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Abstract: This article is a review of models for predicting ultra-low cycle fatigue life. In the article,
the life prediction models are divided into three types: (1) microscopic ductile fracture models
based on cavity growth and cavity merger; (2) fracture models based on porous plasticity; and
(3) ductile fracture models based on continuum damage mechanics. Furthermore, the article provides
a critical assessment of the current state of research on ultra-low cycle fatigue life prediction models,
highlighting the limitations and challenges faced by each model type. Ultimately, this review aims to
provide a comprehensive overview of the different models available for predicting ultra-low cycle
fatigue life and to guide future research in this important area of materials science and engineering.

Keywords: ultra-low cycle fatigue; failure mechanism; life prediction models; microstructure evolution;
development direction

1. Introduction

In general, fatigue damage in structural steel can be classified as low-cycle fatigue
(Nf = 104~105), high-cycle fatigue (N f = 105~107), and ultra-high-period fatigue (N f > 107) [1].
However, when structures are subjected to large strain loading cycles, failure occurs in
a very short number of cycles (typically between a few and several hundred cycles) [2].
Strong earthquakes last usually for about 1 min, the amplitude-frequency is usually 1 to
3 Hz, and damage to buildings occurs within 100 to 200 cycles [3,4]. As shown in Figure 1,
this fatigue failure under the action of fewer cycles (N f < 100) is called “ultra-low cycle
fatigue (ULCF)”.

The emphasis on ULCF in the field of structural engineering emerged as a response
to the 1994 Northridge earthquake in the United States and the 1995 Kobe earthquake
in Japan. Research conducted following these earthquakes showed that post-earthquake
building damage was caused by fatigue fractures that occurred under fewer cycles and
larger plastic strains, which exhibited different fracture surfaces compared to ordinary
fatigue (as illustrated in Figure 2).

Although research efforts have been made to optimize building structures and develop
new earthquake-resistant methods, there has been relatively less focus on the problem of
ULCF failure in structural steel. However, with the increasing use of steel structures in high-
rise buildings and bridges, addressing the issue of ULCF in steel structures has become
an urgent and critical challenge that requires attention. Further research is necessary to
develop effective strategies for addressing ULCF in structural steel and ensuring the safety
and reliability of steel structures [5].
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Figure 1. Relation of ULCF with other damage mechanisms. Reprinted with permission from Ref. 
[6]. 2014, Elsevier. 
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Figure 2. Ductile fracture of bracing structure in the 1995 Kobe earthquake. (a) bracing structure, (b) 
fracture area. Reprinted with permission from Ref. [7]. 2018, Tongji University Press. 

ULCF typically involves a high magnitude of plastic strain, which can result in sig-
nificant plastic deformation of the material being tested. This is due to the high strain 
amplitudes associated with ULCF, which can cause the material to undergo large defor-
mations with each cycle. In contrast, LCF typically involves a lower magnitude of plastic 
strain than ULCF. While plastic deformation still occurs in LCF, the strain amplitudes are 
generally lower than those associated with ULCF. This means that the plastic deformation 
that occurs in the material during LCF is typically less severe than that observed in ULCF 
[8–11]. The fracture initiation and propagation zones of ordinary fatigue fracture are 
mainly characterized by transgranular cleavage, showing characteristics similar to brittle 
fracture; the fracture of ULCF has a large number of deep dimples, showing characteristics 
of ductile fracture (Figure 3) [12]. It can be seen that there are obvious differences between 
the damage mechanisms of ULCF and ordinary fatigue. The damage mechanisms associ-
ated with ULCF are complex and can involve a combination of plastic deformation, crack-
ing, void formation, and other types of microstructural changes. The specific damage 
mechanism that occurs in a given material depends on a range of factors, including the 
material properties, the loading conditions, and the number of cycles [13]. If the low-cycle 
fatigue analysis method is applied to deal with the problem, it will produce large errors. 

