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Abstract: The present work is devoted to the study of the influence of the parameters of the structural
anisotropy of rolled products on the low-temperature impact strength of alloyed steels. A quantitative
metallographic analysis of the microstructure of rolled steel samples obtained after testing for low-
temperature toughness was carried out. It was established that the main reason for the decrease
in the low-temperature impact strength of rolled steel samples is a highly developed segregation
band enriched with carbon films formed at the stage of steelmaking conversion in violation of the
technology of continuous casting of steel. The microstructural analysis of rolled stock samples was
used in the work, and studies of the fracture surface of rolled stock samples were carried out with a
scanning electron microscope using X-ray microanalysis methods. The studies carried out showed
that the metallurgical quality of sheets of one heat, as well as individual samples within one sheet,
varied over a wide range, from satisfactory to unacceptably low. It was established that the main
reason for the decreasing low-temperature impact strength of rolled products was a highly developed
segregation band enriched with carbon films, formed at the stage of steelmaking in case of violation
of the continuous casting of steel technology. The multivariate statistical analysis carried out showed
that only the size of the segregation band has an effect on the low-temperature impact strength of
10 mm thick rolled coil samples.

Keywords: rolled products; bainite; anisotropy parameters; impact strength; segregation band

1. Introduction

The constantly increasing demands placed on the quality of rolled products create the
need for continuous improvement of its production technology. During the production of
rolled products at all technological stages, starting from steel smelting and ending with
the thermal processing of finished products, it is necessary to strictly observe the modes
and parameters of metal processing established by technological instructions, and adhere
to the established standards and rules. The final structure of the finished rolled product
is influenced by the parameters and factors that were laid down at the stage of primary
shaping of a continuously cast billet in the process of the continuous casting of steel. Thus,
the physical and chemical heterogeneity of a continuously cast billet, which takes place at
different levels in the height of the ingot, has an unambiguous effect on the structural and
chemical heterogeneity of the finished rolled product and the anisotropy of its properties.

Evaluation of the rolled product’s microstructure parameters’ effect on its mechanical
properties is one of the most important tasks in determining the compliance of the quality
of the finished product with the requirements established by the customer. In case of non-
compliance, a decision can be made to transfer the product to a lower quality category or,
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in general, to recognize it as defective. In this regard, the search for reasons for decreasing
mechanical properties of rolled products is the main goal when conducting a technology
audit on the conditions of metallurgical production.

It is known that one of the main criteria for the reliability and durability of rolled
products is the ability of the material to resist brittle fracture, including that which occurs at
low temperatures [1–3]. This ability is characterized by such a criterion as low-temperature
impact strength, which quantitatively describes the material resistance to brittle fracture [4,5].
The fracture mechanism is affected by many factors, which include the state of the metal
microstructure, non-metallic inclusions, the stressed state of the metal, and the presence of
stress concentrators [6–11]. In this regard, carrying out multidimensional, in-depth studies
of the structural anisotropy parameters’ of rolled products effect on low-temperature impact
strength is the main task of this work.

Structural anisotropy parameters of rolled products can include the density, the volume
fraction and the nature of the distribution of non-metallic inclusions, the anisotropy of the
grain size (structural element) over the width and thickness of the sheet, microstructural
banding, the size and the nature of the bainite colonies distribution, and the degree of axial
segregation band development [12–14].

It is known from the work of present-day researchers that segregation heterogene-
ity in finished rolled products can be manifested in the form of axial central segregation
heterogeneity, which is a consequence of axial chemical heterogeneity, as well as the axial
discontinuity of a continuously cast billet [15]. The degree of the segregation band devel-
opment in the structure of rolled products depends both on the concentration of highly
segregating elements such as sulfur, phosphorus, carbon, non-ferrous metal impurities, a
number of alloying elements, and on the crystallization conditions, as well as the solidi-
fication parameters of the continuously cast billet [16,17]. Rolled sheets and coils with a
pronounced segregation band are characterized by an increased tendency towards defect
formation, including internal delamination with the formation of cracks directed along the
interface between the segregation band and the base metal. All this has a negative impact
on the finished rolled product’s ductility, and especially on its impact strength [8,18].

