlines the modification approaches of oxygen-deficient titanium oxide (TiO<sub>2- $\delta$ </sub>) to further improve its photocatalytic performance. Finally, a brief summary and outlook of the studies on TiO<sub>2- $\delta$ </sub> photocatalysts for water splitting to produce hydrogen are presented.

check for **updates** 

Citation: Chen, Y.; Fu, X.; Peng, Z. A Review on Oxygen-Deficient Titanium Oxide for Photocatalytic Hydrogen Production. *Metals* **2023**, *13*, 1163. https://doi.org/10.3390/ met13071163

Academic Editors: José Gerardo Cabañas-Moreno, Alberto Moreira Jorge Junior and Karina Suarez Alcantara

Received: 18 May 2023 Revised: 15 June 2023 Accepted: 20 June 2023 Published: 22 June 2023



**Copyright:** © 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/). Keywords: TiO<sub>2</sub> crystals; oxygen defects; photocatalysis; water splitting; hydrogen production

# 1. Introduction

The exploitation and utilization of fossil fuels, such as coal, oil, and natural gas, facilitates the development of industrialization and urbanization. However, fossil fuels are non-renewable resources with limited reserves, which will certainly become scarce. In addition, the use of fossil fuels has dramatically induced negative effects on the ecological environment. For instance, carbon dioxide emitted during fossil fuel burning is one of the main greenhouse gases. The industrial by-products and wastes cause severe pollution to the environment. Some pollutants even harm human health by accumulating through the food chain [1,2]. Hence, it is necessary and urgent to develop sustainable energy to replace fossil fuels. Renewable energy sources, such as solar energy, wind power, and geothermal power, are being developed and widely used. However, the replacement of fossil fuels still remains elusive due to the restriction on techniques and the economy [3–5].

Among the many candidates, hydrogen energy is considered as one of the most promising energy carriers. Hydrogen is one of the most abundant elements on earth, and hydrogen energy can be obtained from a variety of natural resources. Moreover, hydrogen has superb combustibility, a high ignition point (585 °C), and a high heat of combustion  $(1.42 \times 10^5 \text{ kJ} \cdot \text{kg}^{-1})$ . Compared with most of the common fuels, it has unparalleled superiority (see Table 1). Additionally, the combustion product of hydrogen contains only water (see Equation (1)), while the burning of fossil fuels will produce a large quantity of carbon dioxide, sulfur oxide, nitrogen oxide, and so on, which are associated with a

series of severe environmental issues, including greenhouse effects, photochemical smog, and acid rain [6,7]. Comparatively, hydrogen is certainly a clean, efficient, and sustainable energy source with tremendous prospects for development. Nowadays, more than 95% of hydrogen in industry is produced from fossil energy, such as natural gas, petroleum, and coal. However, these traditional processes for hydrogen production have low efficiency and emit a large amount of exhaust gases such as carbon dioxide [7–9]. Producing hydrogen by water electrolysis is also an important method to prepare hydrogen on a large scale, but it will consume a large amount of electric energy [10,11]. Fortunately, the emergence of photocatalytic technology provides a new option for hydrogen production: producing hydrogen by photocatalytic water splitting. The abundant water resources and inexhaustible solar energy on Earth provide significant advantages for hydrogen production methods [12].

$$H_2(g) + \frac{1}{2}O_2(g) = H_2O(l) \rightarrow \Delta H = -285.8 \text{ kJ} \cdot \text{mol}^{-1}$$
 (1)

| Fuels       | Heat of Combustion<br>(kJ∙mol <sup>-1</sup> ) | Heat of Combustion<br>(kJ·kg <sup>-1</sup> )    | Ignition Point<br>(°C) |  |
|-------------|-----------------------------------------------|-------------------------------------------------|------------------------|--|
| hydrogen    | 285.8                                         | $1.42	imes10^5$                                 | 585                    |  |
| coal        | -                                             | $8.36 \times 10^3  3.06 \times 10^4$            | 300~700                |  |
| gasoline    | -                                             | $4.31 	imes 10^4$                               | 427                    |  |
| diesel      | -                                             | $4.26 	imes 10^4$                               | 220                    |  |
| kerosene    | -                                             | $4.31 	imes 10^4$                               | 80                     |  |
| natural gas | -                                             | $3.89	imes10^4~\mathrm{kJ}\cdot\mathrm{m}^{-3}$ | 650                    |  |
| wood        | -                                             | $1.2 	imes 10^4$                                | 200~290                |  |
| ethanol     | 1366.8                                        | $2.97 	imes 10^4$                               | 12                     |  |
| methane     | 890.3                                         | $5.55	imes10^4$                                 | 538                    |  |
| butane      | 2653                                          | $4.56 	imes 10^4$                               | 365                    |  |
| acetone     | 1788.7                                        | $3.08	imes10^4$                                 | 465                    |  |
| graphite    | 393.7                                         | $3.28	imes 10^4$                                | ~650                   |  |

Table 1. Heat of combustion and ignition points of some commonly used fuels [13].

Photocatalysts are the key for producing hydrogen efficiently from the photolysis of water. In literature, TiO<sub>2</sub> was the first reported photocatalyst, which has been studied extensively and already applied in some specific areas due to its high photocatalytic activity, non-toxicity, good stability, low cost, and so on. Since the 1990s, the  $TiO_2$  photocatalyst has made great progress in the fields of photodegradation of environmental pollutants and photocatalytic water splitting to produce hydrogen [14–16]. However, the utilization rate of solar energy by  $TiO_2$  photocatalyst is very low due to the fact that  $TiO_2$  can be excited only by short-wavelength ultraviolet light, which accounts for only approximately 5% of solar light. This drawback urges scientists to develop methods to modify  $TiO_2$ photocatalysts which can be driven by visible light. Among them, ion doping, constructing heterojunctions, noble or transition metals decoration, dye sensitization, structural designing, and construction of oxygen defects have proven effective strategies [17–20]. In particular, the construction of oxygen defects is one of the most efficient ways to manipulate the band gap of titanium oxides. Literature surveys indicate that oxygen-deficient titanium oxide  $(TiO_{2-\delta})$  can absorb more visible light than stoichiometric TiO<sub>2</sub>, and the formation of oxygen defects in titanium oxide could also enhance its electrical conductivity, thus facilitating the transfer of photogenerated electrons [21,22]. As a result, many  $TiO_{2-\delta}$ -based photocatalysts with superb performance have been developed to generate hydrogen from water splitting [23,24]. In fact, oxygen defects are often consciously or unconsciously introduced into TiO<sub>2</sub> in various modifying processes. Hence, some approaches, including but not limited to ion doping, deposition of noble metals, and loading on supports, are often adopted to enhance the photocatalytic activity of TiO<sub>2</sub> jointly with introducing oxygen defects [25-29].

Therefore, in this review, the mechanism of photocatalytic hydrogen production by water splitting over TiO<sub>2</sub> is firstly discussed in detail. Then, the effect of introducing oxygen defects on the photocatalytic activity of TiO<sub>2</sub> is analyzed. The last part of this section provides a brief overview of the research progress in photocatalytic water splitting to generate hydrogen over TiO<sub>2- $\delta$ </sub>-based photocatalysts. In Section 2, a variety of methods to introduce oxygen defects into TiO<sub>2</sub> are summarized, and their merits and shortcomings are analyzed. This will guide proper techniques to develop TiO<sub>2- $\delta$ </sub> based materials. In the following Section 3, we will discuss the modification methods of TiO<sub>2</sub> photocatalysts in addition to the introduction of oxygen defects, such as ion doping, deposition of noble metals, dye sensitization, and so on, which are helpful for further enhancing the photocatalytic water splitting into hydrogen over TiO<sub>2- $\delta$ </sub> based photocatalysts are presented in the short section of Conclusions and Outlooks.

## 2. Fundamentals of Producing H<sub>2</sub> by Photocatalytic Water Splitting over TiO<sub>2</sub>

## 2.1. Mechanism of Photocatalytic Water Splitting to Generate H<sub>2</sub>

Photocatalysis technology is based on the special energy band structure of semiconductors. In ground state, the valence band (VB) of a semiconductor is fully occupied by electrons and the conduction band (CB) is empty. There is a quantized and discontinuous band gap between the low energy VB and high energy CB. The band gap energy  $(E_g)$  of semiconductors is narrower than that of insulators (>5 eV). Therefore, the electrons in VB of a semiconductor can be excited and leap into CB when it is stimulated by photons with certain energy (higher than  $E_g$ ), leaving the same number of holes in VB (Figure 1). Photogenerated electrons ( $e_{CB}^{-}$ ) and holes ( $h_{VB}^{+}$ ) possess strong reducing and oxidizing abilities, respectively, and will migrate quickly to the surface of photocatalysts to participate in redox reactions [30]. The photocatalysts can directly decompose water when they are suspended in water, which does not require a complex reaction system. Photocatalytic water splitting over semiconductors generally involves the following five steps: (i) water molecules are adsorbed on the surface of a photocatalyst; (ii) the electrons in VB leap into CB, producing  $e_{CB}^{-}$  and  $h_{VB}^{+}$  under the irradiation by light; (iii) the photogenerated  $e_{CB}^{-}$ and  $h_{VB}^+$  transfer to the surface of the photocatalyst; (iv) the  $e_{CB}^-$  reduces H<sup>+</sup> into hydrogen and  $h_{VB}^+$  oxidizes  $H_2O$  to oxygen, which are commonly referred to as the hydrogen evolution reaction and oxygen evolution reaction; and (v) the produced hydrogen and oxygen are desorbed from the surface of the photocatalyst. Among them, steps II-IV are the rate-determining steps on the photocatalytic water splitting (see Equations (2)–(5)). As the  $O_2$  dissolved in water will markedly compete  $e_{CB}^-$  with the hydrogen evolution reaction, sacrificial agent is added into the system to improve the photocatalytic efficiency. The commonly used sacrificial agents include EDTA-2Na, methanol, and so on. In those cases,  $h_{VB}^+$  will be quickly captured by sacrificial agents instead of reacting with H<sub>2</sub>O because a single-electron process usually is faster than an O<sub>2</sub> evolution reaction.

Semiconductor + 
$$2hv \rightarrow 2e^- + 2h^+$$
 (2)

$$2\mathrm{H}^{+} + 2\mathrm{e}^{-} \to \mathrm{H}_{2} \tag{3}$$

$$2H_2O + 2h^+ \to O_2 + 2H^+$$
 (4)

Overall reaction: 
$$H_2O + 2hv \rightarrow H_2(g) + O_2(g)$$
 (5)



Figure 1. Schematic illustration of the energy band structure of semiconductors.

During photocatalytic water splitting, only the photons carrying energy greater than the  $E_g$  value of a semiconductor can excite the valance electrons into CB. As the  $E_g$  value of  $TiO_2$  is approximately 3.2 eV, only ultraviolet light with a wavelength less than 380 nm can excite its valance electrons. Next, apart from moving to the surface of the semiconductor to participate in redox reactions, those excited electrons will also recombine with the holes, releasing light and/or heat energy. The recombination of  $e_{CB}^{-}$  and  $h_{VB}^{+}$  is the deactivation process of the photogenerated carriers, which does not contribute to the photocatalytic water splitting and should be avoided as much as possible (Figure 2a). Moreover, the reducing ability of  $e_{CB}$  depends on the bottom of CB (CB minimum) and the oxidizing ability of  $h_{VB}^+$  relies on the top of VB (VB maximum). The necessary conditions for photocatalytic water splitting are that the CB minimum is more negative than the reduction potential of  $H^+/H_2$  (0 V vs. NHE at pH = 0) and the VB maximum is more positive than the oxidation potential of  $H_2O/O_2$  (1.23 V vs. NHE at pH = 0). This requires an E<sub>g</sub> value of no less than 1.23 eV, covering the oxidation-reduction potential of  $H_2O$ . In fact, the  $E_g$ value of photocatalysts for photocatalytic water splitting is generally required to be more than 1.9 eV due to the influence of mechanical and thermodynamic losses. Specifically, the CB minimum and VB maximum of TiO<sub>2</sub> are approximately -0.2 and 3 eV, respectively [31]. Therefore, TiO<sub>2</sub> can split water into hydrogen and oxygen efficiently through photocatalysis (Figure 2b).



**Figure 2.** (**a**) Behavior of photogenerated carriers in a semiconductor. (**b**) Schematic illustration of the mechanism during photocatalytic water splitting over a semiconductor.

As mentioned above, TiO<sub>2</sub> can only absorb ultraviolet light because of its wide band gap. However, a large proportion (about 50%) of the solar spectrum is visible light. Thus, enhancing the capability of harvesting visible light is an effective way to improve the photocatalytic performance of TiO<sub>2</sub>. In the literature, it was reported that the original white  $TiO_2$  would be turned black after it was thermally treated with  $H_2$ , indicating that the light absorption capability of the reduced TiO<sub>2</sub> (actually TiO<sub>2- $\delta$ </sub>) was significantly enhanced. Moreover, it has been proven that the light absorption spectrum edge of  $TiO_{2-\delta}$ will shift to a long wavelength as the density of oxygen defects increases (Figure 3a) and the corresponding  $E_g$  decreases (Figure 3b) [21,32,33]. When there is an oxygen vacancy, one atom of oxygen in TiO2 is bonded with three Ti atoms, and two redundant electrons are shared by the surrounding three Ti atoms (see Figure 3c). A portion of Ti<sup>4+</sup> will be converted into Ti<sup>3+</sup> after trapping the redundant electrons. The appearance of Ti<sup>3+</sup> species in the nonstoichiometric  $TiO_{2-\delta}$  is generally considered as the main reason that causes its absorption to visible light. Ti<sup>3+</sup> species caused by oxygen defects can introduce new intermediate defect states (shallow donor) below the bottom of CB and modify the band gap structure of TiO<sub>2</sub> (Figure 3d), which means that TiO<sub>2- $\delta$ </sub> has a narrower band gap and thus can absorb visible light [34–37].



**Figure 3.** (**a**) Optical absorption of various TiO<sub>2-x</sub> samples and (**b**) their corresponding band gaps [32]. (**c**) Illustrations on oxygen vacancy and (**d**) donor states owing to Ti<sup>3+</sup>.

On the other hand, the presence of oxygen vacancies enlarges the lattice spaces of  $TiO_2$ . As a result, the resistance to electron transfer will decrease. A low resistance for electron transfer is beneficial for the quick transfer of photogenerated electrons, thus suppressing the recombination of photogenerated  $e_{CB}^-$  and  $h_{VB}^+$  [38]. For example, Hao et al. [39] prepared an oxygen-deficient blue titanium oxide, reporting that the prepared  $TiO_{2-\delta}$  electrode would present a much lower charge transfer resistance (87  $\Omega$ ) compared with its  $TiO_2$  counterpart (356  $\Omega$ ) [39]. Additionally, the bridging oxygen vacancies tend to cause the Ti 3d defect state in the band gap of  $TiO_2$ . The Ti interstitials in the near-surface region can provide the electronic charges that the photocatalytic reactions need [40]. As a result,  $TiO_{2-\delta}$  will present a higher photocatalytic performance than  $TiO_2$ .

#### 2.3. Brief Overview on Photocatalytic Water Splitting to Generate $H_2$ over $TiO_{2-\delta}$

Since the earliest report on light-driven water splitting by Fujishima and Honda in 1972 [41], semiconductor photocatalysis has attracted great attention in the field of catalysis. However, for quite a long period, semiconductor photocatalysis developed at a mild speed and many studies were focused on the photodegradation of pollutants [42,43]. After entering the 21st century, studies on semiconductor photocatalysis have grown explosively and quite a lot of photocatalysts with excellent performance have been developed [25,44]. In particular, although oxygen vacancy was reported to generate a defect state in the band gap of TiO<sub>2</sub> leading to a narrower band gap of TiO<sub>2- $\delta$ </sub> in 1980s, TiO<sub>2- $\delta$ </sub>-based photocatalysts were promptly developed and applied to water splitting until recently [45–47].

In earlier times, oxygen defects were often introduced into  $TiO_2$  unconsciously during the modifying process, and it was then discovered that those titanium oxides with oxygen defects perform better on photocatalysis than those without oxygen defects. Therefore, researchers began to develop oxygen-deficient titania photocatalysts and explored the detailed mechanisms of how oxygen defects influence the photocatalytic performance of titanium oxides [37,48]. In 2008, Sasikala et al. [49] synthesized a series of Sn- and Eu-doped  $TiO_2$  ( $Ti_{1-(x+0.001)}Eu_{0.001}Sn_xO_{2-\delta}$ , where 0.05 < x < 0.3) nanoparticles, which showed an onset of light absorption at approximately 450 nm and high activity for hydrogen generation. Liu et al. [50] subsequently reported an oxygen-deficient anatase  $TiO_2$  nanosheet with a dominant (001) crystalline plane, indicating that a special electron transfer process on the reconstructed surface of TiO<sub>2</sub> substantially enhanced the hydrogen evolution rate from photocatalytic water splitting.  $TiO_2$  treated by  $H_2$  at high temperatures also presented enhanced photocatalytic activity for water oxidation and high apparent quantum efficiency for  $O_2$  evolution (41% under light irradiation at 365 nm) [51]. An electron-beam irradiated titania film shows a wider range of absorbed light and higher efficiency of hydrogen production owing to the oxygen vacancies or defects enhancing mobility and separation of electrons and holes [52]. Other oxygen-deficient  $TiO_2$  samples can be obtained by using the ion layer gas reaction (Spray-ILGAR) technique, microwave induced reduction, and the solution plasma process. They show high photocatalytic hydrogen evolution activity [53,54]. In summary, many TiO<sub>2- $\delta$ </sub>-based photocatalysts have been developed, but most of them are used to degrade pollutants and only a limited number of them are used to split water [22,23,27,55–57]. Among these limited reports, thermal treatment in hydrogen is the most widely used method of introducing oxygen defects in TiO<sub>2</sub> [22]. The introduced oxygen defects in  $TiO_2$  are generally combined with other strategies, such as ion doping and composition with other semiconductors, to achieve high hydrogen evolution activity, which has been the focus of recent studies [47,58-61].