Figure 1. Relation of ULCF with other damage mechanisms. Reprinted with permission from Ref. [6].
2014, Elsevier.
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Figure 2. Ductile fracture of bracing structure in the 1995 Kobe earthquake. (a) bracing structure,
(b) fracture area. Reprinted with permission from Ref. [7]. 2018, Tongji University Press.

ULCF typically involves a high magnitude of plastic strain, which can result in sig-
nificant plastic deformation of the material being tested. This is due to the high strain
amplitudes associated with ULCF, which can cause the material to undergo large defor-
mations with each cycle. In contrast, LCF typically involves a lower magnitude of plastic
strain than ULCF. While plastic deformation still occurs in LCF, the strain amplitudes are
generally lower than those associated with ULCF. This means that the plastic deforma-
tion that occurs in the material during LCF is typically less severe than that observed in
ULCF [8–11]. The fracture initiation and propagation zones of ordinary fatigue fracture are
mainly characterized by transgranular cleavage, showing characteristics similar to brittle
fracture; the fracture of ULCF has a large number of deep dimples, showing character-
istics of ductile fracture (Figure 3) [12]. It can be seen that there are obvious differences
between the damage mechanisms of ULCF and ordinary fatigue. The damage mechanisms
associated with ULCF are complex and can involve a combination of plastic deformation,
cracking, void formation, and other types of microstructural changes. The specific damage
mechanism that occurs in a given material depends on a range of factors, including the
material properties, the loading conditions, and the number of cycles [13]. If the low-cycle
fatigue analysis method is applied to deal with the problem, it will produce large errors.
Similarly, applying the theory of plastic fracture to metal structures under monotonic
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loading cannot obtain satisfactory results. Therefore, further research on the mechanisms
of crack initiation, extension, and fracture is needed.
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Figure 3. The morphology of the ULCF of the Q235 specimen was observed under SEM: (a) monotonic
tensile loading, (b) ultra-low cyclic loading. Reprinted with permission from Ref. [14]. 2020, Elsevier.

Due to the typical ductile fracture characteristics of structural steel in ULCF, the
investigation of ductile fracture mechanisms has become a fundamental aspect of ULCF
research. Over the past half-century, researchers have developed three types of ductile
fracture models, which have emerged gradually: (1) microscopic ductile fracture models
based on cavity growth and cavity merger; (2) fracture models based on porous plasticity;
and (3) ductile fracture models based on continuum damage mechanics. During the process
of ULCF development, many methods for predicting fatigue life have been proposed.
In response to these studies, many experts have applied and improved models, and the
parameters and results of the fitting of the life prediction model have been calibrated
through experiments and simulations.

2. Improved Manson-Coffin Model

The Manson-Coffin model [15,16] is an empirical formula for analyzing the low-cycle
fatigue life of steel under the action of thermal stress. Equation (1) is:

∆εp(2N f )
k = C (1)

The cumulative damage under cyclic loading is calculated according to Miner’s
rule [17]. The equation for the damage index D is Equation (2):

D = ∑ Di = ∑
(

ni
N f i

)
= 1 (2)

The damage index D is equal to zero when there is no damage and is equal to unity
when a ULCF fracture occurs.

In these papers [18–20], the Manson-Coffin empirical law states that the cycle life
before crack initiation decreases as the plastic strain amplitude increases. This relationship
between crack initiation life and plastic strain amplitude has been determined through
cyclic loading tests. However, it has been discovered that the cracks generated under ultra-
low-cycle loading are not fatigue cracks, but rather ductile. As a result, the Coffin-Manson
relationship cannot be directly applied to the ultra-low-cycle fatigue field. These findings
highlight the need for further research to develop more accurate models that can account
for the unique characteristics of ULCF in structural steel.