2. Materials and Methods

The authors studied 115 samples of rolled products with a thickness of 10 mm, pro-
duced under the conditions of a casting and rolling complex of steel grade 13HFA, of
strength category K56, in the form of Charpy samples after impact bending at the tempera-
ture of −50 ◦C. The composition of the steel is given in Table 1.

Table 1. Chemical composition of the metal under study.

Mass Fractions of Chemical Elements, %

C Si Mn S P Cr Ni Cu Mo Ti Ca Al Nb V Fe

0.085 0.34 0.66 0.001 0.007 0.67 0.10 0.15 0.027 0.01 0.001 0.03 0.03 0.09 97.69

An example of the results of testing samples of rolled products for impact bending is
shown in Table 2.

The samples for metallographic studies were cut from the halves of the Charpy samples
cut across relative to the rolling direction after the impact bending test at a temperature of
−50 ◦C To obtain reliable results of metallographic studies, the plane of the section was
selected outside the region of plastic deformation of the sample after testing. Figure 1a
shows a diagram of cutting out metallographic specimens from Charpy impact specimens
after impact bending tests. The dotted line shows the cutting line; the plane of the section
was selected outside the area of plastic deformation of the destroyed sample. Figure 1b
shows orientation of a rolled product sample for impact bending relative to mutually
perpendicular planes and the direction of rolling.
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Table 2. The results of the impact bending test of rolled products.

Sample
Number

KCV-50,
J/cm2

The Proportion of
the Viscous

Component (B), %

Sample
Number

KCV-50,
J/cm2

The Proportion of
the Viscous

Component (B), %

1 252 70 24 226 31

2 126 25 25 245 58

3 35 22 26 231 52

4 205 91 27 241 100

5 126 30 28 262 86

6 226 100 29 224 44

7 192 86 30 252 69

8 170 89 31 251 71

9 253 77 32 262 62

10 319 92 33 258 61

11 302 67 34 47 4

12 33 4 35 239 56

13 211 73 36 156 24

14 277 68 37 67 11

15 252 65 38 242 50

16 42 25 39 245 60

17 297 68 40 245 57

18 275 88 41 303 80

19 273 73 42 410 100

20 199 47 43 264 72

21 249 65 44 213 43

22 39 5 45 310 74

23 309 77 46 420 100
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Preparation of thin sections was performed with the use of updated equipment for
sample preparation by Buehler. Sample cutting was carried out on a Buehler Abrasimet
Delta machine (Buehler, Falkenberg, Germany) using an HH type abrasive wheel for
metallic materials and steels with a hardness of 50–60 HRC. The samples were pressed
in for preparing thin sections in an automatic Buehler SimpliMet 1000 press (Buehler,
Falkenberg, Germany). The samples were ground and polished on a Buehler Phoenix
4000 machine (Buehler, Falkenberg, Germany) using the following consumables: Buehler
Planarmet, Buehler CarbiMet No. 240 and 600 grinding papers, fabrics, Metadi diamond
suspensions, suspension for final polishing MasterPrep [19]. The samples reveal that the
microstructure were etched with a 4% solution of HNO3 in alcohol.

The quantitative analysis of the microstructure was carried out using motorized opti-
cal microscopes (Nikon, Tokyo, Japan), Axiovert 200 MAT (Carl Zeiss, Aalen, Germany)
and Nikon Epiphot TME ((Nikon, Tokyo, Japan), equipped with an image analyzer. The
technique of metallographic studies consisted either of field-by-field analysis of an un-
etched sample, or in the construction of a panoramic image of the etched structure of the
required area at the required magnification and quantitative analysis using the appropriate
image analyzer module. The chemical composition of the metal under study was ana-
lyzed with a Specromaxx F optical emission spectrometer (Spectro Analytical Instruments,
Kleve, Germany).

To establish the quantitative relationship between the parameters of the microstructure
and the properties of rolled products, the quantitative analysis of the microstructure
of rolled products with the thickness of 10 mm was carried out, using both reference
scales and automated methods through the image analysis. Non-metallic inclusions were
assessed according to the ASTM E1245-03 standard; the grain size (structural element) was
assessed according to the ASTM E1382-97 standard; microstructural banding in accordance
with GOST 5640; structural anisotropy and the central segregation region (segregation
band) according to scales in accordance with the GB T 13298-2015 standard, as well as
morphological and stereological parameters of bainitic colonies [12,20,21].