# 3. Methods of Introducing Oxygen Defects in TiO<sub>2</sub>

# 3.1. Reductive Treatment

Reductive treatment is the most direct way to introduce oxygen defects in TiO<sub>2</sub>. TiO<sub>2</sub> can be reduced into TiO<sub>2- $\delta$ </sub> by adding a proper reducing agent. Among the many reductants, H<sub>2</sub> is the most widely used option because of its strong reducing ability without introducing impurities [22,62–65]. However, H<sub>2</sub> treatment is usually carried out at high temperatures and the explosion limit of H<sub>2</sub> falls in a very wide range of 4.0~75.6 vol.%. In other words, the operation of H<sub>2</sub> treatment on TiO<sub>2</sub> is quite dangerous and requires very accurate processes. Moreover, treating TiO<sub>2</sub> with H<sub>2</sub> is usually a time-consuming task. For example, Xu et al. [66] reported black TiO<sub>2</sub> through H<sub>2</sub> treatment in a 20.0 bar of H<sub>2</sub>

atmosphere at approximately 200 °C for 5 days. Zhang et al. [67] prepared defective  $TiO_{2-\delta}$ hollow microspheres also by high-temperature H<sub>2</sub> reduction for 3 h at 550 °C. Wierzbicka et al. [68] synthesized a reduced "grey" brookite TiO<sub>2</sub> photocatalyst by hydrogenating it at  $500 \,^{\circ}$ C, showing a remarkable noble metal free photocatalytic H<sub>2</sub> evolution performance, substantially higher than that of hydrogenated anatase or rutile TiO<sub>2</sub>. The density of defects can be adjusted by tuning the  $H_2$  treatment temperature, soaking time, and  $H_2$ concentration. For instance, Samsudin et al. [69] put TiO<sub>2</sub> into a continuous flow of 1 atm of pure H<sub>2</sub> at 500 °C for different times, finally obtaining  $TiO_{2-\delta}$  with different densities of oxygen defects. They indicated that with time of H<sub>2</sub> treatment, the density of oxygen defects increased, the color of the products becomes deeper from white to dark gray and to bluish gray (Figure 4a), and the light absorption ability of the resultant  $TiO_{2-\delta}$  was significantly enhanced (Figure 4b). However, more defects do not always guarantee better photocatalytic performance. Here, the photocatalytic performance of TiO<sub>2</sub> hydrogen treated for 24 h is inferior to that of the sample treated for 12 h. This might be due to more defects acting as recombination centers of photogenerated carriers. Thus, the control of oxygen defect density in TiO<sub>2</sub> is also important. In addition, because treating TiO<sub>2</sub> with H<sub>2</sub> will not introduce other impurities, the shallow donor levels of Ti<sup>3+</sup> are the major factor narrowing the band gap of titanium oxides. The increased electron density on the catalyst surface led by Ti<sup>3+</sup> and oxygen vacancies is also beneficial for improving photocatalytic performance.



(b)

**Figure 4.** (a) Digital images and (b) absorption spectra together with K-M functions showing the calculated band gap interpolation for TiO<sub>2</sub> hydrogenated at different times [69].

Apart from H<sub>2</sub>, some other gases have been also used as reductants. For example, NH<sub>3</sub> is also often used to reduce TiO<sub>2</sub>. Chen et al. [56] synthesized a N-doped and oxygen-deficient TiO<sub>2</sub> photocatalyst by heating the commercially available pure TiO<sub>2</sub> in a NH<sub>3</sub> atmosphere at 550 °C for 5 h. It is easy to introduce N into TiO<sub>2</sub> (N doping) when using NH<sub>3</sub> as the reducing agent. Similarly, Ihara et al. [70] prepared a N-doped oxygen-deficient

titanium oxide by calcinating the hydrolytic product of  $Ti(SO_4)_2$  with ammonia in dry air at 400 °C for 1 h. Additionally, some familiar reducing substances such as carbon, NaBH<sub>4</sub>, and Li can be also used to prepare oxygen-deficient  $TiO_2$  [71]. Guan et al. [72] prepared a product of oxygen-deficient  $TiO_2$  by a three-step process, which showed strong absorbance over the whole visible-light region. In their process, a Ti coating was first pretreated in carbon powder at 1073 K for 2 h, which was then oxidized at 1073 K for 15 h in air. Next, the obtained samples were treated in carbon powder again at 973 K for 30 min, finally obtaining the product of oxygen-deficient  $TiO_2$ . Zhao et al. [73] first prepared  $TiO_2$  anatase nanorods by a two-step hydrothermal method. Then, the obtained sample was mixed with NaBH<sub>4</sub> (1:1 in mole) in a mortar and thermally treated in Ar at 300 °C for 30 min, finally acquiring the reduced anatase nanorods. Interestingly, Martinze et al. [74] prepared a reduced blue  $TiO_2$  by using Li foil and  $TiO_2$  which were solved in ethylene diamine, stirring in anhydrous and dark conditions for 1440 h. Treating with these non-hydrogen reductants avoids the risk of explosion compared with hydrogen treatment.

In addition, providing an anoxic environment in the treatment process of TiO<sub>2</sub> can also result in the same effect as adding reducing agents. For example, Pereira et al. [75] obtained oxygen-deficient TiO<sub>2</sub> films with enhanced visible and near-infrared optical absorption by periodically interrupting the O<sub>2</sub> gas supply in the process of magnetron sputtering. Dhumal et al. [76] synthesized oxygen-deficient titanium suboxide (TiO<sub>x</sub> with x < 2) nanoparticles by using a diffusion flame aerosol reactor under an oxygen lean environment in the formation zone of particles. Xiao et al. [77] reported the formation of oxygen vacancies in TiO<sub>2</sub> during the process of calcining TiO<sub>2</sub> in Ar or N<sub>2</sub> atmospheres. Kushwaha et al. [78] prepared a black oxygen-deficient TiO<sub>2</sub>-graphite nanocomposite by calcining Ti-EDTA complex under hypoxic conditions. Singh et al. [36] investigated the effect of thermal treatment on TiO<sub>2</sub> thin films under an oxygen anoxic environment, reporting a reduction in the band gap of 0.36 eV.

#### 3.2. Pulsed Laser Irradiation

The excimer laser is a powerful tool and is often used to manipulate the composition and structure of material surfaces. Pulsed laser irradiation is a simple process for producing black, oxygen-deficient  $TiO_2$ . A photochemical reduction reaction will take place during the pulsed laser absorption, thereby resulting in the evolution of oxygen deficiencies. The absorption of focused laser irradiation accompanied by fast heating/cooling processes will promote the formation of a porous surface [79–81]. As mentioned before, the dangers involved in hydrogenation operation greatly limit its application, while hydrogen plasma irradiation overcomes this shortcoming well [82,83]. For example, Wang et al. [82] synthesized a black titania with a core/shell structure ( $TiO_2@TiO_{2-x}H_x$ ) assisted by hydrogen plasma and its photocatalytic activity for water splitting and cleaning pollutants was much better than that of TiO<sub>2</sub>. In addition, Nd:YAG, ArF, KrF, and XeCl excimer lasers are also frequently used methods besides hydrogen plasma [84,85]. Nakajima et al. [85] indicated that the TiO<sub>2</sub> crystal surface would be successfully reduced through ArF, KrF, and XeCl excimer laser irradiation, forming an oxygen-deficient TiO<sub>2- $\delta$ </sub> layer with a thickness of 160 nm. Moreover, as shown in Figure 5a, the resistance of  $TiO_2$  decreased after laser irradiation. Significant diffuse scattering around the (220) reflection for a wide range of  $Q_x$  (0.04~0.04) over the irradiated sample (Figure 5b) indicated a strong local lattice distortion near the surface of the sample. Pulsed laser irradiation is very suitable for surface treatment. It is simple to get high reductive efficiency based on photochemical reactions due to high-power laser irradiation. Meanwhile, the resultant surface of photocatalysts generally has a large specific surface area which is beneficial for improving photocatalytic performance.



**Figure 5.** (a) Surface resistance of TiO<sub>2</sub> (100) substrates as a function of pulse number irradiated by ArF, KrF, and XeCl lasers. (b) Reciprocal space mappings around the (220) reflection for the unirradiated TiO<sub>2</sub> (100) substrate and laser-irradiated TiO<sub>2- $\delta$ </sub>/TiO<sub>2</sub> (100) substrate. The insets show the Q<sub>x</sub> profiles at the (220) reflection [85].

#### 3.3. Pulsed Laser Deposition

Pulsed laser deposition (PLD) is a good technique to prepare functional thin films by depositing the ablated substances on a substrate. The oxygen deficiency in the film can be adjusted by controlling the partial pressure of  $O_2$  and laser power density. For instance, Leichtweiss et al. [86] prepared oxygen-deficient titanium oxide films with an average composition of TiO<sub>1.6</sub> by PLD at room temperature, which presented high efficiency for the water-splitting reaction. Kunti et al. [87] deposited TiO<sub>2</sub>-SiO<sub>2</sub> composite films on amorphous quartz substrates at different partial pressures of O<sub>2</sub> by PLD technique, revealing the generation of oxygen defects and Ti<sup>3+</sup> states in the films. Moreover, ion-doped, oxygen-deficient TiO<sub>2</sub> films can be obtained by changing the humidity of the environment, atmosphere, and ion implantation [88–90]. For instance, Socol et al. [90] fabricated N-doped crystalline TiO<sub>2</sub> thin films by PLD in N<sub>2</sub> or N<sub>2</sub>-O<sub>2</sub> mixtures. Nath et al. [91] synthesized TiO<sub>1.5</sub> nanoparticles by varying the focusing conditions of pulsed laser ablation. Rahman et al. [92] prepared TiO<sub>2</sub> nanostructures with different morphologies and incorporation of oxygen vacancy defects on a Si substrate by a single-step, catalyst-assisted PLD method (Figure 6). The morphology can be controlled by adjusting the deposition temperature and template. The film materials with special morphological structures can be prepared by PLD, thus adjusting the specific surface area of the catalysts. Ion doping can also be achieved by changing the reacting atmosphere. Thus, the band gap of titanium oxides can be reduced jointly by oxygen defects and ion doping.



**Figure 6.** (a) Schematic models of TiO<sub>2</sub> nanostructures grown on gold nanoisland (GNI)-modified Si (100) templates at 675, 700, and 720 °C. (b) Photographs and XPS spectra of O 1 s, Ti 2p3/2, and Si 2p regions of TiO<sub>2</sub> films consisting of nanobelts, corrugated nanowires (NWs), straight NWs, and decorated NWs. (c) SEM images of TiO<sub>2</sub> nanostructures grown in 20 mTorr Ar at 675–750 °C on GNI-modified, H-terminated Si (GNI/H-Si), GNI-modified, RCA-cleaned Si (GNI/RCA-Si), and GNI-modified, thermally-oxidized (GNI/O<sub>x</sub>-Si) templates. The corresponding lower left insets show schematic models of the as-grown nanostructures, and the upper right ones display the magnified SEM images of the selected nanostructures [92].

## 3.4. Ion Doping

Due to the difference in electronegativity between various elements, the introduction of impurity atoms into  $TiO_2$  will change the partial concentration of electrons in  $TiO_2$ , thus producing oxygen defects in it. For instance,  $Ti^{4+}$  will be converted into  $Ti^{3+}$  when the oxygen atoms in  $TiO_2$  are replaced by highly electronegative F atoms due to the increased electron density around  $Ti^{4+}$  caused by the doped F atoms [93]. As shown in Figure 7a, clear  $Ti^{3+}$  signals can be observed in the EPR spectrum of fluorine-treated anatase. The corresponding Raman spectra also display a slight shift to a higher frequency at the peak of 144 cm<sup>-1</sup>, which is attributed to the presence of oxygen vacancies and  $Ti^{3+}$ . The oxygen

vacancies are spontaneously introduced during N doping [94]. Pu et al. [95] successfully prepared N-doped, oxygen-deficient TiO<sub>2</sub> microspheres through a two-step synthesis method. Firstly, TiO<sub>2</sub> microspheres are synthesized by solvothermal synthesis. Then, the final oxygen-deficient titanium oxide products were obtained by electron beam irradiation using urea as the nitrogen source, and the concentration of Ti<sup>3+</sup> increased with an increasing dose of the electron beam irradiation. Wang et al. [26] reported a N-doped  $TiO_2$  ( $TiO_{2-x}N_x$ ) by a simple wet method: hydrolyzing acidic tetra-butyl titanate in ammonia solution followed by calcination at 350 °C for 1 h. Of course, the nitrogen source for doping generally directly or indirectly originates from reducing NH<sub>3</sub>, which can also promote the reduction of TiO<sub>2</sub>. Moreover, the doping of some metal ions, such as Eu<sup>3+</sup>, La<sup>3+</sup>, and Gd<sup>3+</sup>, can introduce oxygen defects in TiO<sub>2</sub> as well. Those ions with a lower valence than Ti<sup>4+</sup> can generate anion vacancies in TiO<sub>2</sub> [96–98], thereby forming Ti<sup>3+</sup>. Zhang et al. [99] proved that the formation energy of a vacancy on the La-doped  $TiO_2$  surface was lower than that formed on the pure TiO<sub>2</sub> surface treated in reducing conditions or oxidizing conditions by calculation (Figure 7b). Wang et al. [96] synthesized 0.4 mol% Gd and 2.0 mol% La co-doped TiO<sub>2</sub> microspheres via a hydrothermal method, which exhibited enhanced visiblelight absorption. The doped La<sup>3+</sup> and Gd<sup>3+</sup> create abundant oxygen deficiencies and surface defects in the sample, decreasing the excitation energy of  $TiO_2$ . Doping  $TiO_2$  with highly electronegative elements will inevitably result in oxygen defects. Thus, introducing oxygen defects during the ion-doping process usually occurs unconsciously and controlling the density of oxygen defects is a great challenge. However, scientists can combine the advantages of ion doping and oxygen defects to improve the photocatalytic performance of TiO<sub>2</sub> [100,101].



**Figure 7.** (a) EPR spectra of the anatase samples synthesized by a hydrothermal treatment with different HF amounts [93]. (b) Formation energies of oxygen vacancies as a function of  $\Delta\mu$ O (the difference in oxygen chemical potentials [99].

#### 3.5. Plasma-Assisted Deposition

Plasma-enhanced chemical vapor deposition (PECVD) has the features of low deposition temperature, high purity, uniform thickness and composition of films, as well as easy control of reaction parameters. It can be used to prepare various metal films, inorganic films, and organic films. The structure and properties of films can be adjusted by controlling reaction conditions. Specifically, highly active species can be produced by plasma treatment under mild conditions. For example, Hatanaka et al. [102] prepared TiOx:OH films using a remote PECVD technique, which showed high photoconductivity. Sakai et al. [103] obtained oxygen-deficient TiO<sub>2</sub> anatase films by using oxygen plasma-assisted reactive evaporation by increasing the supply of titanium atoms, and the resultant oxygen-deficient TiO<sub>2</sub> films showed excellent hydrophilicity, which was conducive to thorough contact with

water and facilitated its splitting reaction. Li et al. [104] introduced numerous oxygen deficiencies and  $Ti^{3+}$  defects on the surface of  $TiO_2$  nanoparticles via Ar plasma. Similarly, Hojo et al. [105] also successfully introduced oxygen defects in a TiO<sub>2</sub>:Nb film by annealing the sample with Ar plasma irradiation. Recently, Kawakami et al. [106] reported a kind of anatase/rutile mixed phase TiO<sub>2</sub> nanoparticle with many oxygen deficiencies, which were obtained by annealing the sample with low-temperature  $O_2$  plasma. There are also excited species, such as ozone and OH generated during the plasma discharge in water. Thus, the plasma-liquid interaction has been widely applied to prepare nanomaterials. For instance, An et al. [107] prepared gray hydrogenated TiO<sub>2</sub> spheres using a plasma-modified sol-gel system. Mizukoshi et al. [108] obtained a blue  $TiO_2$  containing oxygen defects by generating discharge plasma in an aqueous ammonia solution containing TiO<sub>2</sub> powder. TiO<sub>2</sub> was reduced by a reducing species, such as hydrogen radicals generated during the plasma discharge process in aqueous ammonia. The color of TiO<sub>2</sub> was gradually deepened with treating time and the capacity of light absorption was enhanced simultaneously, mainly because of the increasing amount of oxygen defects in the samples. Apart from introducing oxygen defects, plasma-assisted treating also leads to more bridging/terminal oxygen groups adsorbed on the surface of the samples, thus facilitating the charge transfer and suppressing the recombination of electrons and holes.

#### 3.6. Ultrasonic-Assisted Techniques

Ultrasonic spray pyrolysis is a simple, low-cost, and scalable technique [54,109–112]. In the literature, Nakaruk et al. [110] successfully prepared fully dense TiO<sub>2</sub> films with oxygen deficiencies by using ultrasonic spray pyrolysis and proved that the concentration of oxygen deficiencies could be controlled by changing the annealing temperature. Oxygen vacancies can also be directly induced in TiO<sub>2</sub> by low-frequency ultrasound (LFUS) treating because the high-speed particle collisions and shock waves from LFUS can impact the atomic arrangement in the TiO<sub>2</sub> lattice. For instance, Osorio-Vargas et al. [113] prepared visible-light responsive TiO<sub>2</sub>-based photocatalysts by dispersing P25 powder into water and exposed this to a LFUS environment for 6 h. Bellardita et al. [114] reported that ultrasonic treating P25 powder dispersed in water induced oxygen deficiency in TiO<sub>2</sub>, thus narrowing the bandgap of TiO<sub>2</sub> from 3.18 to 3.04 eV.

#### 3.7. Calcination under Anoxic Conditions

Thermal treatment atmosphere exerts an important influence on the formation of oxygen deficiencies [115–118]. The ratio of O and Ti in the resultant titanium oxides will be less than 2 when there is not enough oxygen in the preparation process. For instance, Albetran et al. [119] revealed that the color of titania changed from white to gray and black as the ratio of Ar/air of the thermal treating atmosphere increased (Figure 8a), and the light absorption of the corresponding products was also improved (Figure 8b). Sang et al. [120] fabricated oxygen-deficient TiO<sub>2</sub> nanotube arrays by calcining in nitrogen, or a mixture gas of 5% hydrogen in nitrogen, which exhibited higher photocurrent density and smaller charge transfer resistance than that of the samples calcined in air (Figure 8c,d). This is because the large lattice spaces caused by oxygen vacancies decreases the electrical resistance for electron transfer. Qi et al. [121] prepared a defective  $TiO_2$  sample with oxygen deficiencies by thermally treating TiO<sub>2</sub> at 200  $^{\circ}$ C under vacuum conditions. The defect concentration in the sample is positively proportional to the thermal treatment time. Li et al. [122] reported an oxygen-deficient dumbbell-shaped anatase  $TiO_{2-x}$  product. In detail, a TiCl<sub>3</sub>-HAc mixed solution was solvothermally treated at 180 °C for 5 h and the solvothermally synthesized product was calcined under vacuum at 400 °C for 1 h.