Xue [21,22] extended the Coffin-Manson law for life prediction under ULCF by intro-
ducing an exponential function. The new expression is Equation (3):

Ψ
(

∆εd
εf

)
=

eλ(
εd
εf
)m − 1

eλ − 1
(3)
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The damage rate is derived from Equation (4) is:

dD =
mλ
(

εd
εf

)(m−1)
e(λ(

εd
εf
)

m
)

eλ − 1
dεp

εf
(4)

where m = 1.37 and λ = 3.85. When D = 1, the material fractures.
It should be noted that in the study mentioned, the author only tested smooth speci-

mens without taking into account the effects of stress triaxiality and load parameters. To
address this limitation, Pereira et al. [23] introduced stress triaxiality and load parameters
and conducted cyclic pure bending tests on full-scale pipes used in industrial pipelines.
Small-scale smooth specimens were also used for support and finite element simulations.
The results obtained from these tests were found to be more accurate in predicting the
behavior of ULCF in structural steel.

Li et al. [12] proposed a modified Coffin-Manson model that incorporates stress
triaxiality and established an empirical equation between model parameters and stress
triaxiality, as shown in Equation (5), based on ULCF test results.

∆εeq(2N f )
k(T) = C(T) (5)

To verify the applicability of the proposed model, Q345qC steel specimens with
different radius notches (as shown in Figure 4) were subjected to four different cyclic
loadings. In ULCF studies, specimens with different notch radii are typically used to
represent different levels of triaxial stress conditions. The gauge length of the extensometer
is 50 mm. Strain-controlled loading is used, and the specimens are tested under four
different cyclic loading conditions. As shown in Figure 5a constant reversal cyclic loading is
applied; (2) one cycle reversal cyclic loading at each strain range and 1.0 εy incremental per
one cycle; (3) three cycles reversal cyclic loading at each strain range and 1.0 εy incremental
per three cycles; (4) relative arbitrary loading form is applied. The segmented calibration
method under different average stress triaxialities was used to determine the relationship
between model parameters and stress triaxialities. The Coffin-Manson model, which takes
into account stress triaxiality, was validated through experimentation and simulation. It
demonstrated a reasonable prediction accuracy of 12.5% across varying stress triaxialities.
This can improve the accuracy of ultra-low-cycle fatigue predictions.
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Although the improved Coffin-Manson model has higher prediction accuracy than
the previous model [12]. The significant difference in fracture mechanisms between low-
cycle fatigue and ULCF still requires further exploration of the improved model. During
the research process at ULCF, various methods and theories have emerged, leading to
continuous innovations over time.

3. Microcosmic Ductility Fracture Model Based on Void Growth

In the study of the material microstructure morphology evolution during ductile
fracture, it is believed that ductile fracture of metals usually involves three key stages [17]:
(1) the formation of void nuclei by interfacial stripping or particle rupture of impurities or
second-phase particles; (2) the continuous growth of void under the combined influence of
equivalent plastic strain and hydrostatic pressure; and (3) the merging of void when they
increase to a critical size, as shown in Figure 6. Based on their studies of the ductile fracture
process of metals, researchers have proposed various ductile fracture models based on void
growth.
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Mcclintock [25,26] proposed a ductile fracture initiation criterion that is based on the
analysis of the growth of cylindrical voids in a plastic deformation matrix under a far-field
plane strain field for the first time.

3.1. Rice-Tracey Model

Rice and Tracey [27] established the relationship between cavity radius and stress
tri-axiality through mechanical analysis of spherical cavities subjected to far-field simple
tensile strain rate fields. They also proposed a model for cavity growth rate and stress
triaxiality correlation, which can be approximated by Equation (6) for Mises materials.

dR
R

= aebTdεeq (6)

where a = 0.283, b = 1.5 are the material constants.
The study has revealed that hydrostatic pressure plays a vital role in the growth of

microvoids, and an increase in stress triaxiality leads to a rapid decrease in the fracture
strain of the material. This groundbreaking discovery highlights the correlation between
void growth rate, stress triaxiality, and strain rate. However, this theory only applies to
the ductile fracture problem of materials with a single void and does not offer criteria
for their merging when multiple voids are present. Devaux addressed this limitation by
replacing the yield stress with von Mises equivalent stress and introducing the renowned
Void Growth Model (VGM) fracture model. In most practical engineering scenarios, stress
triaxiality remains relatively constant.