To evaluate the parameters of the bainite colonies, a special etching agent based on
hydrofluoric acid was selected, which made it possible to identify areas with the same
crystallographic direction due to the formation of a film of different thickness on their
surface. Using special tools of the image analyzer, the maximum length and the average of
the three maximum lengths of bainite colonies present on the shelf were measured on the
obtained panoramic images. The composition of the etchant solution was: HF 25 mL, H2O
25 mL, glycerol 50 mL. Etching was carried out via dipping, holding for 3 min. The studied
surface of the sample during etching should be on top in order to remove the resulting
gas bubbles. Gas bubbles can be removed with a cotton swab. As a result of etching, a
transparent film is formed on the surface of the sample, which is colored in polarized light,
in accordance with the crystallographic orientation of the structural components under it.
Panoramic imaging of the sample on the image analyzer was carried out no later than 6 h
after etching. However, it is acceptable to study the sample within a week if it is stored in a
non-corrosive medium, for example, in a desiccator with silica gel.

3. Results

As the results of metallographic studies show, the microstructure of samples of rolled
products of strength category K56 is a ferrite-bainite-pearlite mixture (Figure 2). Etching in
the solution of nitric acid revealed a rather strong structural inhomogeneity of the studied
samples that was expressed both in the form of large bainite colonies elongated along the
rolling direction (Figure 2) of different morphologies and, in some cases, in the form of a
developed segregation band (Figure 3).

Table 3 shows an example of the results of the evaluation of the grain size number,
the structural banding size, the anisotropy coefficient, and the segregation band size for a
number of the studied samples of rolled products.



Metals 2023, 13, 1157 5 of 17

Metals 2023, 13, x FOR PEER REVIEW 5 of 17 
 

 

H2O 25 mL, glycerol 50 mL. Etching was carried out via dipping, holding for 3 min. The 
studied surface of the sample during etching should be on top in order to remove the 
resulting gas bubbles. Gas bubbles can be removed with a cotton swab. As a result of 
etching, a transparent film is formed on the surface of the sample, which is colored in 
polarized light, in accordance with the crystallographic orientation of the structural 
components under it. Panoramic imaging of the sample on the image analyzer was car-
ried out no later than 6 h after etching. However, it is acceptable to study the sample 
within a week if it is stored in a non-corrosive medium, for example, in a desiccator with 
silica gel. 

3. Results 
As the results of metallographic studies show, the microstructure of samples of 

rolled products of strength category K56 is a ferrite-bainite-pearlite mixture (Figure 2). 
Etching in the solution of nitric acid revealed a rather strong structural inhomogeneity of 
the studied samples that was expressed both in the form of large bainite colonies elon-
gated along the rolling direction (Figure 2) of different morphologies and, in some cases, 
in the form of a developed segregation band (Figure 3). 

 
Figure 2. Panoramic image of the characteristic structure of a coiled product sample. Figure 2. Panoramic image of the characteristic structure of a coiled product sample.

Metals 2023, 13, x FOR PEER REVIEW 6 of 17 
 

 

 
Figure 3. Panoramic image of a full-thickness rolled product sample with a developed segregation 
band. 

Table 3 shows an example of the results of the evaluation of the grain size number, 
the structural banding size, the anisotropy coefficient, and the segregation band size for a 
number of the studied samples of rolled products. 

Table 3. Example of the results of the evaluation of the microstructure parameters of rolled steel 
samples. 