**Figure 8.** (a) Digital photograph and (b) band gaps of the electrospun TiO<sub>2</sub> nanofibers prepared by non-isothermally heating from 25 to 900 °C at 10 °C/min in argon–air mixtures [119]. (c) Photocurrent density vs. the applied potential of the TiO<sub>2</sub> nanotube arrays annealed in air (TNT-A), N<sub>2</sub> (TNT-N), and 5% H<sub>2</sub>/N<sub>2</sub> mixture gas (TNT-H) under ultraviolet light ( $365 \pm 15$  nm) irradiation and the control tests in the dark [120]. (d) Electrochemical impedance spectroscopy plots of the anodized TiO<sub>2</sub> nanotubes annealed in air (TNT-A), N<sub>2</sub> (TNT-N) and 5% H<sub>2</sub>/N<sub>2</sub> mixture gas (TNT-H) under ultraviolet light illumination [120].

# 3.8. Molten Salt Calcination

Du et al. [118] reported a facile strategy based on molten salt calcination to construct oxygen deficiencies in TiO<sub>2</sub>. A flower-like TiO<sub>2</sub> precursor was synthesized via a solvothermal method using tetrabutyl titanate and acetic acid (HAc)/N,N-dimethyl formamide (DMF) as the titanium source and solvent, respectively. The as-prepared precursor was mixed with eutectic salts of LiCl/KCl (45/55 by weight) and calcined in a muffle furnace at 400 °C for 2 h. The lattice oxygen of TiO<sub>2</sub> was consumed during the calcination because of the low partial pressure of O<sub>2</sub> in the molten salt, thereby introducing numerous oxygen deficiencies and Ti<sup>3+</sup> in the final product.

In summary, up to now, hydrogen reduction is still the most extensively used method to prepare oxygen-deficient  $TiO_2$  owing to the strong deoxidizing ability and purity. However, it is time consuming and has high energy consumption and a high explosion risk. Thus, some other reductants such as carbon, NH<sub>3</sub>, and Li are also used to reduce  $TiO_2$  in the literature. Synthesizing titanium oxide in an anoxic environment is widely used because it is easily implemented. Pulsed laser irradiation is a simple process for producing oxygen-deficient  $TiO_2$ ; however, this is more suitable for treating films because the radiation response mainly happens in the surface layer. Similarly, oxygen-deficient  $TiO_2$  films can be easily obtained through adjusting the partial pressure of  $O_2$  and the laser power density of

PLD. Introducing oxygen defects through ion doping is a natural process and the density of oxygen defects mainly depends on the doped species of ions and their concentration. Plasma discharge in water will provide reductively excited species, which can easily reduce  $TiO_2$ . However, it is currently not widely applied. Oxygen-deficient  $TiO_2$  can be prepared by ultrasonic spray pyrolysis or by calcinating under anoxic conditions, and the density of oxygen deficiencies can be controlled by controlling the experimental temperature. Molten salt calcination is simple and easily operated. Introducing oxygen defects improves the photocatalytic performance of  $TiO_2$  in 2 major ways: one is narrowing band gap to absorb more light, and the other is changing the lattice structure to decrease resistance to electron transfer. Table 2 compares the different methods of introducing oxygen defects in  $TiO_2$ .

Table 2. Comparison of different methods of introducing oxygen defects in TiO<sub>2</sub>.

| Methods                                                                                       | Advantages                                                                                                                                                                                               | Disadvantages                                                                                                         | Ref.                   |
|-----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------|
| Reduced by H <sub>2</sub>                                                                     | Strong reducing ability, no<br>impurities introduced, and easy<br>control on the density of oxygen<br>defects by adjusting reaction time.                                                                | High temperature, high energy consumption, time-consuming, and high risk.                                             | [65,67–69]             |
| Reduced by chemical<br>reductants such as NH <sub>3</sub> ,<br>NaBH <sub>4</sub> , and carbon | Mild reaction conditions and low energy consumption.                                                                                                                                                     | Difficult control on the density of oxygen defects and easy introduction of impurities.                               | [56,70–72]             |
| Prepared in anoxic environment                                                                | Convenient operation and can<br>easily obtain products in<br>large quantities.                                                                                                                           | High temperature, high energy consumption, and time consuming.                                                        | [78,79,82]             |
| Pulsed laser irradiation                                                                      | High reactivity and reducing<br>efficiency and<br>convenient operation.                                                                                                                                  | Special equipment needed.                                                                                             | [88,91,92]             |
| Pulsed laser deposition                                                                       | Convenient operation, easy control on the density of oxygen defects by adjusting the partial pressure of $O_2$ and laser power density, and easily obtains special morphological structures of products. | Special equipment needed.                                                                                             | [80,81]                |
| Ion doping                                                                                    | Mild reaction conditions and wide selection of approaches.                                                                                                                                               | Unconsciously introduces oxygen<br>defects without controllling their<br>density and easily<br>introduces impurities. | [95,97,98,100,101,107] |
| Plasma-assisted deposition                                                                    | Mild and controllable reaction<br>conditions which is suitable for<br>preparing films.                                                                                                                   | Special equipment needed and low productivity.                                                                        | [104,106]              |
| Ultrasonic-assisted techniques                                                                | Convenient operation, low cost, and scalable.                                                                                                                                                            | The density of oxygen defects is not easily controlled.                                                               | [54,109,112,114]       |
| Calcination under<br>anoxic conditions                                                        | Convenient operation and easy to control the density of oxygen defects by adjusting the partial pressure of $O_2$ .                                                                                      | High temperature, high energy consumption, and time consuming.                                                        | [117,120,121]          |
| Molten salt calcination                                                                       | Convenient operation and easily<br>obtains products in<br>large quantities.                                                                                                                              | Special TiO <sub>2</sub> precursor needed.                                                                            | [118]                  |

# 4. Modification Methods of $TiO_{2-\delta}$ Photocatalysts

 $TiO_{2-\delta}$  has been proven to perform better than stoichiometric  $TiO_2$  in the process of photocatalytic water splitting. Many strategies such as ion doping, constructing heterojunction and deposition of noble metals have been proved to effectively improve the photocatalytic activity of  $TiO_2$ . Thus, the photocatalytic activity of  $TiO_{2-\delta}$  should be enhanced further by these strategies.

# 4.1. Ion Doping

Ion doping can introduce defects into TiO<sub>2</sub> which could act as the capture traps of photogenerated carriers, thereby suppressing the recombination of photogenerated  $e_{CB}^-$  and  $h_{VB}^+$ . The lattice distortion caused by the doped atoms with different ionic sizes would increase the asymmetry of the crystal structure, which could promote the separation of photogenerated  $e_{CB}^$ and  $h_{VB}^+$ . Additionally, the energy band structure of TiO<sub>2</sub> can be effectively manipulated by ion doping. The narrowed band gap can extend the light absorption and enhance the utilization efficiency on solar energy of the resultant photocatalysts.

## 4.1.1. Metal Ion Doping

The doping of transition metals has been proven an effective method for regulating the band positions of  $TiO_2$ . The main principle is to insert an additional energy level between the original conduction band and valence band. For example, Sheng et al. [123] reported a Pd-doped  $TiO_2$ , revealing that the photogenerated  $e_{CB}^-$  and  $h_{VB}^+$  were efficiently separated after Pd doping. Sasirekha et al. [124] prepared a Ru-doped anatase  $TiO_2$  supported on silica by a solid-state dispersion method, which performed well in the photocatalytic reduction of carbon dioxide. Gao et al. [125] indicated that the doping of Mo, Pd, Ru, and Rh could narrow the band gap of  $TiO_2$ , thus enhancing the probability of activation by visible light. Their theoretically calculated results through density functional theory revealed that the impurity states of 4d electrons would form new degenerate energy levels, thus narrowing the band gap of  $TiO_2$ . Thalgaspitiya et al. [126] synthesized mesoporous composites of M-doped titanium dioxide (M = Mn, Co, Ni, Mo, and W) with reduced graphene oxide (rGO), indicating that the indirect band gap of the composites could be adjusted into the range of 2.20–2.48 eV.

Rare earth ions have rich energy levels and unique features of 4f electronic transitions, providing unique opportunities for manipulating the band gap of semiconductors by elemental doping. For instance, Wang et al. [127] fabricated samples of La<sup>3+</sup>- or Yb<sup>3+</sup>-doped TiO<sub>2</sub> supported on r-GO, reporting that the anionic vacancies in the TiO<sub>2</sub> lattice caused by La<sup>3+</sup> and Yb<sup>3+</sup> would generate Ti<sup>3+</sup>, thus enhancing the visible-light response of the samples. Stengl et al. [128] prepared several samples of rare earth (La, Ce, Pr, Nd, Sm, Eu, Dy, Gd)-doped TiO<sub>2</sub>, which were all visible-light sensitive. Fang et al. [129] synthesized rare earth ion (Er<sup>3+</sup> and/or Yb<sup>3+</sup>)-doped TiO<sub>2</sub> photocatalysts by a hydrothermal method, indicating that the doping of Er<sup>3+</sup> and/or Yb<sup>3+</sup> could decrease the recombination rate of photogenerated electron-hole pairs, finally leading to a higher photocatalytic efficiency of TiO<sub>2</sub>. In addition, the phase transition from anatase to rutile can be significantly delayed by the doping of rare earth ions [130,131].

Alkali metal and alkali earth metal ions were also used to improve the photocatalytic activity of TiO<sub>2</sub>. Liu et al. [132] prepared a mesoporous Na-doped titanium dioxide with a band gap of 3.08 eV. The doped Na ions could enter into the (004) crystalline plane of anatase TiO<sub>2</sub>, finally leading to the dislocation defects in TiO<sub>2</sub>. Lv et al. [133] successfully fabricated AM-TiO<sub>2-x</sub> samples (AM = Mg, Ca, Sr, and Ba), revealing that the CB position of TiO<sub>2</sub> became more negative after AM doping, thus improving the hydrogen production ability of TiO<sub>2</sub>. The separation of carriers and transfer efficiency were also dramatically promoted (Figure 9a–c).

## 4.1.2. Nonmetallic Ion Doping

The doping of nonmetallic ions can expand the light-absorption region of  $TiO_2$  and suppress the recombination of photogenerated  $e_{CB}^-$  and  $h_{VB}^+$ . Normally, the p orbital in the most outer electronic layer of the doped ions would hybridize with the 2p orbital of O in  $TiO_2$ , forming new shallow levels near the top of the valence band. For example, N doping is widely studied because the ion radius of N is closest to that of O [134,136–138]. Li et al. [136] prepared a N-doped  $TiO_2$  which performed better in photocatalytic hydrogen evolution than the undoped  $TiO_2$  under the same conditions (Figure 9d). Yuan et al. [139] prepared a N-doped  $TiO_2$  with a high specific surface area by heating a mixture of urea and  $TiO_2$ .

The absorption spectrum of the N-doped TiO<sub>2</sub> shifted to the wavelength of 600 nm and the sample showed high photocatalytic activity on hydrogen evolution. Momeni et al. [140] prepared S-doped TiO<sub>2</sub> nanostructure photocatalyst films which performed well in the removal of RhB and hydrogen generation under visible-light radiation. Carmichael et al. [141] reported B-doped titanium dioxide films with a hydrogen evolution rate of 24  $\mu$ L·cm<sup>-2</sup>·h<sup>-1</sup>, which far exceeded the undoped TiO<sub>2</sub> at 2.6  $\mu$ L·cm<sup>-2</sup>·h<sup>-1</sup>. Wu et al. [142] fabricated F-doped TiO<sub>2</sub> particulate thin films, which could be applied in the photodegradation of organic pollutants and photoinduced splitting of water into hydrogen under the irradiation of either UV or visible light.



**Figure 9.** (a) UV–Vis diffuse reflectance spectra of TiO<sub>2</sub> and alkaline earth metal-doped TiO<sub>2</sub> [133] and (b) gaps in TiO<sub>2</sub> and alkaline earth metal-doped TiO<sub>2</sub> [133]. (c) Photocatalytic H<sub>2</sub> production from water splitting over TiO<sub>2</sub> and alkaline earth metal-doped TiO<sub>2</sub> under the condition of adding Pt as a co-catalyst [133]. (d) Photocatalytic H<sub>2</sub> generation over TiO<sub>2</sub> doped with different amounts of N [129]. (e) Photocurrent response curves of TiO<sub>2</sub>, B-doped TiO<sub>2</sub>, N-doped TiO<sub>2</sub>, and (B,N)-co-doped TiO<sub>2</sub> to visible light [134]. (f) Photocatalytic H<sub>2</sub> generation over (Fe<sub>x</sub>Co<sub>1-x</sub>)-co-doped TiO<sub>2</sub> [135].

# 4.1.3. Multiple Ion Co-Doping

Different ions have different impacts on TiO<sub>2</sub>; thus, the co-doping of multiple ions is an effective method to obtain higher photocatalytic activity. In the literature, Zhu et al. [143] studied the electronic and optical properties of C-, Mo-, and (Mo,C)-co-doped anatase TiO<sub>2</sub> using the first principle calculations. The results show that the optical absorption edges of the (Mo,C)-co-doped TiO<sub>2</sub> will shift towards the visible-light region. Diao et al. [144] reported K, Na, and Cl co-doped rutile TiO<sub>2</sub>, exhibiting good photocatalytic degradation of gaseous formaldehyde under visible-light irradiation. Li et al. [134] reported the photocatalytic activity for hydrogen production over (B,N)-co-doped TiO<sub>2</sub> under visible-light irradiation. N doping extends the absorption edge to the visible-light region and B doping acts as the shallow trap for photogenerated electrons to prolong the life of the electrons and holes. Consequently, stronger photocurrents were observed on (B,N)-co-doped TiO<sub>2</sub> than those of N-doped TiO<sub>2</sub>, B-doped TiO<sub>2</sub>, and undoped TiO<sub>2</sub> (Figure 9e). Barakat et al. [135] prepared Fe<sub>x</sub>Co<sub>1-x</sub>-co-doped titanium oxide nanotubes, achieving distinct enhancement of the visible-light absorption capacity (Figure 9f). Filippatos et al. [145] even reported a photocatalyst of H, F, and Cl co-doped titanium dioxide with a high hydrogen production rate.

In short, improving the photocatalytic performance of TiO<sub>2</sub> by ion doping is mainly based on introducing defects, changing the lattice structure, and adjusting the band gap. Metal ion doping also affects the electron distribution and lattice size. Nonmetallic ions, such as N-, S-, and P-doping, generates new shallow levels by the hybridization of Ti 2p orbital with O 2p, thus narrowing the band gap of TiO<sub>2</sub>. Ion doping can be achieved through lots of ways, so it is easy to carry out in various experimental environments. However, the results may be quite different when using different doping methods.

## 4.2. Composite

The heterostructure formed by the recombination of two or more semiconductors with matched energy band structures can effectively improve the separation efficiency of photogenerated  $e_{CB}^{-}$  and  $h_{VB}^{+}$ . As shown in Figure 10, there are usually four types of heterostructures based on different relative positions of the energy band, including type I, type II, type III, and the Z-scheme system [146,147]. The built-in electric field formed along the interface will promote the transfer of electrons. Additionally, the combination with narrow band semiconductors could allow TiO<sub>2</sub> to respond to visible light.

For instance, Smith et al. [148] synthesized a nanotubular composite of  $TiO_2$ -WO<sub>3</sub>. This composite demonstrated an increase of 46% in water-splitting efficiency compared to  $TiO_2$  nanotubes prepared under similar conditions. Choudhury et al. [149] prepared ultra-thin PdO-TiO<sub>2</sub> composite films which could be used to photogenerate hydrogen efficiently from methanol/water for a long period of time. Navarrete et al. [150] synthesized  $\beta$ -Ga<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> composite photocatalysts for H<sub>2</sub> production from a water/methanol mixture (Figure 11a). The high activity is attributed to the slow charge recombination of the photogenerated  $e_{CB}^{-}$  and  $h_{VB}^{+}$  (Figure 11b). Gholami et al. [151] confirmed that the activity of the ZnO-TiO<sub>2</sub> composite for photodegradation of bentazon was better than that of ZnO and TiO<sub>2</sub> separately. Chen et al. [152] constructed a NiO/TiO<sub>2</sub> heterojunction on the surface of  $TiO_2$  film. The strong inner electrical field effectively separates the photogenerated electron-hole pairs, and thus the composite exhibited much better photocatalytic activity than the original  $TiO_2$  film (Figure 11c,d). The graphene- $TiO_2$  composite has been widely studied because of its excellent mobility of charge carriers, large specific surface area, flexible structure, high transparency, and good electrical and thermal conduction [153–159]. Zhang et al. [157] prepared a  $TiO_2/graphene$  sheet composite by a sol-gel method, exhibiting a hydrogen evolution rate of 8.6  $\mu$ mol·h<sup>-1</sup> which was nearly two times that over the commercially available Degussa P25 (4.5  $\mu$ mol·h<sup>-1</sup>). Fu et al. [159] constructed a  $g-C_3N_4$ /graphene-CNTs/TiO<sub>2</sub> Z-scheme photocatalytic system, in which the graphene CNTs effectively promoted the transfer of photogenerated carriers, thereby generating a stronger photocurrent (Figure 11e,f). The built-in electric field along the interface of the composite can promote the transfer of electrons, thus suppressing the recombination



of photogenerated  $e_{CB}^{-}$  and  $h_{VB}^{+}$ . Therefore, scientists could purposefully design the structure of composites according to the band structure of semiconductors, which can reduce the uncertainty of experiments.

**Figure 10.** Schematic illustration on the separation ways of photogenerated electron-hole pairs over heterojunction photocatalysts: (**a**) type-I, (**b**) type-II, (**c**) type-III, and (**d**) Z-scheme [147].