Mortezagholi et al. [24] verified the above VGM model and applied it to the cyclic
behavior of double-core buckling restrained braces (BRBs). To further determine the crack
initiation time, specimens made of all-steel BRB were used to verify the simulation results.
The criterion for crack initiation is given by Equation (7).

η =
∫

dη =
∫ dε

p
eq

ε f r(T)
= 1 (7)
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As shown in Figure 7, it reflects the cumulative damage to the specimen during the
loading process. According to Equation (7), it can be calculated that when η = 1, the
material undergoes crack initiation. Crack propagation occurs rapidly and eventually leads
to fatigue failure.
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3.2. The Micromechanical Void Growth Model (MM-VGM)

According to [28], the void growth model (VGM) is insufficient for predicting porosity
growth in strain-hardening metals under monotonic loading, and requires optimization
through micromechanical analysis. To predict ULCF life, a new micromechanical cyclic void
growth model (MM-VGM) has been proposed, which takes into account the relative change
in micro-void volume with macroscopic and microscopic state variables. In Figure 8,
the researchers selected a cylindrical region with an embedded spherical void as the
computational unit to investigate the growth of micropores under external stress conditions.
The fracture criterion can be expressed as a damage integral in Equations (8) and (9):

dint(εe f f , Tσ) =
∫ εe f f

0
(1.7 ln(Tσ) + 2.5)dεe f f >

∫ fR

0
d fR = dcr (8)

overlength ≥ l∗ (9)

In finite element analysis, a cylindrical domain with an embedded spherical void is
selected as the computational unit, and the initial geometry of the computational unit is
described by the aspect ratios of the unit’s length and width λc0, the aspect ratio of the void
λv0, and the void volume fraction f0 as Equations (10)–(12):

λc0 =
lz0

lr0
(10)

λv0 =
rz0

rr0
(11)

f0 =
Initial void volume
Intial cell colume

=
2r2

r0rz0

3l2
r0lz0

(12)

In finite element analysis, the initial void volume fraction of the material is set to
f0 = 0.01, and the variation of the void volume fraction is obtained under different triaxial
stresses. As shown in Figure 9, When the initial volume fraction of voids is the same, the
volume fraction of voids increases with increasing triaxial stress. When Tσ ≤ 1, the volume
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fraction of voids varies linearly with macroscopic strain. When Tσ ≥ 1, the volume fraction
of voids increases nonlinearly.
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Figure 10 shows the influence of the initial volume fraction of voids on the volume
fraction of voids ( f ) under three different levels of triaxial stress. It can be seen from
Figure 10 that the volume fractions of voids increases with increasing initial volume
fraction of voids, and this trend becomes more pronounced under high levels of triaxial
stress.

The authors validated the ability of MM-VGM to predict crack initiation. They con-
ducted monotonic tensile tests on specimens with varying notch radii to simulate the strain
at crack initiation under different triaxial stress levels, as illustrated in Figure 10. The
point on the displacement-load curve where the load-carrying capacity suddenly drops is
considered the beginning of crack initiation.

Although the prediction accuracy of the above two models is considerable, the fatigue
fracture of structural steel under ULCF loading cannot be predicted well under strong
earthquakes. Therefore, on this basis, the model is improved and applied to the fatigue
problem in the cyclic loading protocol [29].
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Figure 10. Void volume fraction ( f ) versus macroscopic strain in the z-direction (Ez) for different
initial void volume fractions ( f0) at different stress triaxialities in ASTM A992 steels. Reprinted with
permission from Ref. [28]. 2013, Elsevier.

3.3. Stress-Modified Critical Strain (SMCS) Model

Hancock and Mackenzie [30] first proposed the semi-empirical stress-modified critical
strain (SMCS) model (Equation (13)). SMCS is easier to apply than VGM and only depends
on the plastic strain. It is suitable for scenarios where stress triaxiality remains relatively
constant throughout the loading process [31].