Sa
m

pl
e 

N
um

be
r 

G
ra

in
 S

iz
e 

N
um

be
r 

 
(S

tr
uc

tu
re

 E
le

m
en

t) 

St
ru

ct
ur

al
 B

an
di

ng
 s

iz
e 

A
ni

so
tr

op
y 

C
oe

ff
ic

ie
nt

 

Se
gr

eg
at

io
n 

Ba
nd

 S
iz

e 

Sa
m

pl
e 

N
um

be
r 

G
ra

in
 s

iz
e 

N
um

be
r 

 
(S

tr
uc

tu
re

 E
le

m
en

t) 

St
ru

ct
ur

al
 B

an
di

ng
 S

iz
e 

A
ni

so
tr

op
y 

C
oe

ff
ic

ie
nt

 

Se
gr

eg
at

io
n 

Ba
nd

 S
iz

e 

1 13.33 1 1.31 1 24 13.07 1 1 1 
2 13.21 0 0.39 0 25 13.21 1 0.76 0 
3 13.1 1 0.42 4 26 13.58 1 1.49 0 
4 13.01 1 0.72 1 27 12.89 1 0.89 0 
5 12.73 1 0.9 4 28 13.3 1 1.8 4 
6 13.08 1 0.39 3 29 13.24 1 1.11 0 
7 13.1 2 1.48 1 30 13.67 1 0.94 1 
8 12.78 1 1.4 1 31 12.7 1 0.92 1 
9 12.64 1 2.05 0 32 12.36 1 0.39 0 

10 12.4 1 1.8 1 33 12.62 1 0.72 0 
11 12.58 1 0.52 0 34 12.65 1 1.14 4 
12 12.54 1 1.31 4 35 12.99 0 0.55 0 
13 13.3 1 1.03 0 36 13.04 1 1.21 0 
14 13.08 1 0.85 2 37 12.94 0 0.55 3.5 
15 13.23 1 0.56 2 38 13.16 0 0.42 1 
16 13.44 1 1.17 3.5 39 13.26 0 0.66 0 
17 12.35 0 0.49 1 40 13 0 0.9 0 
18 12.92 1 1.08 0 41 12.82 0 0.46 0 

Figure 3. Panoramic image of a full-thickness rolled product sample with a developed segrega-
tion band.
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Table 3. Example of the results of the evaluation of the microstructure parameters of rolled steel samples.
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1 13.33 1 1.31 1 24 13.07 1 1 1

2 13.21 0 0.39 0 25 13.21 1 0.76 0

3 13.1 1 0.42 4 26 13.58 1 1.49 0

4 13.01 1 0.72 1 27 12.89 1 0.89 0

5 12.73 1 0.9 4 28 13.3 1 1.8 4

6 13.08 1 0.39 3 29 13.24 1 1.11 0

7 13.1 2 1.48 1 30 13.67 1 0.94 1

8 12.78 1 1.4 1 31 12.7 1 0.92 1

9 12.64 1 2.05 0 32 12.36 1 0.39 0

10 12.4 1 1.8 1 33 12.62 1 0.72 0

11 12.58 1 0.52 0 34 12.65 1 1.14 4

12 12.54 1 1.31 4 35 12.99 0 0.55 0

13 13.3 1 1.03 0 36 13.04 1 1.21 0

14 13.08 1 0.85 2 37 12.94 0 0.55 3.5

15 13.23 1 0.56 2 38 13.16 0 0.42 1

16 13.44 1 1.17 3.5 39 13.26 0 0.66 0

17 12.35 0 0.49 1 40 13 0 0.9 0

18 12.92 1 1.08 0 41 12.82 0 0.46 0

19 12.9 1 1.05 1 42 12.83 0 0.71 0

20 13.18 0 0.95 1 43 13.07 1 1.03 2

21 12.94 1 1.41 0 44 13.03 1 0.79 0

22 11.95 0 1.68 4 45 13.25 0 0.54 0

23 13.04 1 0.74 1 46 13.28 1 0.99 0

One of the types of bainite that forms extended colonies is bainite with a lath mor-
phology (Figure 4). It is characterized by low-angle boundaries between bainite subgrains,
which form bainitic colonies with the same crystallographic orientation. Such areas work
as one object and are the most dangerous when destroyed. Bainite colonies with acicular
morphology are distinguished by the fact that bainite subgrains have different crystallo-
graphic directions with high-angle boundaries that divide the extended bainite region into
many structural microelements [15].

Table 4 shows an example of the results of evaluating the parameters of bainite colonies
in rolled steel samples.
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Figure 4. Two types of bainitic structure morphology in the rolled product sample.