# 4.3. Surface Noble Metal Deposition

The photogenerated carriers will be redistributed when the surface semiconductor comes into contact with metal. The electrons will transfer from the n-type semiconductor to metals because of the lower Fermi levels of metals. Moreover, the surface plasmon polaritons can enhance the light response of  $TiO_2$  [160–163]. In the literature, Zheng et al. [164] investigated the photocatalytic performance of TiO<sub>2</sub> deposited with Au, Ag, and AuAg bimetallic nanoparticles. The results showed that the local surface plasmon resonance of noble metals improved the photocatalytic activity TiO<sub>2</sub> under visible-light irradiation. Luo et al. [165] reported a visible-light-driven responsive Au/rGO/hydrogenated TiO<sub>2</sub> nanotube array ternary composite with a high hydrogen evolution rate of 45 mmol $\cdot$ cm<sup>-2</sup>·h<sup>-1</sup>. The visible-light harvesting was significantly improved by the Au nanoparticles due to the localized surface plasmon resonance effect. Ag, Pd, and Rh have also been used to modify TiO<sub>2</sub> by depositing them on its surface [61,166–169]. For example, Ge et al. [167] decorated Ag nanoparticles onto vertically aligned TiO2 nanotube arrays. The Ag-decorated TiO2 can efficiently drive photocatalytic water splitting under visible-light irradiation owing to the surface plasmon resonance of Ag. Due to the local surface plasmon resonance, the photocatalytic performance of noble-metal-modified TiO<sub>2</sub> is significantly greater than that of the modified  $TiO_2$  by other methods such as ion doping and composites. However, the high cost incurred by expensive noble metals restricts the application of this strategy.



**Figure 11.** (a) Average hydrogen evolution rates of  $TiO_2$ ,  $Ga_2O_3$ , TG3 (3%  $Ga_2O_3/TiO_2$ ), TG5 (5%  $Ga_2O_3/TiO_2$ ), TG10 (10%  $Ga_2O_3/TiO_2$ ) photocatalysts, and TPt reference (Pt modified  $TiO_2$ ) [150]. (b) Mechanism for  $H_2$  production over the TG5 photocatalyst [150]. (c) Transient current response curves of  $TiO_2$  and  $NiO/TiO_2$  nanocomposite under ultraviolet light irradiation [152]. (d) Schematic diagram on the energy band of a p-NiO/n-TiO<sub>2</sub> heterojunction structure [152]. (e) Transient current response curves of 3D g-C<sub>3</sub>N<sub>4</sub>/graphene-CNTs/TiO<sub>2</sub> samples with different amounts of TiO<sub>2</sub> under an Xe lamp [159]. (f) Schematic diagram of the photocatalytic processes over 3D g-C<sub>3</sub>N<sub>4</sub>/graphene-CNTs/TiO<sub>2</sub> [159].

# 4.4. Dye Sensitization

The excitation potential of some dyes is more negative than the CB potential of  $TiO_2$ . Thus, the light response range of  $TiO_2$  can be effectively expanded by dye sensitization. Dye molecules can deliver photogenerated electrons to the CB of  $TiO_2$  and then the electrons transfer further to participate in reactions [170–172]. For example, Shi et al. [171] prepared Eosin Y-sensitized nanosheet-stacked hollow-sphere  $TiO_2$  for efficient photocatalytic H<sub>2</sub> production under visible-light irradiation. Vallejo et al. [170] reported the enhancement on light absorption and photocatalytic activity over rGO-TiO<sub>2</sub> thin films after they were sensitized by natural dyes extracted from Bactris guineensis (Figure 12). In fact, lots of dyes have been used to sensitize  $TiO_2$ , such as complexes of Fe (II) and polypyridyl, quinacridone, hydroxoaluminum-tricarboxymonoamide phthalocyanine, and so on [173–175]. Dye sensitization is easy to realize and has a low cost. Although many natural dyes can be used as raw materials for the sensitization of  $TiO_2$ , sensitized  $TiO_2$  is not always stable which limits its wide application.



**Figure 12.** Band gaps estimated on the basis of the Kubelka–Munk plots for (**a**)  $TiO_2$ -GO thin films and (**b**)  $TiO_2$ -GO thin films sensitized with anthocyanin that was extracted from the fruit of Bactris guineensis ( $TiO_2$ -GO-CO). The samples A, B, C, and D were prepared by adding 0.15%, 0.26%, 0.51%, and 1.1% GO in mass into  $TiO_2$ . (**c**) Schematic illustration of the energy levels for the  $TiO_2$ -GO thin films sensitized with natural dye [170].

#### 4.5. Loading on Supports

Loading on supports is an effective way to solve the problems of agglomeration and tough recycling of TiO<sub>2</sub> nanoparticles. In addition, the supporting materials of high electrical conductivity could provide channels for quick transfer of electrons, thereby decreasing the recombination rate of photogenerated  $e_{CB}^-$  and  $h_{VB}^+$ . For example, Li et al. [176] reported a catalyst of nitrogen-doped carbon nanofiber supporting MoS<sub>2</sub>/TiO<sub>2</sub>, in which the photogenerated electrons could quickly transfer to the carbon fiber along the basal plane of MoS<sub>2</sub>. Many natural materials are preeminent supports, so it is not essential for scientists to design and construct supports with special structures. In literature, zeolite, SiO<sub>2</sub>, and carbon materials are frequently used as the supporting materials for TiO<sub>2</sub> [177–182]. Najafabadi et al. [180] reported four kinds of zeolites (Na-Y, Na-mordenite, H-Y, and H-beta) supporting TiO<sub>2</sub>, the rate reached 250.8 µmol·g<sup>-1</sup>·h<sup>-1</sup>, which was almost three times that of Degussa P25 (84.2 µmol·g<sup>-1</sup>·h<sup>-1</sup>) under the same conditions. Kim et al. [182] prepared TiO<sub>2</sub> supported by SiO<sub>2</sub>, showing much higher photocatalytic activity than pure TiO<sub>2</sub> which could be attributed to the large specific surface area. Ti-O-Si

21 of 32

bonds modified the narrow band gap and the local structure. Loading on supports is frequently associated with other reactions such as ion doping and forming heterojunctions. Thus, it can combine the advantages of varied strategies. Yin et al. [183] synthesized Bi plasmon-enhanced mesoporous  $Bi_2MoO_6/Ti^{3+}$  self-doped TiO<sub>2</sub> microsphere heterojunctions. The formation of heterojunctions,  $Ti^{3+}$ , and surface plasmon resonance (SPR) of Bi jointly achieved high catalytical activity of TiO<sub>2</sub> under visible light. Xing et al. [184] combined ion doping with supports and synthesized a F-doped-TiO<sub>2-x</sub>/MCF composite, which exhibited high photocatalytic activity for hydrogen evolution.

# 4.6. Crystal Facet Engineering

The exposed facets of traditional TiO<sub>2</sub> photocatalysts are the thermodynamically stable (101) facets. However, the specific surface energy of (001) facets is higher than that of (101) facets, implying that the (001) facets have higher reaction activity. In addition, the uncoordinated Ti<sub>5c</sub> atoms in the (001) facets can narrow the band gap of TiO<sub>2</sub>. Therefore, exposing more (001) facets will help to improve the photocatalytic performance of TiO<sub>2</sub>, which is generally realized by controlling the synthesis conditions [185,186]. For instance, Wang et al. [187] synthesized a series of (001) facet-dominated TiO<sub>2</sub> nanosheets with high visible-light photoactivity by a simple hydrothermal method at different temperatures. Shang et al. [188] synthesized graphene-TiO<sub>2</sub> nanocomposites with dominantly exposed (001) facets through various dosages of graphite oxide (GO) and hydrofluoric acid (HF) during a facile solvothermal process. The well-conductive and highly reactive (001) facets enhanced the photocatalytic properties and facilitated the separation of photogenerated carriers.

As a summary, Table 3 lists the hydrogen evolution efficiency from photocatalytic water splitting over typical titanium oxide-based photocatalysts. Obviously, noble-metal-modified  $TiO_2$  photocatalysts have incomparable advantages on hydrogen evolution over the other titanium oxide-based counterparts. However, the searches for alternative non-noble metals are still one of the focuses in this field because of the high cost and scarcity of noble metals. Additionally, combining multiple modification methods can achieve better results than using a single method. Table 3 lists also lists some typical non-TiO<sub>2</sub>-based photocatalysts for comparison. As can be seen, noble-metal-modified TiO<sub>2</sub> photocatalysts obviously perform much better than metal sulfides and phosphides in hydrogen evolution reactions. The composites clearly perform better than single materials for TiO<sub>2</sub>, metal sulfides, and phosphides.

| Catalyst                          | Light Source          | Reaction Condition                                    | $H_2$ Production (mmol h <sup>-1</sup> ) | Ref.  |
|-----------------------------------|-----------------------|-------------------------------------------------------|------------------------------------------|-------|
| N-doped TiO <sub>2</sub>          | >400 nm               | Water                                                 | 0.315                                    | [139] |
| N-doped TiO <sub>2</sub>          | >420 nm               | EDTA-2Na solution                                     | 2.21                                     | [134] |
| (B,N)-co-doped TiO <sub>2</sub>   | >420 nm               | EDTA-2Na solution                                     | 10.45                                    | [134] |
| (Sb,N)-co-doped TiO <sub>2</sub>  | Xe lamp               | 10% aqueous TEOA solution                             | 2.33                                     | [189] |
| B-doped $TiO_2$                   | 365 nm                | 0.2 M HCl and absolute ethanol aqueous solution (1:1) | 0.099                                    | [141] |
| N-doped TiO <sub>2</sub>          | visible light         | $H_2S/0.25$ M KOH solution                            | 8.8                                      | [137] |
| N-doped TiO <sub>2</sub>          | Xe lamp               | 20% aqueous methanol solution                         | 2.98                                     | [136] |
| S-doped TiO <sub>2</sub>          | Xe lamp               | 1 M NaOH aqueous solution                             | 0.17                                     | [140] |
| Fe-doped TiO <sub>2</sub>         | solar light radiation | triammonium phosphate<br>aqueous solution             | 4.01                                     | [135] |
| Co-doped TiO <sub>2</sub>         | solar light radiation | triammonium phosphate<br>aqueous solution             | 9.82                                     | [135] |
| (Fe,Co)-co-doped TiO <sub>2</sub> | solar light radiation | triammonium phosphate<br>aqueous solution             | 17.41                                    | [135] |

**Table 3.** Hydrogen evolution efficiency of photocatalytic water splitting over various  $TiO_2$ -based photocatalysts in comparison with those of typical photocatalysts reported in the literature.

| Catalyst                                                  | Light Source          | Reaction Condition                                                                | $ m H_2$ Production (mmol h <sup>-1</sup> ) | Ref.                 |
|-----------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------|---------------------------------------------|----------------------|
| La-doped TiO2                                             | Hg UVA lamp           | 12 M aqueous methanol solution                                                    | 80                                          | [190]                |
| Ce-doped TiO <sub>2</sub>                                 | visible light         | sulphide wastewater from refinery                                                 | 6.789                                       | [191]                |
| H-doped TiO <sub>2</sub>                                  | 365 nm                | 25% aqueous methanol solution                                                     | 0.286                                       | [145]                |
| F-doped TiO <sub>2</sub>                                  | 365 nm                | 25% aqueous methanol solution                                                     | 0.0928                                      | [145]                |
| Cl-doped TiO2                                             | 365 nm                | 25% aqueous methanol solution                                                     | 0.336                                       | [145]                |
| V-doped TiO <sub>2</sub> /rGO                             | Xe lamp               | 20% aqueous methanol solution                                                     | 0.12                                        | [192]                |
| N-doped Ni/C/TiO                                          | Halamp                | 30% aqueous methanol solution                                                     | 0.383                                       | [192]                |
| Sr-doped TiO                                              | $\sim 100 \text{ nm}$ | water                                                                             | 1.092                                       | [194]                |
|                                                           | >400 nm               | 30% aguoous mathanal solution                                                     | 0.00058                                     | [195]                |
| $P_{1} = 0$                                               | visible light         | 50% aqueous methanol solution                                                     | 4.9                                         | [175]                |
| A g decorated TiO                                         | Halamp                | 50 % aqueous methanor solution                                                    | 120                                         | [47]                 |
| Au decorated TiO                                          | 254 nm                | water                                                                             | 120                                         | [190]                |
| Au Dd doograted TiO                                       | 254 mm                | aqueous methanol solution                                                         | 100                                         | [100]                |
| Au Ni decorated TiO                                       | 254 mm                | aqueous methanol solution                                                         | 200                                         | [100]                |
| Au Co. decorated $IIO_2$                                  | 254 mm                | aqueous methanol solution                                                         | 200                                         | [100]                |
| Au,Co-decorated $110_2$                                   | 254 nm                | aqueous methanol solution                                                         | 1/1                                         | [168]                |
| Pd-decorated $IIO_2$                                      | 254 nm                | aqueous methanol solution                                                         | 59                                          | [168]                |
| N1-decorated $I1O_2$                                      | 254 nm                | aqueous methanol solution                                                         | 20                                          | [168]                |
| Co-decorated $IIO_2$                                      | 254 nm                | aqueous methanol solution                                                         | 10                                          | [168]                |
| $Cu(OH)_2/TiO_2$                                          | ultraviolet light     | 10% aqueous methanol solution                                                     | 14.94                                       | [197]                |
| $Cu/TiO_2$                                                | UV lamp               | 25% aqueous methanol solution                                                     | 5                                           | [198]                |
| Cu/TiO <sub>2</sub>                                       | visible light         | 25% aqueous methanol solution                                                     | 0.22                                        | [198]                |
| $Co_3O_4@C/TiO_2$                                         | 365 nm                | 25% aqueous methanol solution                                                     | 11.4                                        | [199]                |
| NiO/TiO <sub>2</sub>                                      | Hg lamp               | glycerol and distilled water                                                      | 1.2                                         | [200]                |
| $g-C_3N_4/N-TiO_2$                                        | Xe lamp               | 20% aqueous methanol solution                                                     | 8.931                                       | [201]                |
| EosinY-sensitized<br>TiO <sub>2</sub> /ZrO <sub>2</sub>   | Xe arc lamp           | 15% DEA aqueous solution                                                          | 1.87                                        | [202]                |
| $\beta$ -Ga <sub>2</sub> O <sub>3</sub> /TiO <sub>2</sub> | 254 nm                | 50% aqueous methanol solution                                                     | 0.244                                       | [150]                |
| N-doped TiO <sub>2</sub> /N-doped                         | Xe lamp               | 10% aqueous TEOA solution                                                         | 0.039                                       | [203]                |
| graphene                                                  | *                     | -                                                                                 |                                             |                      |
| FeO-TiO <sub>2</sub> /ACF                                 | visible light         | 20% aqueous methanol solution                                                     | 6.178                                       | [204]                |
| TiO <sub>2</sub> /ACF                                     | visible light         | 20% aqueous methanol solution                                                     | 1.672                                       | [204]                |
| Cu-doped TiO <sub>2</sub> with                            | Xe lamp               | 10% aqueous methanol solution                                                     | 0.81                                        | [205]                |
| preferred (001) orientation                               | 1                     | 1                                                                                 |                                             |                      |
| $g-C_3N_4/TiO_2$ with                                     | >420 nm               | 10% aqueous TEOA solution                                                         | 0.033                                       | [206]                |
| preferred (001) orientation                               |                       | -                                                                                 |                                             |                      |
| $TiO_2$ /graphene with                                    | Xe lamp               | 25% aqueous methanol solution                                                     | 0.736                                       | [207]                |
| exposed (001) facets                                      | 1                     |                                                                                   |                                             |                      |
| CdS                                                       | >420 nm               | 0.5 M Na <sub>2</sub> S-0.5 M Na <sub>2</sub> SO <sub>3</sub>                     | 0.063                                       | [208]                |
|                                                           |                       | aqueous solution                                                                  |                                             |                      |
| CdS-CoSx                                                  | >420 nm               | 0.5 M Na <sub>2</sub> S-0.5 M Na <sub>2</sub> SO <sub>3</sub><br>aqueous solution | 0.1686                                      | [208]                |
| Pt/CdS                                                    | >420 nm               | 1.0  M aqueous (NH <sub>4</sub> ) <sub>2</sub> SO <sub>2</sub> solution           | 1 158                                       | [209]                |
| ZnS                                                       | Xe lamp               | 0.1  M  MasS- 0.1  M  MasSO                                                       | 0.04                                        | [209]                |
|                                                           | At lamp               | aqueous solution                                                                  | 0.04                                        | [210]                |
| Cu-ZnS/Zeolite                                            | Xe lamp               | 0.1 M Na <sub>2</sub> S-0.1 M Na <sub>2</sub> SO <sub>2</sub>                     | 0.48                                        | [210]                |
|                                                           | ste unip              | aqueous solution                                                                  | 0.10                                        | [210]                |
| $7n\Omega/7nS$                                            | Xe lamp               | 0.064 M NaoS aqueous solution                                                     | 0 228                                       | [211]                |
| ZnO                                                       | Xelamp                | 0.064 M Na <sub>2</sub> S aqueous solution                                        | 0.138                                       | [211]                |
| NiaP                                                      | 5420 nm               | $0.35 \text{ M} \text{ Ma}_2 \text{ Solution}$                                    | 0.130                                       | [ <u></u> ]<br>[212] |
| 1 11/21                                                   | ~ <b>1</b> 40 IIII    | adupous solution                                                                  | 0.20                                        |                      |
| Ni-P/CdS                                                  | >120 nm               | $0.35 \text{ M N}_{22} \text{ Solution}$                                          | 16.02                                       | [212]                |
| 111 <u>2</u> 1 / Cu5                                      | 2420 IIII             | aguoous solution                                                                  | 10.02                                       |                      |
| CoP                                                       | wiejble light         | Na-S-Na-SO- aguague solution                                                      | 1 75                                        | [212]                |
| CdS /CoP                                                  | visible light         | Na S Na SO agueous solution                                                       | 1.75                                        | [213]<br>[212]       |
| Cu5/Cur                                                   | visible light         | ina25-ina2503 aqueous solution                                                    | 10.74                                       | [213]                |

Table 3. Cont.

# 5. Conclusions and Outlooks

(1) Oxygen-deficient titanium oxide  $(TiO_{2-\delta})$  shows higher photocatalytic activity than stoichiometric TiO<sub>2</sub>, which can be mainly attributed to the presence of Ti<sup>3+</sup> species and oxygen deficiencies. The Ti<sup>3+</sup> species would lead to new intermediate defect states (shallow donor) forming below the bottom of the conduction band of TiO<sub>2</sub>, which narrows the band gap of TiO<sub>2</sub>. The presence of oxygen deficiencies can decrease the transfer resistance of electrons. Resultantly, the photogenerated electrons can quickly transfer, thereby avoiding recombining with holes.