εcritical
p = α exp

(
−1.5

σm

σe

)
(13)

The α representative material parameters can be determined through experiments,
similar to the critical cavity growth index. The calculation method for Equation (14) is as
follows:

α = εcritical
p · exp(−1.5

σm

σe
) (14)

Different bar specimens with different notch radii were used to obtain different stress
triaxialities, with smaller notch radii corresponding to higher stress triaxialities. However,
experimental studies showed that the values obtained from each bar specimen with the
same notch radius were very similar, indicating a low dependence on the critical plastic
strain and stress triaxiality. The influence of characteristic length was also considered. The
mean value of l∗ was the average length of ten plateaus and troughs. The upper bound
was the length of the largest plateau or trough. The lower bound was twice the average
diameter of the dimple. Figure 11 is a fractography.
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Meanwhile, there are similarities in the crack initiation criteria between these two
models. The associated fracture initiation criteria for the VGM and SMCS can be written as
Equations (15) and (16):

VGI > VGIcritical over r > l∗ (15)

εp > εcritical
p over r > l∗ (16)

When the above conditions are met, the material will experience crack initiation.
Myers et al. [33] studied the parameter size effect and empirical identification method

of the stress-modified critical strain (SMCS) model. Through repeated testing on three
notched specimen types made of two different materials, it was found that the toughness
parameters were relatively insensitive to calibration specimen size. Yin et al. [34] conducted
experiments on the base metal, heat-affected zone, and weld metal of Q460C HSS, and
calibrated the toughness parameters of VGM, SMCS, and CVGM (Cyclic Void Growth
Model) by fitting the results to the experiments. The specimens were taken from the base
metal (BM), weld metal, and heat-affected zone (HAZ) of the high-strength steel welded
plate, respectively. The specimens taken from the weld metal were obtained from both the
rolling direction (WT) and the perpendicular rolling direction (WL). Chang and Luo [35,36]
also calibrated the fracture toughness parameters of S220503 duplex stainless steel under
VGM, SMCS, and CVGM (Table 1).

Table 1. Micromechanical model parameters. Reprinted with permission from Ref. [33]. 2010,
American Society of Civil Engineers.

Steel E
Gpa

σy
(MPa)

σu
(MPa)

σu
σy

Z/% A/% η λCVGM l*Lower (mm) l* Mean
(mm)

l* Upper
(mm)

S220503 226 531.81 754.72 1.42 67.19 43.29 2.93 0.33 0.01 0.136 0.214

Yin [32] also conducted similar research on S30408 duplex stainless steel under VGM,
SMCS, and CVGM (Table 2). Zhang [37] also conducted similar research.

Table 2. Micromechanical model parameters. Reprinted with permission from Ref. [32]. 2019,
Elsevier.

Steel E0
GPa

σy
MPa

σu
MPa

σu
σy

Z/% A/% η λCVGM

l*

Lower
(mm)

l*

Mean
(mm)

l*

Upper
(mm)

S30408 249 273.85 710.38 2.59 76.02 62.35 3.314 0.29 0.01 0.220 0.780

3.4. Cyclic Void Growth Model (CVGM)

The VGM only covers the ductile fracture of metals under monotonic loading and
neglects the ULCF problem caused by cyclic loading. Fracture morphology analysis reveals
that ductile fracture characteristics are weakened under cyclic loads, making pure ductile
fracture theory unsuitable for predicting ULCF problems. As a result, researchers have
proposed cyclic void growth models based on this observation.