Table 4. Example of the results of the analysis of the parameters of bainite colonies in samples of
rolled products.

Sample
Number

Max
Length,
Microns

Average Max
Length,
Microns

Sample
Number

Max
Length,
Microns

Average Max
Length,
Microns

Sample
Number

Max
Length,
Microns

Average Max
Length,
Microns

1 359 312 17 416 310 33 430 357

2 320 245 18 481 361 34 686 592

3 239 187 19 707 389 35 534 350

4 554 466 20 220 184 36 452 409

5 688 465 21 266 263 37 729 629

6 604 386 22 416 309 38 232 203

7 380 321 23 217 210 39 377 327

8 882 742 24 286 269 40 326 289

9 270 256 25 223 208 41 469 340

10 306 182 26 174 163 42 393 288

11 1031 521 27 400 333 43 347 316

12 346 253 28 952 831 44 412 325

13 1008 760 29 645 499 45 317 256

14 918 814 30 530 387 46 208 182

15 155 142 31 833 600 - - -

16 737 649 32 383 256 - - -

It is known that the impact strength characteristics depend on the type and distribution
of the second (strong) phase. Bainite found in the studied steels is the most complex
structure to quantify. Of course, characteristics of bainite can be determined using modern
methods based on the use of scanning electron microscopy and backscattered electron
diffraction. However, in this work, with the use of special etching methods based on
hydrofluoric acid, characteristics of lath-morphology bainite were evaluated via optical
methods [22–24].
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It should be noted that the samples studied in this work did not reveal a pronounced
distinctive crystallographic orientation of the bainitic regions. In Figures 5 and 6, the
fine-grained structural elements can have different colors, each of which corresponds to
one direction. The same can be said about lath-morphology bainite. For these samples,
there is no analyzer–polarizer crossover position at which the matrix will have one color in
its entirety, and the lath-morphology bainite will have another color. Therefore, the only
way to evaluate bainitic colonies in a given structure is to separate them by length.
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Figure 6. The structure automatic analysis results.

In this regard, the paper presents the data of the average maximum length of bainite
colonies with lath morphology. No quantitative dependence of low-temperature impact
strength on the size of bainitic colonies was found (Figure 7). However, it should be noted
that the average maximum length of bainitic colonies varies from 170 to 900 microns.

The analysis of the obtained results of evaluating metal contamination with non-
metallic inclusions showed that the quantitative dependence of low-temperature impact
strength on the average volume fraction of non-metallic inclusions, as well as the density of
their distribution over the cross-section of the rolled product, was not revealed (Figures 8
and 9). Thus, when the average volume fraction of non-metallic inclusions in the studied
samples changed from 0.03 to 0.13%, a clearly pronounced dense “cloud” of clusters of
impact strength values from 250 to 350 J/cm2 could be observed, and points with low
impact strength values do not depend on the average volume fraction and cannot be
explained by the increased content of non-metallic inclusions.
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Similar conclusions regarding the absence of a quantitative relationship can be drawn
from the results of studying the effect of grain size number and microstructural banding on
low-temperature impact strength.

For all the studied rolled products, the grain size number (structural element) is in
the range of 12–14 (Figure 10). It should be noted that in this work, the number was
measured not for a ferrite grain but for a structural element. This approach is used to
estimate the grain size number of a mixed structure consisting of crystallites of several
phases or structural components, so it is no longer enough to estimate traditionally the
grain size number only for polygonal ferrite. If the structure consists of a large number of
phases or structural components, as in the case of pipe steels, then the number of boundary
systems increases greatly. Therefore, the grain size number of the structure of sheet and
coil products intended for manufacturing oil and gas pipelines is actually the size of the
structural element that is distinguishable with a metallographic microscope, and a measure
of assessing the mixed structure as a whole. Mechanical properties, including impact
strength and cold resistance, are determined by the number of boundaries. The greater the
number of boundaries, the smaller the size of the structure element.

Metals 2023, 13, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 9. Impact strength of rolled products dependence on the density of non-metallic inclusions. 

Similar conclusions regarding the absence of a quantitative relationship can be 
drawn from the results of studying the effect of grain size number and microstructural 
banding on low-temperature impact strength. 