(2) Reductive treatment is the most direct and effective method to introduce oxygen defects in titanium oxides, for which H<sub>2</sub> is the most common reductant, while other reductants such as carbon, NaBH<sub>4</sub>, and NH<sub>3</sub> can also be selected. Moreover, ion doping, pulsed laser irradiation, calcination under anoxic conditions, plasma assistance, and so forth, have also been proven efficient strategies for introducing oxygen defects into titanium oxides. Other modification methods for TiO<sub>2</sub>, including ion doping, composite, surface noble metal deposition, dye sensitization, and loading on supports are also exploited to broaden the light-absorption region and suppress the recombination of photogenerated  $e_{CB}^{-}$  and  $h_{VB}^{+}$  for TiO<sub>2- $\delta$ </sub>. The photocatalytic activity of titanium oxides is hopefully improved further by the combination of introducing oxygen defects with these modification methods, which have reached some remarkable results.

(3) Hydrogen production by photocatalytic water splitting over  $TiO_{2-\delta}$ -based photocatalysts shows a strong development momentum. However, there exists at least three major challenges at present. The first is how to control the concentration of oxygen defects in TiO<sub>2- $\delta$ </sub>. Although the density of oxygen deficiencies can be controlled by adjusting the conditions of the reduction treatment, the spontaneously introduced oxygen defects during other modification processes, such as ion doping and surface treatment, are difficult to control and predict accurately. Secondly, current studies on regulating energy band structures mainly concentrate on enhancing light harvesting. Actually, the positions of CB and VB are also critical for photocatalytic water splitting, especially the position of CB. The CB position of TiO<sub>2</sub> is very close to the reduction potential of  $H^+/H_2$  (0 V vs. NHE at pH = 0). The decrease in the CB minimum can lead to a wider light-absorption region but the reducing ability of photogenerated electrons is also impaired at the same time. If the CB minimum is more positive than the reduction potential of  $H^+/H_2$ , the photocatalytic hydrogen evolution activity will take a mighty blow. Thus, regulating the band gap of TiO<sub>2</sub> is a challenging task because there are numerous factors that can affect the band position of TiO<sub>2- $\delta$ </sub> during the modifying process. Combining theoretical calculation prediction with precise control of synthesis conditions may be a solution to solve this issue. In addition, the current studies pay little attention to the adsorption of reactants  $(H_2O)$  and the desorption of products ( $H_2$  and  $O_2$ ). The dissolved  $O_2$  and  $H_2$  can react with each other at the cocatalyst surface. O<sub>2</sub> dissolved in water will also compete photogenerated electrons with the hydrogen evolution reaction. These factors weaken the efficiency of photocatalytic hydrogen evolution. Therefore, this might be the next hot topic in studies of this nature. Although photocatalytic hydrogen evolution remains in the laboratory stage, further study may bring promising results.

**Author Contributions:** Y.C.: literature surveying, drawing of figures and tables, sorting data, writing of original manuscript; X.F.: literature surveying, revision and finalizing of the manuscript; Z.P.: revision and finalizing of the manuscript. All authors have read and agreed to the published version of the manuscript.

**Funding:** Many thanks for the financial support for this work by the National Natural Science Foundation of China (grant nos. 12174035 and 61274015).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

**Data Availability Statement:** Data sharing not applicable. No new data were created or analyzed in this study. Data sharing is not applicable to this article.

**Conflicts of Interest:** The authors declare no conflict of interest.

# References

- 1. Sial, M.H.; Arshed, N.; Amjad, M.A.; Khan, Y.A. Nexus between fossil fuel consumption and infant mortality rate: A non-linear analysis. *Environ. Sci. Pollut. Res.* 2022, 29, 58378–58387. [CrossRef] [PubMed]
- Vohra, K.; Vodonos, A.; Schwartz, J.; Marais, E.A.; Sulprizio, M.P.; Mickley, L.J. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem. *Environ. Res.* 2021, 195, 110754. [CrossRef]
- 3. Aslan, M.; Isik, H. Green energy for the battlefield. Int. J. Green Energy 2017, 14, 1020–1026. [CrossRef]
- Koroneos, C.; Spachos, T.; Moussiopoulos, N. Exergy analysis of renewable energy sources. *Renew. Energy* 2003, 28, 295–310. [CrossRef]
- Kumar, G.; Kim, S.-H.; Lay, C.-H.; Ponnusamy, V.K. Recent developments on alternative fuels, energy and environment for sustainability Preface. *Bioresour. Technol.* 2020, 317, 124010. [CrossRef] [PubMed]
- 6. Veziroglu, T.N.; Sahin, S. 21st Century's energy: Hydrogen energy system. Energy Convers. Manag. 2008, 49, 1820–1831. [CrossRef]
- Sharma, S.; Agarwal, S.; Jain, A. Significance of Hydrogen as Economic and Environmentally Friendly Fuel. *Energies* 2021, 14, 7389. [CrossRef]
- Muradov, N. Low to near-zero CO<sub>2</sub> production of hydrogen from fossil fuels: Status and perspectives. *Int. J. Hydrogen Energy* 2017, 42, 14058–14088. [CrossRef]
- 9. Qureshi, F.; Yusuf, M.; Ibrahim, H.; Kamyab, H.; Chelliapan, S.; Pham, C.Q.; Vo, D.V.N. Contemporary avenues of the Hydrogen industry: Opportunities and challenges in the eco-friendly approach. *Environ. Res.* **2023**, *229*, 115963. [CrossRef]
- Sapountzi, F.M.; Gracia, J.M.; Weststrate, C.J.; Fredriksson, H.O.A.; Niemantsverdriet, J.W. Electrocatalysts for the generation of hydrogen, oxygen and synthesis gas. *Prog. Energy Combust. Sci.* 2017, 58, 1–35. [CrossRef]
- 11. Tee, S.Y.; Win, K.Y.; Teo, W.S.; Koh, L.-D.; Liu, S.; Teng, C.P.; Han, M.-Y. Recent Progress in Energy-Driven Water Splitting. *Adv. Sci.* 2017, *4*, 1600337. [CrossRef]
- 12. Ismail, A.A.; Bahnemann, D.W. Photochemical splitting of water for hydrogen production by photocatalysis: A review. *Sol. Energy Mater. Sol. Cells* **2014**, *128*, 85–101. [CrossRef]
- 13. Dean, J.A.; Wei, J. Lange's Handbook of Chemistry, 2nd ed.; Science Press: Beijing, China, 2003.
- 14. Djurisic, A.B.; He, Y.; Ng, A.M.C. Visible-light photocatalysts: Prospects and challenges. Apl Mater. 2020, 8, 033001. [CrossRef]
- 15. Long, X.; Wei, X.; Qiu, Y.; Song, Y.; Bi, L.; Tang, P.; Yan, X.; Wang, S.; Liao, J. TiO<sub>2</sub> aerogel composite high-efficiency photocatalysts for environmental treatment and hydrogen energy production. *Nanotechnol. Rev.* **2023**, *12*, 20220490. [CrossRef]
- Nur, A.S.M.; Sultana, M.; Mondal, A.; Islam, S.; Robel, F.N.; Islam, A.; Sumi, M.S.A. A review on the development of elemental and codoped TiO<sub>2</sub> photocatalysts for enhanced dye degradation under UV-vis irradiation. *J. Water Process Eng.* 2022, 47, 102728. [CrossRef]
- 17. Zhang, T.; Han, X.; Nguyen, N.T.; Yang, L.; Zhou, X. TiO<sub>2</sub>-based photocatalysts for CO<sub>2</sub> reduction and solar fuel generation. *Chin. J. Catal.* **2022**, *43*, 2500–2529. [CrossRef]
- 18. Wang, J.; Wang, Z.; Wang, W.; Wang, Y.; Hu, X.; Liu, J.; Gong, X.; Miao, W.; Ding, L.; Li, X.; et al. Synthesis, modification and application of titanium dioxide nanoparticles: A review. *Nanoscale* **2022**, *14*, 6709–6734. [CrossRef]
- Feng, J.; Pan, L.; Liu, H.; Yuan, S.; Zhang, L.; Yin, H.; Song, H.; Li, L. Synergistic degradation of the aqueous antibiotic norfloxacin by nonthermal plasma combined with defective titanium dioxide exposed {001} facets. *Sep. Purif. Technol.* 2022, 300, 121761. [CrossRef]
- Zhu, C.; Shen, Y.; Yang, F.; Zhu, P.; An, C. Engineering hydrogenated TiO<sub>2</sub> nanosheets by rational deposition of Ni clusters and Pt single atoms onto exposing facets for high-performance solar fuel production. *Chem. Eng. J.* 2023, 466, 143174. [CrossRef]
- Yang, Y.; Yin, L.-C.; Gong, Y.; Niu, P.; Wang, J.-Q.; Gu, L.; Chen, X.; Liu, G.; Wang, L.; Cheng, H.-M. An Unusual Strong Visible-Light Absorption Band in Red Anatase TiO<sub>2</sub> photocatalyst induced by atomic hydrogen-occupied oxygen vacancies. *Adv. Mater.* 2018, 30, 1704479. [CrossRef]
- 22. Cushing, S.K.; Meng, F.; Zhang, J.; Ding, B.; Chen, C.K.; Chen, C.-J.; Liu, R.-S.; Bristow, A.D.; Bright, J.; Zheng, P.; et al. Effects of defects on photocatalytic activity of hydrogen-treated titanium oxide nanobelts. *ACS Catal.* **2017**, *7*, 1742–1748. [CrossRef]
- 23. Hong, R.; Deng, C.; Jing, M.; Lin, H.; Tao, C.; Zhang, D. Oxygen flows-dependent photocatalytic performance in Ti<sup>3+</sup> doped TiO<sub>2</sub> thin films. *Opt. Mater.* **2019**, *95*, 109224.
- 24. Liu, L.; Liu, J.; Zong, S.; Huang, Z.; Feng, X.; Zheng, J.; Fang, Y. Facile synthesis of nitrogen-doped TiO<sub>2</sub> microspheres containing oxygen vacancies with excellent photocatalytic H<sub>2</sub> evolution activity. *J. Phys. Chem. Solids* **2022**, *170*, 110930. [CrossRef]
- Zhao, Z.; Tan, H.; Zhao, H.; Lv, Y.; Zhou, L.-J.; Song, Y.; Sun, Z. Reduced TiO<sub>2</sub> rutile nanorods with well-defined facets and their visible-light photocatalytic activity. *Chem. Commun.* 2014, *50*, 2755–2757. [CrossRef] [PubMed]
- Wang, Y.Q.; Yu, X.J.; Sun, D.Z. Synthesis, characterization, and photocatalytic activity of TiO<sub>2-x</sub>N<sub>x</sub> nanocatalyst. *J. Hazard. Mater.* 2007, 144, 328–333. [CrossRef] [PubMed]
- Yuan, J.; Liu, Y.; Bo, T.; Zhou, W. Activated HER performance of defected single layered TiO<sub>2</sub> nanosheet via transition metal doping. *Int. J. Hydrog. Energy* 2020, 45, 2681–2688. [CrossRef]

- Li, R.; Luan, Q.; Dong, C.; Dong, W.; Tang, W.; Wang, G.; Lu, Y. Light-facilitated structure reconstruction on self-optimized photocatalyst TiO<sub>2</sub>@BiOCl for selectively efficient conversion of CO<sub>2</sub> to CH<sub>4</sub>. *Appl. Catal. B-Environ.* 2021, 286, 119832. [CrossRef]
- Zhang, Y.-P.; Han, W.; Yang, Y.; Zhang, H.-Y.; Wang, Y.; Wang, L.; Sun, X.-J.; Zhang, F.-M. S-scheme heterojunction of black TiO<sub>2</sub> and covalent-organic framework for enhanced evolution. *Chem. Eng. J.* 2022, 446, 137213. [CrossRef]
- Rajeshwar, K. Hydrogen generation at irradiated oxide semiconductor-solution interfaces. J. Appl. Electrochem. 2007, 37, 765–787. [CrossRef]
- 31. Lettieri, S.; Pavone, M.; Fioravanti, A.; Santamaria Amato, L.; Maddalena, P. Charge carrier processes and optical properties in TiO<sub>2</sub> and TiO<sub>2</sub>-based heterojunction photocatalysts: A review. *Materials* **2021**, *14*, 1645. [CrossRef] [PubMed]
- 32. Nakano, T.; Ito, R.; Kogoshi, S.; Katayama, N. Optimal levels of oxygen deficiency in the visible light photocatalyst TiO<sub>2-x</sub> and long-term stability of catalytic performance. *J. Phys. Chem. Solids* **2016**, *98*, 136–142. [CrossRef]
- Wu, H.; Wang, Z.; Jin, S.; Cao, X.; Ren, F.; Wu, L.; Xing, Z.; Wang, X.; Cai, G.; Jiang, C. Enhanced photoelectrochemical performance of TiO<sub>2</sub> through controlled Ar<sup>+</sup> ion irradiation: A combined experimental and theoretical study. *Int. J. Hydrog. Energy* 2018, 43, 6936–6944. [CrossRef]
- 34. Tian, M.; Mahjouri-Samani, M.; Eres, G.; Sachan, R.; Yoon, M.; Chisholm, M.F.; Wang, K.; Puretzky, A.A.; Rouleau, C.M.; Geohegan, D.B.; et al. Structure and formation mechanism of black TiO<sub>2</sub> nanoparticles. ACS Nano 2015, 9, 10482–10488. [CrossRef]
- 35. Amano, F.; Nakata, M.; Yamamoto, A.; Tanaka, T. Effect of Ti<sup>3+</sup> ions and conduction band electrons on photocatalytic and photoelectrochemical activity of rutile titania for water oxidation. *J. Phys. Chem. C* **2016**, *120*, 6467–6474. [CrossRef]
- Singh, A.P.; Kodan, N.; Mehta, B.R. Enhancing the photoelectrochemical properties of titanium dioxide by thermal treatment in oxygen deficient environment. *Appl. Surf. Sci.* 2016, 372, 63–69. [CrossRef]
- Xiu, Z.; Guo, M.; Zhao, T.; Pan, K.; Xing, Z.; Li, Z.; Zhou, W. Recent advances in Ti<sup>3+</sup> self-doped nanostructured TiO<sub>2</sub> visible light photocatalysts for environmental and energy applications. *Chem. Eng. J.* 2020, 382, 123011. [CrossRef]
- Li, Y.; Cooper, J.K.; Liu, W.; Sutter-Fella, C.M.; Amani, M.; Beeman, J.W.; Javey, A.; Ager, J.W.; Liu, Y.; Toma, F.M.; et al. Defective TiO<sub>2</sub> with high photoconductive gain for efficient and stable planar heterojunction perovskite solar cells. *Nat. Commun.* 2016, 7, 12446. [CrossRef] [PubMed]
- Hao, Z.; Chen, Q.; Dai, W.; Ren, Y.; Zhou, Y.; Yang, J.; Xie, S.; Shen, Y.; Wu, J.; Chen, W.; et al. Oxygen-deficient blue TiO<sub>2</sub> for ultrastable and fast lithium storage. *Adv. Energy Mater.* 2020, *10*, 1903107. [CrossRef]
- 40. Wendt, S.; Sprunger, P.T.; Lira, E.; Madsen, G.K.H.; Li, Z.; Hansen, J.O.; Matthiesen, J.; Blekinge-Rasmussen, A.; Laegsgaard, E.; Hammer, B. The role of interstitial sites in the Ti 3d defect state in the band gap of Titania. *Science* **2008**, *320*, 1755–1759. [CrossRef]
- 41. Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. *Nature* 1972, 238, 37–38. [CrossRef]
- 42. Long, Z.; Li, Q.; Wei, T.; Zhang, G.; Ren, Z. Historical development and prospects of photocatalysts for pollutant removal in water. *J. Hazard. Mater.* **2020**, 395, 122599. [CrossRef]
- 43. Matthews, R.W. Photooxidation of organic impurities in water using thin-films of titanium-dioxide. *J. Phys. Chem.* **1987**, *91*, 3328–3333. [CrossRef]
- 44. Chan, S.H.S.; Wu, T.Y.; Juan, J.C.; Teh, C.Y. Recent developments of metal oxide semiconductors as photocatalysts in advanced oxidation processes (AOPs) for treatment of dye waste-water. *J. Chem. Technol. Biotechnol.* **2011**, *86*, 1130–1158. [CrossRef]
- 45. Pan, L.; Ai, M.; Huang, C.; Yin, L.; Liu, X.; Zhang, R.; Wang, S.; Jiang, Z.; Zhang, X.; Zou, J.-J.; et al. Manipulating spin polarization of titanium dioxide for efficient photocatalysis. *Nat. Commun.* **2020**, *11*, 418. [CrossRef] [PubMed]
- Pennington, A.M.; Yang, R.A.; Munoz, D.T.; Celik, F.E. Metal-free hydrogen evolution over defect-rich anatase titanium dioxide. *Int. J. Hydrog. Energy* 2018, 43, 15176–15190. [CrossRef]
- 47. Yamazaki, Y.; Mori, K.; Kuwahara, Y.; Kobayashi, H.; Yamashita, H. Defect engineering of Pt/TiO<sub>2-x</sub> photocatalysts via reduction treatment assisted by hydrogen spillover. *ACS Appl. Mater. Interfaces* **2021**, *13*, 48669–48678. [CrossRef]
- Zhang, Y.-C.; Afzal, N.; Pan, L.; Zhang, X.; Zou, J.-J. Structure-activity relationship of defective metal-based photocatalysts for water splitting: Experimental and theoretical perspectives. *Adv. Sci.* 2019, *6*, 1900053. [CrossRef] [PubMed]
- Sasikala, R.; Sudarsan, V.; Sudakar, C.; Naik, R.; Sakuntala, T.; Bharadwaj, S.R. Enhanced photocatalytic hydrogen evolution over nanometer sized Sn and Eu doped titanium oxide. *Int. J. Hydrog. Energy* 2008, 33, 4966–4973. [CrossRef]
- 50. Liu, G.; Yang, H.G.; Wang, X.; Cheng, L.; Lu, H.; Wang, L.; Lu, G.Q.; Cheng, H.-M. Enhanced photoactivity of oxygen-deficient anatase TiO<sub>2</sub> sheets with dominant {001} facets. *J. Phys. Chem. C* 2009, *113*, 21784–21788. [CrossRef]
- 51. Amano, F.; Nakata, M. High-temperature calcination and hydrogen reduction of rutile TiO<sub>2</sub>: A method to improve the photocatalytic activity for water oxidation. *Appl. Catal. B-Environ.* **2014**, *158*, 202–208. [CrossRef]
- Mali, M.G.; Yoon, H.; An, S.; Choi, J.-Y.; Kim, H.-Y.; Lee, B.C.; Kim, B.N.; Park, J.H.; Al-Deyab, S.S.; Yoon, S.S. Enhanced solar water splitting of electron beam irradiated titania photoanode by electrostatic spray deposition. *Appl. Surf. Sci.* 2014, 319, 205–210. [CrossRef]
- Pitchaimuthu, S.; Honda, K.; Suzuki, S.; Naito, A.; Suzuki, N.; Katsumata, K.-I.; Nakata, K.; Ishida, N.; Kitamura, N.; Idemoto, Y.; et al. Solution plasma process-derived defect-induced heterophase anatase/brookite TiO<sub>2</sub> nanocrystals for enhanced gaseous photocatalytic performance. ACS Omega 2018, 3, 898–905. [CrossRef]
- Ennaceri, H.; Boujnah, M.; Taleb, A.; Khaldoun, A.; Saez-Araoz, R.; Ennaoui, A.; El Kenz, A.; Benyoussef, A. Thickness effect on the optical properties of TiO<sub>2</sub>-anatase thin films prepared by ultrasonic spray pyrolysis: Experimental and ab initio study. *Int. J. Hydrog. Energy* 2017, 42, 19467–19480. [CrossRef]