For all the studied rolled products, the grain size number (structural element) is in 
the range of 12–14 (Figure 10). It should be noted that in this work, the number was 
measured not for a ferrite grain but for a structural element. This approach is used to es-
timate the grain size number of a mixed structure consisting of crystallites of several 
phases or structural components, so it is no longer enough to estimate traditionally the 
grain size number only for polygonal ferrite. If the structure consists of a large number of 
phases or structural components, as in the case of pipe steels, then the number of 
boundary systems increases greatly. Therefore, the grain size number of the structure of 
sheet and coil products intended for manufacturing oil and gas pipelines is actually the 
size of the structural element that is distinguishable with a metallographic microscope, 
and a measure of assessing the mixed structure as a whole. Mechanical properties, in-
cluding impact strength and cold resistance, are determined by the number of bounda-
ries. The greater the number of boundaries, the smaller the size of the structure element. 

 
Figure 10. Coil stock impact strength dependence on the grain size number. 

Evaluation of the structural anisotropy of rolled products samples revealed the 
values of the anisotropy coefficient in the range from 0.65 to 2.4 (Figure 11). To assess the 
microstructure anisotropy, a special algorithm that estimated the presence and severity 

Figure 10. Coil stock impact strength dependence on the grain size number.

Evaluation of the structural anisotropy of rolled products samples revealed the val-
ues of the anisotropy coefficient in the range from 0.65 to 2.4 (Figure 11). To assess the
microstructure anisotropy, a special algorithm that estimated the presence and severity
of the priority direction of the microstructure was used. One of the ways to identify the
textural features of an image is to construct gray level co-occurrence matrices Pd,α, whose
elements represent the conditional probability P(i, j) of the occurrence of a pixel with a
brightness level i at the distance d in the direction α from a pixel with a brightness level j.
Next, a quantitative parameter is calculated that describes the appearance of these matrices:
“homogeneity” reflects the grain size number or texture roughness. It is obvious that
for images of anisotropic structures, the texture roughness is very different in one of the
directions, which means that the sign of homogeneity is also different. The anisotropy
coefficient was calculated as follows: several matrices P were built for different directions α,
and on the basis of each matrix, the sign of homogeneity H was calculated. The anisotropy
coefficient was calculated as the standard deviation of the values H(d, α) calculated for
different directions.

The segregation areas found in this work in the central zone of rolled sheets, as a
rule, contain coarse traces of zonal segregation, which cannot be eliminated during rolling
and which have a negative effect on the mechanical and corrosion properties of steel. For
example, it has been experimentally proven that the central segregation zone in sheet
metal is prone to sulfide stress corrosion cracking and can cause an overall low corrosion
resistance of sheet metal and welded joints [25]. All the studied samples were analyzed



Metals 2023, 13, 1157 11 of 17

in accordance with the GB/T 13298-2015 method, according to which the segregation
band size in the sheet structure was assigned based on studying its central zone at ×200
magnification. In addition, the structure was magnified by a factor of 500 in order to
evaluate reliably the non-metallic inclusions decorating the strip. Such inclusions, or a
wide single lane, are the basis for assigning an additional penalty of 0.5 points. Size 1 is
assigned to a structure with poorly distinguishable intermittent stripes; size 2 is assigned if
there are no more than three such stripes; size 3 with more than three bands; size 4 with
more than three bands, when they are evenly distributed, close to each other.
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Figure 12 shows the results of analyzing the segregation band size in the form of a
functional dependence of low-temperature impact strength on the degree of the segregation
band development.
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Thus, according to the results of the metallographic analysis, it was found that the
only microstructure parameter on which there was a clear dependence of low-temperature
impact strength was the segregation band size.

In order to substantiate the limiting values of the segregation band development and to
predict the quality and performance of steel as a whole, it is necessary to take into account
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the formation of heterogeneity at all the stages during dendritic and zonal segregation,
as well as during polymorphic transformations in solid steel. Thus, it is necessary to
evaluate all the mechanisms of chemical and related structural heterogeneity formation
along the through technological process: from smelting and casting to obtaining finished
sheet products.