- 55. Nakajima, T.; Nakamura, T.; Shinoda, K.; Tsuchiya, T. Rapid formation of black titania photoanodes: Pulsed laser-induced oxygen release and enhanced solar water splitting efficiency. J. Mater. Chem. A 2014, 2, 6762–6771. [CrossRef]
- Chen, Y.; Cao, X.; Lin, B.; Gao, B. Origin of the visible-light photoactivity of NH<sub>3</sub>-treated TiO<sub>2</sub>: Effect of nitrogen doping and oxygen vacancies. *Appl. Surf. Sci.* 2013, 264, 845–852. [CrossRef]
- Zhang, Y.-X.; Wu, S.-M.; Tian, G.; Zhao, X.-F.; Wang, L.-Y.; Yin, Y.-X.; Wu, L.; Li, Q.-N.; Zhang, Y.-X.; Wu, J.-S.; et al. Titanium vacancies in TiO<sub>2</sub> nanofibers enable highly efficient photodriven seawater splitting. *Chem.-A Eur. J.* 2021, 27, 14202–14208. [CrossRef] [PubMed]
- An, X.; Hu, C.; Liu, H.; Qu, J. Oxygen vacancy mediated construction of anatase/brookite heterophase junctions for high-efficiency photocatalytic hydrogen evolution. J. Mater. Chem. A 2017, 5, 24989–24994. [CrossRef]
- Yuan, D.; Jiao, Y.; Li, Z.; Chen, X.; Ding, J.; Dai, W.-L.; Wan, H.; Guan, G. TiN bridged all-solid Z-Scheme CNNS/TiN/TiO<sub>2-x</sub> heterojunction by a facile in situ reduction strategy for enhanced photocatalytic hydrogen evolution. *Adv. Mater. Interfaces* 2021, *8*, 2100695. [CrossRef]
- 60. Park, E.; Patil, S.S.; Lee, H.; Kumbhar, V.S.; Lee, K. Photoelectrochemical H<sub>2</sub> evolution on WO<sub>3</sub>/BiVO<sub>4</sub> enabled by singlecrystalline TiO<sub>2</sub> overlayer modulations. *Nanoscale* **2021**, *13*, 16932–16941. [CrossRef]
- Balayeva, N.O.; Mamiyev, Z.; Dillert, R.; Zheng, N.; Bahnemann, D.W. Rh/TiO<sub>2</sub>-photocatalyzed acceptorless dehydrogenation of N-heterocycles upon visible-light illumination. ACS Catal. 2020, 10, 5542–5553. [CrossRef]
- 62. Mo, L.-B.; Bai, Y.; Xiang, Q.-Y.; Li, Q.; Wang, J.-O.; Ibrahim, K.; Cao, J.-L. Band gap engineering of TiO<sub>2</sub> through hydrogenation. *Appl. Phys. Lett.* **2014**, *105*, 202114. [CrossRef]
- 63. Wang, H.; Wang, G.; Ling, Y.; Lepert, M.; Wang, C.; Zhang, J.Z.; Li, Y. Photoelectrochemical study of oxygen deficient TiO<sub>2</sub> nanowire arrays with CdS quantum dot sensitization. *Nanoscale* **2012**, *4*, 1463–1466. [CrossRef] [PubMed]
- Liu, N.; Zhou, X.; Nhat Truong, N.; Peters, K.; Zoller, F.; Hwang, I.; Schneider, C.; Miehlich, M.E.; Freitag, D.; Meyer, K.; et al. Black Magic in Gray Titania: Noble-Metal-Free Photocatalytic H<sub>2</sub> evolution from hydrogenated anatase. *ChemSusChem* 2017, 10, 62–67. [CrossRef] [PubMed]
- 65. Abdelmaksoud, M.K.; Sayed, A.; Sayed, S.; Abbas, M. A novel solar radiation absorption enhancement of TiO<sub>2</sub> nanomaterial by a simple hydrogenation method. *J. Mater. Res.* **2021**, *36*, 2118–2131. [CrossRef]
- 66. Xu, Y.F.; Zhang, C.; Zhang, L.X.; Zhang, X.H.; Yao, H.L.; Shi, J.L. Pd-catalyzed instant hydrogenation of TiO<sub>2</sub> with enhanced photocatalytic performance. *Energy Environ. Sci.* **2016**, *9*, 2410–2417. [CrossRef]
- Zhang, J.W.; Wang, S.; Liu, F.S.; Fu, X.J.; Ma, G.Q.; Hou, M.S.; Tang, Z. Preparation of defective TiO<sub>2-x</sub> hollow microspheres for photocatalytic degradation of methylene blue. *Acta Phys.-Chim. Sin.* 2019, 35, 885–895. [CrossRef]
- 68. Wierzbicka, E.; Altomare, M.; Wu, M.; Liu, N.; Yokosawa, T.; Fehn, D.; Qin, S.; Meyer, K.; Unruh, T.; Spiecker, E.; et al. Reduced grey brookite for noble metal free photocatalytic H<sub>2</sub> evolution. *J. Mater. Chem. A* **2021**, *9*, 1168–1179. [CrossRef]
- Samsudin, E.M.; Hamid, S.B.A.; Juan, J.C.; Basirun, W.J.; Kandjani, A.E. Surface modification of mixed-phase hydrogenated TiO<sub>2</sub> and corresponding photocatalytic response. *Appl. Surf. Sci.* 2015, 359, 883–896. [CrossRef]
- Ihara, T.; Miyoshi, M.; Iriyama, Y.; Matsumoto, O.; Sugihara, S. Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping. *Appl. Catal. B-Environ.* 2003, 42, 403–409. [CrossRef]
- Qiu, J.-Y.; Feng, H.-Z.; Chen, Z.-H.; Ruan, S.-H.; Chen, Y.-P.; Xu, T.-T.; Su, J.-Y.; Ha, E.-N.; Wang, L.-Y. Selective introduction of surface defects in anatase TiO<sub>2</sub> nanosheets for highly efficient photocatalytic hydrogen generation. *Rare Met.* 2022, *41*, 2074–2083. [CrossRef]
- Guan, S.; Hao, L.; Lu, Y.; Yoshida, H.; Pan, F.; Asanuma, H. Fabrication of oxygen-deficient TiO<sub>2</sub> coatings with nano-fiber morphology for visible-light photocatalysis. *Mater. Sci. Semicond. Process.* 2016, 41, 358–363. [CrossRef]
- 73. Zhao, H.; Chen, J.; Rao, G.; Deng, W.; Li, Y. Enhancing photocatalytic CO<sub>2</sub> reduction by coating an ultrathin Al<sub>2</sub>O<sub>3</sub> layer on oxygen deficient TiO<sub>2</sub> nanorods through atomic layer deposition. *Appl. Surf. Sci.* **2017**, *404*, 49–56. [CrossRef]
- Martinez-Oviedo, A.; Ray, S.K.; Hoang Phuc, N.; Lee, S.W. Efficient photo-oxidation of NO<sub>x</sub> by Sn doped blue TiO<sub>2</sub> nanoparticles. J. Photochem. Photobiol. A-Chem. 2019, 370, 18–25. [CrossRef]
- 75. Pereira, A.L.J.; Lisboa Filho, P.N.; Acuna, J.; Brandt, I.S.; Pasa, A.A.; Zanatta, A.R.; Vilcarromero, J.; Beltran, A.; Dias da Silva, J.H. Enhancement of optical absorption by modulation of the oxygen flow of TiO<sub>2</sub> films deposited by reactive sputtering. *J. Appl. Phys.* **2012**, *111*, 113513. [CrossRef]
- 76. Dhumal, S.Y.; Daulton, T.L.; Jiang, J.; Khomami, B.; Biswas, P. Synthesis of visible light-active nanostructured TiO<sub>x</sub> (x < 2) photocatalysts in a flame aerosol reactor. *Appl. Catal. B-Environ.* 2009, *86*, 145–151.
- 77. Xiao, P.; Liu, D.; Garcia, B.B.; Sepehri, S.; Zhang, Y.; Cao, G. Electrochemical and photoelectrical properties of titania nanotube arrays annealed in different gases. *Sens. Actuators B-Chem.* **2008**, 134, 367–372. [CrossRef]
- Kushwaha, S.; Nagarajan, R. Black TiO<sub>2</sub>-graphitic carbon nanocomposite from a single source precursor and its interaction with colored and colorless contaminants under visible radiation. *Mater. Res. Bull.* 2020, 132, 110983. [CrossRef]
- Starbova, K.; Yordanova, V.; Nihtianova, D.; Hintz, W.; Tomas, J.; Starbov, N. Excimer laser processing as a tool for photocatalytic design of sol-gel TiO<sub>2</sub> thin films. *Appl. Surf. Sci.* 2008, 254, 4044–4051. [CrossRef]
- Lau, M.; Reichenberger, S.; Haxhiaj, I.; Barcikowski, S.; Mueller, A.M. Mechanism of laser-induced bulk and surface defect generation in ZnO and TiO<sub>2</sub> nanoparticles: Effect on photoelectrochemical performance. ACS Appl. Energy Mater. 2018, 1, 5366–5385. [CrossRef]

- Nair, P.R.; Ramirez, C.R.S.; Pinilla, M.A.G.; Krishnan, B.; Avellaneda, D.A.; Pelaes, R.F.C.; Shaji, S. Black titanium dioxide nanocolloids by laser irradiation in liquids for visible light photo-catalytic/electrochemical applications. *Appl. Surf. Sci.* 2023, 623, 157096. [CrossRef]
- 82. Wang, Z.; Yang, C.; Lin, T.; Yin, H.; Chen, P.; Wan, D.; Xu, F.; Huang, F.; Lin, J.; Xie, X.; et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. *Adv. Funct. Mater.* **2013**, *23*, 5444–5450. [CrossRef]
- 83. Filice, S.; Fiorenza, R.; Reitano, R.; Scalese, S.; Scire, S.; Fisicaro, G.; Deretzis, I.; La Magna, A.; Bongiorno, C.; Compagnini, G. TiO<sub>2</sub> colloids laser-treated in ethanol for photocatalytic H<sub>2</sub> production. *ACS Appl. Nano Mater.* **2020**, *3*, 9127–9140. [CrossRef]
- Fiorenza, R.; Scire, S.; D'Urso, L.; Compagnini, G.; Bellardita, M.; Palmisano, L. Efficient H<sub>2</sub> production by photocatalytic water splitting under UV or solar light over variously modified TiO<sub>2</sub>-based catalysts. *Int. J. Hydrogen Energy* 2019, 44, 14796–14807. [CrossRef]
- 85. Nakajima, T.; Tsuchiya, T.; Kumagai, T. Pulsed laser-induced oxygen deficiency at TiO<sub>2</sub> surface: Anomalous structure and electrical transport properties. *J. Solid State Chem.* **2009**, *182*, 2560–2565. [CrossRef]
- Leichtweiss, T.; Henning, R.A.; Koettgen, J.; Schmidt, R.M.; Hollaender, B.; Martin, M.; Wuttig, M.; Janek, J. Amorphous and highly nonstoichiometric titania (TiO<sub>x</sub>) thin films close to metal-like conductivity. J. Mater. Chem. A 2014, 2, 6631–6640. [CrossRef]
- Kunti, A.K.; Chowdhury, M.; Sharma, S.K.; Gupta, M.; Chaudhary, R.J. Influence of O<sub>2</sub> pressure on structural, morphological and optical properties of TiO<sub>2</sub>-SiO<sub>2</sub> composite thin films prepared by pulsed laser deposition. *Thin Solid Film.* 2017, 629, 79–89. [CrossRef]
- Ali, N.; Bashir, S.; Umm-i-Kalsoom; Akram, M.; Mahmood, K. Effect of dry and wet ambient environment on the pulsed laser ablation of titanium. *Appl. Surf. Sci.* 2013, 270, 49–57. [CrossRef]
- 89. Davila, Y.; Petitmangin, A.; Hebert, C.; Perriere, J.; Seiler, W. Oxygen deficiency in oxide films grown by PLD. *Appl. Surf. Sci.* 2011, 257, 5354–5357. [CrossRef]
- Socol, G.; Gnatyuk, Y.; Stefan, N.; Smirnova, N.; Djokic, V.; Sutan, C.; Malinovschi, V.; Stanculescu, A.; Korduban, O.; Mihailescu, I.N. Photocatalytic activity of pulsed laser deposited TiO<sub>2</sub> thin films in N<sub>2</sub>, O<sub>2</sub> and CH<sub>4</sub>. *Thin Solid Film.* 2010, *518*, 4648–4653. [CrossRef]
- 91. Nath, A.; Laha, S.S.; Khare, A. Effect of focusing conditions on synthesis of titanium oxide nanoparticles via laser ablation in titanium-water interface. *Appl. Surf. Sci.* 2011, 257, 3118–3122. [CrossRef]
- 92. Rahman, M.A.; Bazargan, S.; Srivastava, S.; Wang, X.; Abd-Ellah, M.; Thomas, J.P.; Heinig, N.F.; Pradhan, D.; Leung, K.T. Defect-rich decorated TiO<sub>2</sub> nanowires for super-efficient photoelectrochemical water splitting driven by visible light. *Energy Environ. Sci.* 2015, *8*, 3363–3373. [CrossRef]
- Bellardita, M.; Garlisi, C.; Ozer, L.Y.; Venezia, A.M.; Sa, J.; Mamedov, F.; Palmisano, L.; Palmisano, G. Highly stable defective TiO<sub>2-x</sub> with tuned exposed facets induced by fluorine: Impact of surface and bulk properties on selective UV/visible alcohol photo-oxidation. *Appl. Surf. Sci.* 2020, *510*, 145419. [CrossRef]
- 94. Lo, H.-H.; Gopal, N.O.; Ke, S.-C. Origin of photoactivity of oxygen-deficient TiO<sub>2</sub> under visible light. *Appl. Phys. Lett.* 2009, 95, 083126. [CrossRef]
- 95. Pu, X.; Hu, Y.; Cui, S.; Cheng, L.; Jiao, Z. Preparation of N-doped and oxygen-deficient TiO<sub>2</sub> microspheres via a novel electron beam-assisted method. *Solid State Sci.* 2017, *70*, 66–73. [CrossRef]
- Wang, M.; Xu, X.Y.; Lin, L.; He, D.N. Gd-La codoped TiO<sub>2</sub> nanoparticles as solar photocatalysts. *Prog. Nat. Sci.-Mater. Int.* 2015, 25, 6–11. [CrossRef]
- 97. Kunti, A.K.; Sharma, S.K. Structural and spectral properties of red light emitting Eu<sup>3+</sup> activated TiO<sub>2</sub> nanophosphor for white LED application. *Ceram. Int.* **2017**, *43*, 9838–9845. [CrossRef]
- Zhang, J.; Zhang, J.; Ren, H.; Yu, L.; Wu, Z.; Zhang, Z. High rate capability and long cycle stability of TiO<sub>2</sub>-delta-La composite nanotubes as anode material for lithium ion batteries. J. Alloys Compd. 2014, 609, 178–184. [CrossRef]
- Zhang, J.; Zhao, Z.; Wang, X.; Yu, T.; Guan, J.; Yu, Z.; Li, Z.; Zou, Z. Increasing the oxygen vacancy density on the TiO<sub>2</sub> surface by La-doping for dye-sensitized solar cells. J. Phys. Chem. C 2010, 114, 18396–18400. [CrossRef]
- Aguinaco, A.; Amaya, B.; Ramirez-del-Solar, M. Facile fabrication of Fe-TiO<sub>2</sub> thin film and its photocatalytic activity. *Environ. Sci. Pollut. Res.* 2022, 29, 23292–23302. [CrossRef] [PubMed]
- 101. Bhowmick, S.; Saini, C.P.; Santra, B.; Walczak, L.; Semisalova, A.; Gupta, M.; Kanjilal, A. Modulation of the work function of TiO<sub>2</sub> nanotubes by nitrogen doping: Implications for the photocatalytic degradation of dyes. ACS Appl. Nano Mater. 2023, 6, 50–60. [CrossRef]
- 102. Hatanaka, Y.; Naito, H.; Itou, S.; Kando, M. Photocatalytic characteristics of hydro-oxygenated amorphous titanium oxide films prepared using remote plasma enhanced chemical vapor deposition. *Appl. Surf. Sci.* **2005**, 244, 554–557. [CrossRef]
- Sakai, T.; Kuniyoshi, Y.; Aoki, W.; Ezoe, S.; Endo, T.; Hoshi, Y. High-rate deposition of photocatalytic TiO<sub>2</sub> films by oxygen plasma assist reactive evaporation method. *Thin Solid Film.* 2008, 516, 5860–5863. [CrossRef]
- 104. Li, Y.; Wang, W.; Wang, F.; Di, L.; Yang, S.; Zhu, S.; Yao, Y.; Ma, C.; Dai, B.; Yu, F. Enhanced photocatalytic degradation of organic dyes via defect-rich TiO<sub>2</sub> prepared by dielectric barrier discharge plasma. *Nanomaterials* **2019**, *9*, 720. [CrossRef] [PubMed]
- 105. Hojo, M.; Okimura, K. Effect of annealing with Ar plasma irradiation for transparent conductive Nb-doped TiO<sub>2</sub> films on glass substrate. *Jpn. J. Appl. Phys.* **2009**, *48*, 08hk06. [CrossRef]

- 106. Kawakami, R.; Mimoto, Y.; Yanagiya, S.-I.; Shirai, A.; Niibe, M.; Nakano, Y.; Mukai, T. Photocatalytic activity enhancement of anatase/rutile-mixed phase TiO<sub>2</sub> nanoparticles annealed with low-temperature O<sub>2</sub> plasma. *Phys. Status Solidi A-Appl. Mater. Sci.* 2021, 218, 2100536. [CrossRef]
- 107. An, H.-R.; Hong, Y.C.; Kim, H.; Huh, J.Y.; Park, E.C.; Park, S.Y.; Jeong, Y.; Park, J.-I.; Kim, J.-P.; Lee, Y.-C.; et al. Studies on mass production and highly solar light photocatalytic properties of gray hydrogenated-TiO<sub>2</sub> sphere photocatalysts. *J. Hazard. Mater.* 2018, 358, 222–233. [CrossRef]
- 108. Mizukoshi, Y.; Ohwada, M.; Seino, S.; Horibed, H.; Nishimura, Y.; Terashima, C. Synthesis of oxygen-deficient blue titanium oxide by discharge plasma generated in aqueous ammonia solution. *Appl. Surf. Sci.* **2019**, *489*, 255–261. [CrossRef]
- Ji, M.; Choa, Y.-H.; Lee, Y.-I. One-step synthesis of black TiO<sub>2-x</sub> microspheres by ultrasonic spray pyrolysis process and their visible-light-driven photocatalytic activities. *Ultrason. Sonochem.* 2021, 74, 105557. [CrossRef]
- Nakaruk, A.; Reece, P.J.; Ragazzon, D.; Sorrell, C.C. TiO<sub>2</sub> films prepared by ultrasonic spray pyrolysis. *Mater. Sci. Technol.* 2010, 26, 469–472. [CrossRef]
- 111. da Silva, A.L.; Trindade, F.J.; Dalmasso, J.-L.; Ramos, B.; Teixeira, A.C.S.C.; Gouvea, D. Synthesis of TiO<sub>2</sub> microspheres by ultrasonic spray pyrolysis and photocatalytic activity evaluation. *Ceram. Int.* **2022**, *48*, 9739–9745. [CrossRef]
- 112. Nguyen Thi Khanh, V.; Nguyen Nang, D.; Nguyen Van, C.; Nguyen Nhat, H.; Nguyen Thanh, T.; Tran Quoc, T.; Dang Van, T. A simple and efficient ultrasonic-assisted electrochemical approach for scalable production of nitrogen-doped TiO<sub>2</sub> nanocrystals. *Nanotechnology* **2021**, 32, 465602. [CrossRef] [PubMed]
- 113. Osorio-Vargas, P.A.; Pulgarin, C.; Sienkiewicz, A.; Pizzio, L.R.; Blanco, M.N.; Torres-Palma, R.A.; Petrier, C.; Rengifo-Herrera, J.A. Low-frequency ultrasound induces oxygen vacancies formation and visible light absorption in TiO<sub>2</sub> P-25 nanoparticles. *Ultrason. Sonochem.* 2012, 19, 383–386. [CrossRef]
- Bellardita, M.; El Nazer, H.A.; Loddo, V.; Parrino, F.; Venezia, A.M.; Palmisano, L. Photoactivity under visible light of metal loaded TiO<sub>2</sub> catalysts prepared by low frequency ultrasound treatment. *Catal. Today* 2017, 284, 92–99. [CrossRef]
- Langhammer, D.; Thyr, J.; Osterlund, L. Surface properties of reduced and stoichiometric TiO<sub>2</sub> as probed by SO<sub>2</sub> adsorption. *J. Phys. Chem. C* 2019, 123, 24549–24557. [CrossRef]
- 116. Xu, M.; Chen, Y.; Qin, J.; Feng, Y.; Li, W.; Chen, W.; Zhu, J.; Li, H.; Bian, Z. Unveiling the role of defects on oxygen activation and photodegradation of organic pollutants. *Environ. Sci. Technol.* **2018**, *52*, 13879–13886. [CrossRef]
- 117. Zhang, X.; Cai, M.; Cui, N.; Chen, G.; Zou, G.; Zhou, L. Defective black TiO<sub>2</sub>: Effects of annealing atmospheres and urea addition on the properties and photocatalytic activities. *Nanomaterials* **2021**, *11*, 2648. [CrossRef]
- 118. Du, M.; Chen, Q.; Wang, Y.; Hu, J.; Meng, X. Synchronous construction of oxygen vacancies and phase junction in TiO<sub>2</sub> hierarchical structure for enhancement of visible light photocatalytic activity. *J. Alloys Compd.* **2020**, *830*, 154649. [CrossRef]
- Albetran, H.; O'Connor, B.H.; Low, I.M. Effect of calcination on band gaps for electrospun titania nanofibers heated in air-argon mixtures. *Mater. Des.* 2016, 92, 480–485. [CrossRef]
- 120. Sang, L.X.; Zhang, Z.Y.; Ma, C.F. Photoelectrical and charge transfer properties of hydrogen-evolving TiO<sub>2</sub> nanotube arrays electrodes annealed in different gases. *Int. J. Hydrog. Energy* **2011**, *36*, 4732–4738. [CrossRef]
- Qi, W.; Zhang, F.; An, X.; Liu, H.; Qu, J. Oxygen vacancy modulation of {010}-dominated TiO<sub>2</sub> for enhanced photodegradation of Sulfamethoxazole. *Catal. Commun.* 2019, 118, 35–38. [CrossRef]
- 122. Li, Y.; Ye, X.; Cao, S.; Yang, C.; Wang, Y.; Ye, J. Oxygen-deficient dumbbell-shaped anatase TiO<sub>2-x</sub> mesocrystals with nearly 100% exposed {101} facets: Synthesis, growth mechanism, and Photocatalytic Performance. *Chem.-A Eur. J.* 2019, 25, 3032–3041. [CrossRef]
- 123. Sheng, Z.; Song, S.; Wang, H.; Wu, Z.; Liu, Y. One-step hydrothermal synthesis of Pd-modified TiO<sub>2</sub> with high photocatalytic activity for nitric oxide oxidation in gas phase. *Environ. Eng. Sci.* **2012**, *29*, 972–978. [CrossRef]
- Sasirekha, N.; Basha, S.J.S.; Shanthi, K. Photocatalytic performance of Ru doped anatase mounted on silica for reduction of carbon dioxide. *Appl. Catal. B-Environ.* 2006, 62, 169–180. [CrossRef]
- 125. Gao, P.; Yang, L.; Xiao, S.; Wang, L.; Guo, W.; Lu, J. Effect of Ru, Rh, Mo, and Pd adsorption on the electronic and optical properties of anatase TiO<sub>2</sub>(101): A DFT investigation. *Materials* **2019**, *12*, 814. [CrossRef] [PubMed]
- Thalgaspitiya, W.R.K.; Kapuge, T.K.; He, J.; Deljoo, B.; Meguerdichian, A.G.; Aindow, M.; Suib, S.L. Multifunctional transition metal doped titanium dioxide reduced graphene oxide composites as highly efficient adsorbents and photocatalysts. *Microporous Mesoporous Mater.* 2020, 307, 110521. [CrossRef]
- 127. Wang, T.; Li, B.-R.; Wu, L.-G.; Yin, Y.-B.; Jiang, B.-Q.; Lou, J.-Q. Enhanced performance of TiO<sub>2</sub>/reduced graphene oxide doped by rare-earth ions for degrading phenol in seawater excited by weak visible light. *Adv. Powder Technol.* 2019, 30, 1920–1931. [CrossRef]
- 128. Stengl, V.; Bakardjieva, S.; Murafa, N. Preparation and photocatalytic activity of rare earth doped TiO<sub>2</sub> nanoparticles. *Mater. Chem. Phys.* **2009**, *114*, 217–226. [CrossRef]
- 129. Fang, X.; Chen, X.; Zhu, Z. Optical and photocatalytic properties of Er<sup>3+</sup> and/or Yb<sup>3+</sup> doped TiO<sub>2</sub> photocatalysts. *J. Mater. Sci.-Mater. Electron.* **2017**, *28*, 474–479. [CrossRef]
- Setiawati, E.; Kawano, K. Stabilization of anatase phase in the rare earth; Eu and Sm ion doped nanoparticle TiO<sub>2</sub>. J. Alloys Compd. 2008, 451, 293–296. [CrossRef]
- 131. Yu, Y.; Chen, G.; Zhou, Y.; Han, Z. Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion: A review. *J. Rare Earths* **2015**, *33*, 453–462. [CrossRef]

- 132. Liu, S.-Y.; Zuo, C.-G.; Xia, J. Solid-state synthesis and photodegradation property of anatase TiO<sub>2</sub> micro-nanopowder by sodium replacement. *Solid State Sci.* **2021**, *115*, 106589. [CrossRef]
- 133. Lv, C.; Lan, X.; Wang, L.; Yu, Q.; Zhang, M.; Sun, H.; Shi, J. Alkaline-earth-metal-doped TiO<sub>2</sub> for enhanced photodegradation and H<sub>2</sub> evolution: Insights into the mechanisms. *Catal. Sci. Technol.* **2019**, *9*, 6124–6135. [CrossRef]
- 134. Li, Y.; Ma, G.; Peng, S.; Lu, G.; Li, S. Boron and nitrogen co-doped titania with enhanced visible-light photocatalytic activity for hydrogen evolution. *Appl. Surf. Sci.* 2008, 254, 6831–6836. [CrossRef]
- 135. Barakat, N.A.M.; Zaki, A.H.; Ahmed, E.; Farghali, A.A.; Al-Mubaddel, F.S. FexCo<sub>1-x</sub>-doped titanium oxide nanotubes as effective photocatalysts for hydrogen extraction from ammonium phosphate. *Int. J. Hydrogen Energy* **2018**, *43*, 7990–7997. [CrossRef]
- 136. Li, H.; Hao, Y.; Lu, H.; Liang, L.; Wang, Y.; Qiu, J.; Shi, X.; Wang, Y.; Yao, J. A systematic study on visible-light N-doped TiO<sub>2</sub> photocatalyst obtained from ethylenediamine by sol-gel method. *Appl. Surf. Sci.* 2015, 344, 112–118. [CrossRef]
- 137. Chaudhari, N.S.; Warule, S.S.; Dhanmane, S.A.; Kulkarni, M.V.; Valant, M.; Kale, B.B. Nanostructured N-doped TiO<sub>2</sub> marigold flowers for an efficient solar hydrogen production from H<sub>2</sub>S. *Nanoscale* **2013**, *5*, 9383–9390. [CrossRef]
- Wang, Y.; Huang, Y.; Ho, W.; Zhang, L.; Zou, Z.; Lee, S. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO<sub>2</sub> nanocrystalline photocatalysts for NO removal under simulated solar light irradiation. *J. Hazard. Mater.* 2009, 169, 77–87. [CrossRef]
- Yuan, J.; Chen, M.; Shi, J.; Shangguan, W. Preparations and photocatalytic hydrogen evolution of N-doped TiO<sub>2</sub> from urea and titanium tetrachloride. *Int. J. Hydrog. Energy* 2006, *31*, 1326–1331. [CrossRef]
- 140. Momeni, M.M.; Ghayeb, Y.; Ghonchegi, Z. Visible light activity of sulfur-doped TiO<sub>2</sub> nanostructure photoelectrodes prepared by single-step electrochemical anodizing process. *J. Solid State Electrochem.* **2015**, *19*, 1359–1366. [CrossRef]
- Carmichael, P.; Hazafy, D.; Bhachu, D.S.; Mills, A.; Darr, J.A.; Parkin, I.P. Atmospheric pressure chemical vapour deposition of boron doped titanium dioxide for photocatalytic water reduction and oxidation. *Phys. Chem. Chem. Phys.* 2013, 15, 16788–16794. [CrossRef]
- 142. Wu, G.; Chen, A. Direct growth of F-doped TiO<sub>2</sub> particulate thin films with high photocatalytic activity for environmental applications. *J. Photochem. Photobiol. A-Chem.* **2008**, 195, 47–53. [CrossRef]
- 143. Zhu, H.X.; Liu, J.M. First principles calculations of electronic and optical properties of Mo and C co-doped anatase TiO<sub>2</sub>. *Appl. Phys. A-Mater. Sci. Process.* **2014**, *117*, 831–839. [CrossRef]
- 144. Diao, W.; He, J.; Wang, Q.; Rao, X.; Zhang, Y. K, Na and Cl co-doped TiO<sub>2</sub> nanorod arrays on carbon cloth for efficient photocatalytic degradation of formaldehyde under UV/visible LED irradiation. *Catal. Sci. Technol.* **2021**, *11*, 230–238. [CrossRef]
- 145. Filippatos, P.-P.; Soultati, A.; Kelaidis, N.; Petaroudis, C.; Alivisatou, A.-A.; Drivas, C.; Kennou, S.; Agapaki, E.; Charalampidis, G.; Yusoff, A.R.b.M.; et al. Preparation of hydrogen, fluorine and chlorine doped and co-doped titanium dioxide photocatalysts: A theoretical and experimental approach. *Sci. Rep.* **2021**, *11*, 5700. [CrossRef]
- 146. Meng, S.; Zhang, J.; Chen, S.; Zhang, S.; Huang, W. Perspective on construction of heterojunction photocatalysts and the complete utilization of photogenerated charge carriers. *Appl. Surf. Sci.* **2019**, *476*, 982–992. [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. *Adv. Mater.* 2017, *29*, 1601694. [CrossRef]
   Smith, Y.R.; Sarma, B.; Mohanty, S.K.; Misra, M. Formation of TiO<sub>2</sub>-WO<sub>3</sub> nanotubular composite via single-step anodization and its application in photoelectrochemical hydrogen generation. *Electrochem. Commun.* 2012, *19*, 131–134. [CrossRef]
- 149. Choudhury, S.; Sasikala, R.; Saxena, V.; Aswal, D.K.; Bhattacharya, D. A new route for the fabrication of an ultrathin film of a PdO-TiO<sub>2</sub> composite photocatalyst. *Dalton Trans.* **2012**, *41*, 12090–12095. [CrossRef]
- 150. Navarrete, M.; Cipagauta-Diaz, S.; Gomez, R. Ga<sub>2</sub>O<sub>3</sub>/TiO<sub>2</sub> semiconductors free of noble metals for the photocatalytic hydrogen production in a water/methanol mixture. *J. Chem. Technol. Biotechnol.* **2019**, *94*, 3457–3465. [CrossRef]
- 151. Gholami, M.; Shirzad-Siboni, M.; Farzadkia, M.; Yang, J.-K. Synthesis, characterization, and application of ZnO/TiO<sub>2</sub> nanocomposite for photocatalysis of a herbicide (Bentazon). *Desalination Water Treat.* **2016**, *57*, 13632–13644. [CrossRef]
- 152. Chen, J.-Z.; Chen, T.-H.; Lai, L.-W.; Li, P.-Y.; Liu, H.-W.; Hong, Y.-Y.; Liu, D.-S. Preparation and characterization of surface photocatalytic activity with NiO/TiO<sub>2</sub> nanocomposite structure. *Materials* **2015**, *8*, 4273–4286. [CrossRef]
- 153. Wang, W.; Wu, Z.; Eftekhari, E.; Huo, Z.; Li, X.; Tade, M.O.; Yan, C.; Yan, Z.; Li, C.; Li, Q.; et al. High performance heterojunction photocatalytic membranes formed by embedding Cu<sub>2</sub>O and TiO<sub>2</sub> nanowires in reduced graphene oxide. *Catal. Sci. Technol.* 2018, *8*, 1704–1711. [CrossRef]
- 154. Morales-Torres, S.; Pastrana-Martinez, L.M.; Figueiredo, J.L.; Faria, J.L.; Silva, A.M.T. Design of graphene-based TiO<sub>2</sub> photocatalysts-a review. *Environ. Sci. Pollut. Res.* **2012**, *19*, 3676–3687. [CrossRef]
- Gao, P.; Sun, D.D. Ultrasonic preparation of hierarchical Graphene-Oxide/TiO<sub>2</sub> composite microspheres for efficient photocatalytic hydrogen production. *Chem.-Asian J.* 2013, *8*, 2779–2786. [CrossRef]
- 156. Kong, D.; Zhao, M.; Li, S.; Huang, F.; Song, J.; Yuan, Y.; Shen, Y.; Xie, A. Synthesis of TiO<sub>2</sub>/rGO nanocomposites with enhanced photoelectrochemical performance and photocatalytic activity. *Nano* **2016**, *11*, 1650007. [CrossRef]
- 157. Zhang, X.-Y.; Li, H.-P.; Cui, X.-L. Preparation and Photocatalytic Activity for Hydrogen evolution of TiO<sub>2</sub>/graphene sheets composite. *Chin. J. Inorg. Chem.* **2009**, *25*, 1903–1907.
- Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Ye, M. Ionic liquid-assisted one-step hydrothermal synthesis of TiO<sub>2</sub>-reduced graphene oxide composites. *Nano Res.* 2011, 4, 795–806. [CrossRef]
- Fu, Z.; Wang, H.; Wang, Y.; Wang, S.; Li, Z.; Sun, Q. Construction of three-dimensional g-C<sub>3</sub>N<sub>4</sub>/Gr-CNTs/TiO<sub>2</sub> Z-scheme catalyst with enhanced photocatalytic activity. *Appl. Surf. Sci.* 2020, *510*, 145494. [CrossRef]