It is known that the degree of zonal segregation is determined by a combination of sev-
eral factors, which include the composition of the steel and its metallurgical history [26–28].
Metallurgical heredity in the cast state is characterized by dendritic and zonal segregation,
which is manifested during the crystallization and solidification of steel, due to various
thermo-physical and hydrodynamic conditions for the formation of certain structural zones
of the slab.

Dendritic segregation, the features of which are adequately described by the Gulliver–
Scheil equation, determines the depth of the zonal segregation development. During
crystallization, the size of dendrites in a slab can reach several centimeters, but the lower
the dispersion of the dendritic structure, the smaller the subsequent inhomogeneity over
the cross section of the billet.

Structural heterogeneity was observed in the axial zone of sheet metal is primarily
associated with metallurgical heredity. Inhomogeneity formed during zonal, dendritic,
and intragranular segregation of carbon and other alloying and impurity elements was
also observed after heating for rolling. The processes occurring during thermo-mechanical
treatment have a significant effect on the distribution of elements during polymorphic
transformations [29,30]. This is due to the fact that during precipitation of ferrite at the
final stage of rolling in the temperature range of the two-phase region, a fairly complete
redistribution of these elements occurs during austenite decomposition. Disintegration of
austenite occurs due to the nucleation of ferrite grains at its boundaries. Further growth of
ferrite is accompanied by the displacement of strongly segregating elements deep into the
body of austenite grains due to the increased solubility of these elements in austenite.

To determine the reasons for the effect of the degree of the segregation band develop-
ment on low-temperature impact strength, the analyses were carried out on the fracture
surface of samples of rolled products using a scanning electron microscope, using X-ray
microanalysis methods. The X-ray microanalysis was used to determine the composition of
various phases in the structure: inclusions, raids, foreign bodies. Examples of images of
fracture surfaces obtained on a scanning electron microscope with various types of fractures
are shown in Figure 13.

It has been established that in the case of fracture by transcrystalline cleavage, the
fracture path corresponds to a certain intragranular plane, which is a certain crystallo-
graphic plane. In most BCCs of metals, this fracture plane belongs to the {100} family. It is
obvious that the destruction plane changes its orientation from grain to grain. As a result,
the average grain size can be measured on the fractogram. At a higher magnification, many
details typical of a cleavage can be identified: the appearance of a stream pattern, tongues
on the cleavage facets, centers of cleavage cracks, wide open secondary cracks.

In the fractographic analysis of the fracture surfaces of samples with impact strength
values lower than 100 J/cm2, dark dotted areas were revealed (Figure 14). A certain
elemental composition in these areas permits the conclusion that the destruction surface is
covered with oxide (Al, Si, Ca oxides) and carbon films. A more detailed study of fracture
surfaces at a magnification exceeding 5000 times made it possible to detect the thinnest films
covering the surface and repeating its relief (Figure 15). This is evidence of the presence of
carbon and oxide films in defective samples, which are a metallurgical defect and cause a
drop in low-temperature impact strength.
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Figure 15. A film on the surface of a transcrystalline cleavage.

Based on the results of X-ray microanalysis destruction surface, it can be argued that
the composition of the film includes Al, Si, C, Na, K. The reason for their formation may
be slag-forming mixtures (SFM) used in continuous casting steel, which include these
elements [13,16,17].

In case of violation of the technology of supplying the SFM to the metal mirror in
the mold, as well as its composition and quality, the liquid metal can interact with carbon
of the slag-forming mixture. The bubbles of carbon monoxide formed by the reaction
2C + {O2}→2{CO} remain in the structure of the finished workpiece. When the metal is
cooled to the temperature of about 800 ◦C, the reaction 2{CO}→C + {CO2} actively proceeds
(Figure 16) with carbon emission to the surface of the microcavities.

Metals 2023, 13, x FOR PEER REVIEW 15 of 17 
 

 

G
as

 c
om

po
si

tio
n,

 b
y 

vo
l 

 
 Temperature, °C 

Figure 16. Equilibrium gas composition for the reaction 2{СO} = C + {CO2}. 