- 160. Chiang, H.-H.; Wang, S.-H.; Chou, H.-Y.; Huang, C.-C.; Tsai, T.-L.; Yang, Y.-C.; Lee, J.-W.; Lin, T.-Y.; Wu, Y.-J.; Chen, C.-C. Surface modification of ato photocatalyst on its bactericidal effect against *Escherichia coli*. *J. Mar. Sci. Technol.-Taiwan* **2014**, *22*, 269–276.
- 161. Zhou, X.M. TiO<sub>2</sub>-supported single-atom catalysts for photocatalytic reactions. *Acta Phys.-Chim. Sin.* **2021**, *37*, 2008064.
- 162. Bernareggi, M.; Chiarello, G.L.; West, G.; Ratova, M.; Ferretti, A.M.; Kelly, P.; Selli, E. Cu and Pt clusters deposition on TiO<sub>2</sub> powders by DC magnetron sputtering for photocatalytic hydrogen production. *Catal. Today* **2019**, *326*, 15–21. [CrossRef]
- 163. Dozzi, M.V.; Brocato, S.; Marra, G.; Tozzola, G.; Meda, L.; Selli, E. Aqueous ammonia abatement on Pt- and Ru-modified TiO<sub>2</sub>: Selectivity effects of the metal nanoparticles deposition method. *Catal. Today* **2017**, *287*, 148–154. [CrossRef]
- 164. Zheng, Z.; Murakamia, N.; Liu, J.; Teng, Z.; Zhang, Q.; Cao, Y.; Cheng, H.; Ohno, T. Development of plasmonic photocatalyst by site-selective loading of bimetallic nanoparticles of Au and Ag on titanium(IV) oxide. *ChemCatChem* 2020, 12, 3783–3792. [CrossRef]
- 165. Luo, J.; Li, D.; Yang, Y.; Liu, H.; Chen, J.; Wang, H. Preparation of Au/reduced graphene oxide/hydrogenated TiO<sub>2</sub> nanotube arrays ternary composites for visible-light-driven photoelectrochemical water splitting. *J. Alloys Compd.* 2016, 661, 380–388. [CrossRef]
- 166. Liu, E.; Kang, L.; Yang, Y.; Sun, T.; Hu, X.; Zhu, C.; Liu, H.; Wang, Q.; Li, X.; Fan, J. Plasmonic Ag deposited TiO<sub>2</sub> nano-sheet film for enhanced photocatalytic hydrogen production by water splitting. *Nanotechnology* 2014, 25, 165401. [CrossRef] [PubMed]
- 167. Ge, M.-Z.; Cao, C.-Y.; Li, S.-H.; Tang, Y.-X.; Wang, L.-N.; Qi, N.; Huang, J.-Y.; Zhang, K.-Q.; Al-Deyab, S.S.; Lai, Y.-K. In situ plasmonic Ag nanoparticle anchored TiO<sub>2</sub> nanotube arrays as visible-light-driven photocatalysts for enhanced water splitting. *Nanoscale* 2016, *8*, 5226–5234. [CrossRef]
- 168. Barrios, C.E.; Albiter, E.; Jimenez, J.; Tiznado, H.; Romo-Herrera, J.; Zanella, R. Photocatalytic hydrogen production over titania modified by gold–Metal (palladium, nickel and cobalt) catalysts. *Int. J. Hydrogen Energy* **2016**, *41*, 23287–23300. [CrossRef]
- Monamary, A.; Vijayalakshmi, K. Substantial effect of palladium overlayer deposition on the H<sub>2</sub> sensing performance of TiO<sub>2</sub>/ITO nanocomposite. *Ceram. Int.* 2018, 44, 22957–22962. [CrossRef]
- 170. Vallejo, W.; Rueda, A.; Diaz-Uribe, C.; Grande, C.; Quintana, P. Photocatalytic activity of graphene oxide-TiO<sub>2</sub> thin films sensitized by natural dyes extracted from Bactris guineensis. *R. Soc. Open Sci.* **2019**, *6*, 181824. [CrossRef]
- 171. Shi, J.W.; Guan, X.J.; Zhou, Z.H.; Liu, H.P.; Guo, L.J. Eosin Y-sensitized nanosheet-stacked hollow-sphere TiO<sub>2</sub> for efficient photocatalytic H<sub>2</sub> production under visible-light irradiation. *J. Nanopart. Res.* **2015**, *17*, 252. [CrossRef]
- 172. Murcia, J.J.; Avila-Martinez, E.G.; Rojas, H.; Cubillos, J.; Ivanova, S.; Penkova, A.; Laguna, O.H. Powder and nanotubes titania modified by dye sensitization as photocatalysts for the organic pollutants elimination. *Nanomaterials* 2019, 9, 517. [CrossRef] [PubMed]
- 173. Rodriguez, H.B.; Di Iorio, Y.; Meichtry, J.M.; Grela, M.A.; Litter, M.I.; San Roman, E. Evidence on dye clustering in the sensitization of TiO<sub>2</sub> by aluminum phthalocyanine. *Photochem. Photobiol. Sci.* **2013**, *12*, 1984–1990. [CrossRef] [PubMed]
- Ding, H.M.; Sun, H.; Shan, Y.K. Preparation and characterization of mesoporous SBA-15 supported dye-sensitized TiO<sub>2</sub> photocatalyst. J. Photochem. Photobiol. A-Chem. 2005, 169, 101–107. [CrossRef]
- 175. Wahyuningsih, S.; Purnawan, C.; Kartikasari, P.A.; Praistia, N. Visible light photoelectrocatalytic degradation of rhodamine B using a dye-sensitised TiO<sub>2</sub> electrode. *Chem. Pap.* **2014**, *68*, 1248–1256. [CrossRef]
- 176. Li, Y.; Li, H.M.; Lu, X.L.; Yu, X.; Kong, M.H.; Duan, X.D.; Qin, G.; Zhao, Y.H.; Wang, Z.L.; Dionysiou, D.D. Molybdenum disulfide nanosheets vertically grown on self-supported titanium dioxide/nitrogen-doped carbon nanofiber film for effective hydrogen peroxide decomposition and "memory catalysis". J. Colloid Interface Sci. 2021, 596, 384–395. [CrossRef] [PubMed]
- 177. Ikeue, K.; Yamashita, H.; Anpo, M. Photocatalytic reduction of CO<sub>2</sub> with H<sub>2</sub>O on titanium oxides prepared within zeolites and mesoporous molecular sieves. *Electrochemistry* **2002**, *70*, 402–408. [CrossRef]
- 178. Rasalingam, S.; Kibombo, H.S.; Wu, C.-M.; Budhi, S.; Peng, R.; Baltrusaitis, J.; Koodali, R.T. Influence of Ti-O-Si hetero-linkages in the photocatalytic degradation of Rhodamine B. *Catal. Commun.* **2013**, *31*, 66–70. [CrossRef]
- 179. Liu, B.; Zeng, H.C. Carbon nanotubes supported mesoporous mesocrystals of anatase TiO<sub>2</sub>. *Chem. Mater.* **2008**, *20*, 2711–2718. [CrossRef]
- Najafabadi, A.T.; Taghipour, F. Physicochemical impact of zeolites as the support for photocatalytic hydrogen production using solar-activated TiO<sub>2</sub>-based nanoparticles. *Energy Convers. Manag.* 2014, 82, 106–113. [CrossRef]
- 181. Xu, Y.M.; Langford, C.H. Enhanced photoactivity of a titanium(iv) oxide-supported on ZSM5 and zeolite-a at low-coverage. *J. Phys. Chem.* **1995**, *99*, 11501–11507. [CrossRef]
- 182. Kim, H.J.; Shul, Y.G.; Han, H.S. Photocatalytic properties of silica-supported TiO<sub>2</sub>. Top. Catal. 2005, 35, 287–293. [CrossRef]
- 183. Yin, J.W.; Xing, Z.P.; Kuang, J.Y.; Li, Z.Z.; Li, M.; Jiang, J.J.; Tan, S.Y.; Zhu, Q.; Zhou, W. Bi plasmon-enhanced mesoporous Bi<sub>2</sub>MoO<sub>6</sub>/Ti<sup>3+</sup> self-doped TiO<sub>2</sub> microsphere heterojunctions as efficient visible-light-driven photocatalysts. *J. Alloys Compd.* 2018, 750, 659–668. [CrossRef]
- Xing, M.Y.; Zhang, J.L.; Qiu, B.C.; Tian, B.Z.; Anpo, M.; Che, M. A Brown mesoporous TiO<sub>2-x</sub>/MCF composite with an extremely high quantum yield of solar energy photocatalysis for H<sub>2</sub> evolution. *Small* 2015, *11*, 1920–1929. [CrossRef] [PubMed]
- Wen, C.Z.; Jiang, H.B.; Qiao, S.Z.; Yang, H.G.; Lu, G.Q. Synthesis of high-reactive facets dominated anatase TiO<sub>2</sub>. J. Mater. Chem. 2011, 21, 7052–7061. [CrossRef]
- 186. Li, H.; Zeng, Y.; Huang, T.; Piao, L.; Liu, M. Controlled synthesis of anatase TiO<sub>2</sub> single crystals with dominant {001} facets from TiO<sub>2</sub> powders. *ChemPlusChem* 2012, 77, 1017–1021. [CrossRef]

- 187. Wang, W.; Lu, C.-H.; Ni, Y.-R.; Song, J.-B.; Su, M.-X.; Xu, Z.-Z. Enhanced visible-light photoactivity of {001} facets dominated TiO<sub>2</sub> nanosheets with even distributed bulk oxygen vacancy and Ti<sup>3+</sup>. *Catal. Commun.* **2012**, *22*, 19–23. [CrossRef]
- 188. Shang, Q.; Tan, X.; Yu, T.; Zhang, Z.; Zou, Y.; Wang, S. Efficient gaseous toluene photoconversion on graphene-titanium dioxide nanocomposites with dominate exposed {001} facets. *J. Colloid Interface Sci.* **2015**, 455, 134–144. [CrossRef] [PubMed]
- Lv, Z.; Cheng, X.; Liu, B.; Guo, Z.; Jin, M.; Zhang, C. Enhanced photoredox water splitting of Sb-N donor-acceptor pairs in TiO<sub>2</sub>. Inorg. Chem. Front. 2019, 6, 2404–2411. [CrossRef]
- 190. Koci, K.; Troppova, I.; Edelmannova, M.; Starostka, J.; Matejova, L.; Lang, J.; Reli, M.; Drobna, H.; Rokicinska, A.; Kustrowski, P.; et al. Photocatalytic decomposition of methanol over La/TiO<sub>2</sub> materials. *Environ. Sci. Pollut. Res.* 2018, 25, 34818–34825. [CrossRef]
- Bharatvaj, J.; Preethi, V.; Kanmani, S. Hydrogen production from sulphide wastewater using Ce<sup>3+</sup>-TiO<sub>2</sub> photocatalysis. *Int. J. Hydrog. Energy* 2018, 43, 3935–3945. [CrossRef]
- Agegnehu, A.K.; Pan, C.J.; Tsai, M.C.; Rick, J.; Su, W.N.; Lee, J.F.; Hwang, B.J. Visible light responsive noble metal-free nanocomposite of V-doped TiO<sub>2</sub> nanorod with highly reduced graphene oxide for enhanced solar H<sub>2</sub> production. *Int. J. Hydrogen Energy* 2016, *41*, 6752–6762. [CrossRef]
- Barakat, N.A.M.; Ahmed, E.; Amen, M.T.; Abdelkareem, M.A.; Farghali, A.A. N-doped Ni/C/TiO<sub>2</sub> nanocomposite as effective photocatalyst for water splitting. *Mater. Lett.* 2018, 210, 317–320. [CrossRef]
- Gao, L.S.; Zhang, S.N.; Zou, X.X.; Wang, J.F.; Su, J.; Chen, J.S. Oxygen vacancy engineering of titania-induced by Sr<sup>2+</sup> dopants for visible-light-driven hydrogen evolution. *Inorg. Chem.* 2021, 60, 32–36. [CrossRef]
- 195. Xu, J.C.; Zhang, J.J.; Cai, Z.Y.; Huang, H.; Huang, T.H.; Wang, P.; Wang, X.Y. Facile and large-scale synthesis of defective black TiO<sub>2-x</sub>(B) nanosheets for efficient visible-light-driven photocatalytic hydrogen evolution. *Catalysts* **2019**, *9*, 1048. [CrossRef]
- Barakat, N.A.M.; Erfan, N.A.; Mohammed, A.A.; Mohamed, S.E.I. Ag-decorated TiO<sub>2</sub> nanofibers as Arrhenius equationincompatible and effective photocatalyst for water splitting under visible light irradiation. *Colloids Surf. A-Physicochem. Eng. Asp.* 2020, 604, 125307. [CrossRef]
- 197. Dang, H.F.; Dong, X.F.; Dong, Y.C.; Zhang, Y.; Hampshire, S. TiO<sub>2</sub> nanotubes coupled with nano-Cu(OH)<sub>2</sub> for highly efficient photocatalytic hydrogen production. *Int. J. Hydrogen Energy* **2013**, *38*, 2126–2135. [CrossRef]
- 198. Diaz, L.; Rodriguez, V.D.; Gonzalez-Rodriguez, M.; Rodriguez-Castellon, E.; Algarra, M.; Nunez, P.; Moretti, E. M/TiO<sub>2</sub> (M = Fe, Co, Ni, Cu, Zn) catalysts for photocatalytic hydrogen production under UV and visible light irradiation. *Inorg. Chem. Front.* 2021, *8*, 3491–3500. [CrossRef]
- 199. El-Bery, H.M.; Abdelhamid, H.N. Photocatalytic hydrogen generation via water splitting using ZIF-67 derived Co<sub>3</sub>O<sub>4</sub>@C/TiO<sub>2</sub>. *J. Environ. Chem. Eng.* **2021**, *9*, 105702. [CrossRef]
- Fujita, S.; Kawamori, H.; Honda, D.; Yoshida, H.; Arai, M. Photocatalytic hydrogen production from aqueous glycerol solution using NiO/TiO<sub>2</sub> catalysts: Effects of preparation and reaction conditions. *Appl. Catal. B-Environ.* 2016, 181, 818–824. [CrossRef]
- 201. Han, C.; Wang, Y.; Lei, Y.; Wang, B.; Wu, N.; Shi, Q.; Li, Q. In situ synthesis of graphitic-C<sub>3</sub>N<sub>4</sub> nanosheet hybridized N-doped TiO<sub>2</sub> nanofibers for efficient photocatalytic H<sub>2</sub> production and degradation. *Nano Res.* 2015, *8*, 1199–1209. [CrossRef]
- Kokporka, L.; Onsuratoom, S.; Puangpetch, T.; Chavadej, S. Sol-gel-synthesized mesoporous-assembled TiO<sub>2</sub>-ZrO<sub>2</sub> mixed oxide nanocrystals and their photocatalytic sensitized H<sub>2</sub> production activity under visible light irradiation. *Mater. Sci. Semicond. Process.* 2013, 16, 667–678. [CrossRef]
- Mou, Z.G.; Wu, Y.J.; Sun, J.H.; Yang, P.; Du, Y.K.; Lu, C. TiO<sub>2</sub> Nanoparticles-functionalized N-doped graphene with superior interfacial contact and enhanced charge separation for photocatalytic hydrogen generation. *ACS Appl. Mater. Interfaces* 2014, 6, 13798–13806. [CrossRef] [PubMed]
- 204. Sharma, A.; Thuan, D.V.; Pham, T.D.; Tung, M.H.T.; Truc, N.T.T.; Vo, D.V.N. Advanced surface of fibrous activated carbon immobilized with FeO/TiO<sub>2</sub> for photocatalytic evolution of hydrogen under visible light. *Chem. Eng. Technol.* 2020, 43, 752–761. [CrossRef]
- 205. Wang, C.; Hu, Q.Q.; Huang, J.Q.; Zhu, C.; Deng, Z.H.; Shi, H.L.; Wu, L.; Liu, Z.G.; Cao, Y.G. Enhanced hydrogen production by water splitting using Cu-doped TiO<sub>2</sub> film with preferred (001) orientation. *Appl. Surf. Sci.* **2014**, 292, 161–164. [CrossRef]
- Ma, J.; Tan, X.; Yu, T.; Li, X. Fabrication of g-C<sub>3</sub>N<sub>4</sub>/TiO<sub>2</sub> hierarchical spheres with reactive {001} TiO<sub>2</sub> crystal facets and its visible-light photocatalytic activity. *Int. J. Hydrog. Energy* 2016, 41, 3877–3887. [CrossRef]
- Xiang, Q.; Yu, J.; Jaroniec, M. Enhanced photocatalytic H<sub>2</sub> production activity of graphene-modified titania nanosheets. *Nanoscale* 2011, 3, 3670–3678. [CrossRef]
- 208. Chu, L.; Lin, Y.; Liu, Y.; Wang, H.; Zhang, Q.; Li, Y.; Cao, Y.; Yu, H.; Peng, F. Preparation of CdS-CoS<sub>x</sub> photocatalysts and their photocatalytic and photoelectrochemical characteristics for hydrogen production. *Int. J. Hydrog. Energy* 2019, 44, 27795–27805. [CrossRef]
- 209. Dong, J.; Duan, L.; Wu, Q.; Yao, W. Facile preparation of Pt/CdS photocatalyst by a modified photoreduction method with efficient hydrogen production. *Int. J. Hydrog. Energy* **2018**, *43*, 2139–2147. [CrossRef]
- Kondo, T.; Nagata, M. Cu-doped ZnS/zeolite composite photocatalysts for hydrogen production from aqueous S<sup>2-</sup>/SO<sub>3</sub><sup>2-</sup> Solutions. *Chem. Lett.* 2017, 46, 1797–1799. [CrossRef]
- Qiao, F.; Liu, W.; Yang, J.; Yuan, J.; Sun, K.; Liu, P.F. Hydrogen production performance and theoretical mechanism analysis of chain-like ZnO/ZnS heterojunction. *Int. J. Hydrogen Energy* 2023, 48, 953–963. [CrossRef]

213. Zou, Y.; Guo, C.; Cao, X.; Zhang, L.; Chen, T.; Guo, C.; Wang, J. Synthesis of CdS/CoP hollow nanocages with improved photocatalytic water splitting performance for hydrogen evolution. *J. Environ. Chem. Eng.* **2021**, *9*, 106270. [CrossRef]

**Disclaimer/Publisher's Note:** The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.