Released carbon dioxide is an oxidizing agent with respect to the metal matrix. Ac-
cording to the reactions, Fe + {CO2}→FeO + {CO}, 3Fe + 4{CO2}→Fe3O4 + 4{CO}, there are 
formed iron oxides FeO, Fe3O4. The final equilibrium ratio of the iron-carbon-oxygen 
system phases, taking into account all the reactions, is shown in Figure 17. In addition to 
oxidizing iron, carbon dioxide will also be an oxidizing agent for aluminum, silicon, and 
manganese, which are part of steel and have an increased affinity for oxygen. 

M
as

s 
sh

ar
e 

of
 th

e 
ph

as
e,

 %
 

 
 Temperature, °C 

Figure 17. Equilibrium phase ratio in the system under study. 

To establish the regularities of the microstructure parameters’ effect on 
low-temperature impact strength, the multidimensional regression statistical analysis of 
experimental data was carried out in the work. The purpose of the analysis was to 
evaluate the effect on impact strength of the following microstructural parameters: the 
volume fraction of non-metallic inclusions (VНВ, %), the average diameter of non-metallic 
inclusions (DНВ, µm), the density of non-metallic inclusions (PНВ, 1/mm2), the 
microstructural banding size, the coefficient structural anisotropy, the grain size, the 

Figure 16. Equilibrium gas composition for the reaction 2{CO} = C + {CO2}.



Metals 2023, 13, 1157 15 of 17

Released carbon dioxide is an oxidizing agent with respect to the metal matrix. Ac-
cording to the reactions, Fe + {CO2}→FeO + {CO}, 3Fe + 4{CO2}→Fe3O4 + 4{CO}, there
are formed iron oxides FeO, Fe3O4. The final equilibrium ratio of the iron-carbon-oxygen
system phases, taking into account all the reactions, is shown in Figure 17. In addition to
oxidizing iron, carbon dioxide will also be an oxidizing agent for aluminum, silicon, and
manganese, which are part of steel and have an increased affinity for oxygen.
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To establish the regularities of the microstructure parameters’ effect on low-temperature
impact strength, the multidimensional regression statistical analysis of experimental data
was carried out in the work. The purpose of the analysis was to evaluate the effect on impact
strength of the following microstructural parameters: the volume fraction of non-metallic
inclusions (VHB, %), the average diameter of non-metallic inclusions (DHB, µm), the density
of non-metallic inclusions (PHB, 1/mm2), the microstructural banding size, the coefficient
structural anisotropy, the grain size, the maximum size of lath morphology bainite blocks
Dmax (bainite), µm), the segregation band size.

It has been established that for all the parameters, except for the segregation band
size, the significance level is more than 0.05, which means that it is impossible to reject the
hypothesis of the zero value of the regression equation coefficients for these parameters.
Thus, only the segregation band size has an unambiguous effect on the low-temperature
impact strength.

The highest coefficient of determination was obtained using the quadratic dependence
of impact strength on the size of the segregation band. The resulting regression equation
has the following form (where L is the segregation band size):

KCV−50 = 322.12 − 9.53 ∗ L2, R2 = 0.86.

The value of the coefficient of determination shows that the dependence is quite clear.

4. Conclusions

The results of this study have shown that the technological process implemented in
the casting and rolling complex does not provide the same sheet quality, not only from heat
to heat but also on individual sheets of each heat. The metallurgical quality of sheets of
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one heat, as well as individual samples within one sheet, varies over a wide range from
satisfactory to unacceptably low.

It was established that the main reason for a decreasing low-temperature impact
strength in rolled products is a highly developed segregation band enriched with oxide
and carbon films formed at the stage of the steelmaking process, when the technology of
continuous casting of steel is violated.

The multivariate statistical analysis carried out showed that only the segregation
band size affects the low-temperature impact strength of 10 mm thick rolled products.
The highest coefficient of determination was obtained using the quadratic dependence
of impact strength on the size of the segregation band. The resulting regression equation
looks like this: KCV = 322.12 − 9.53 * L2, R2 = 0.86.

The expanded database collected using the methods used in this work can serve
as a basis for the interpretation and improvement of the end-to-end technology of its
production—from out-of-furnace processing, casting, and crystallization, to the winding of
finished rolled products into rolls.
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