Kanvinde et al. [38–40] considered the influence of tensile and compressive cycles on
void growth and proposed a cyclic void growth model (CVGM). In the CVGM, the void
radius during cyclic loading can be expressed by the following Equation (17):

ln (R/R0)cyclic = ∑
tensile cycles

C1

∫ ε2

ε1

exp(|1.5T|)dεp − ∑
compressive cycles

C2

∫ ε2

ε1

exp(|1.5T|)dεp (17)

where T > 0 is the tensile cycle, and T < 0 is the compressive cycle; the first term on
the right side of the equation represents the sum of the void growth at positive triaxiality,
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and the second term represents the amount of void contraction due to plastic strain at
negative triaxiality; C1 and C2 represent the growth rate and contraction rate of plastic
strain, respectively. Assuming C1 = C2, the equation can be simplified as Equation (18):

ln (R/R0)cyclic = C( ∑
tensile cycles

∫ ε2

ε1

exp(|1.5T|)dεP − ∑
compressive cycles

∫ ε2

ε1

exp(|1.5T|)dεP) (18)

According to the void growth exponent formula in VGM, the void growth index under
cyclic loading is Equation (19):

ln (R/R0)cyclic = ∑
tensile cycles

∫ ε2

ε1

exp(|1.5T|)dεP − ∑
compressive cycles

∫ ε2

ε1

exp(|1.5T|)dεP (19)

In the context of ULCF loading, the fracture process of the material involves the
formation, growth, and coalescence of voids. The CVGM captures this fracture mechanism
by modeling changes in plastic strain and triaxial stress. The life-triaxial stress relationships
have been simulated using specimens with different notch radii. The results indicate
that the material can withstand a greater number of cycles at larger notch radii, and the
computational results were satisfactory. Compared to the previous VGM model, the CVGM
results are more convincing. However, at the time the model was proposed, there was no
explanation as to whether it could be applied to other scenarios, such as welded metals
and large components. Further research is therefore required to determine the scope of its
application in these contexts.

Song [41] used the CVGM to predict the ULCF life of corroded steel bridge piers. By
analyzing parameters for different corrosion morphologies, it was revealed that fatigue
cracks are typically initiated at the corner of fillet welds. Therefore, designers should aim
to minimize the presence of sharp corners. In a similar study, Wang et al. [42] utilized an
Abaqus subroutine based on the CVGM to investigate the damage process of steel frame
beam-column joints under ULCF loading.

To improve the prediction accuracy of the CVGM, Adasooriya et al. [43] proposed a
simple method for predicting the failure of steel structures under the interaction of fracture
and fatigue based on the CVGM, with the criterion being Equation (20):

(ε
cyclic
P )critical = (εmonotonic

P )critical exp(−λεaccumulated
P ) (20)

ε
cyclic
P > (ε

cyclic
P )critical (21)

When the cyclic plastic strain exceeds its critical value (Equation (21)), the material
undergoes fracture behavior. Compared to the original CVGM, this model is easier to
obtain initial model parameters that satisfy the fracture criterion. However, there are
limitations to the simplified model, as it only applies to models where the triaxial stress
remains constant during the loading process. The primary advantage of this approach
is that the characteristic parameters of the hardening model are few, and the approach is
simple.

Qiu [44] notes that current research lacks a systematic analysis of the ULCF perfor-
mance of high-strength steel T-joints. Therefore, the Chaboche mixed hardening material
parameters and fracture toughness parameters of the CVGM fracture prediction model
were calibrated for various Q460 steel T-joints.

3.5. Degraded Significant Plastic Strain (DSPS) Model

Based on CVGM, the DSPS model [45] was obtained by considering the stress triaxiality
as a constant in cyclic loading, and its micro-mechanical fracture criterion is Equation (22):

ε
p
eq = εt − εc > (ε

p
eq)critical (22)
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(ε
p
eq)critical = exp(−λDSPSεp) · εcritical

p (23)

Similar to SMCS, parameter calibration for DSPS is relatively simple, but it only
applies to situations where stress triaxiality does not significantly change. Liao et al. [46]
calibrated the parameters of commonly used Q345 steel based on micro-mechanical fracture
models, including the parameters of the monotonic models SMCS and VGM, as well as the
parameters of the cyclic models DSPS and CVGM. After calibration, the micro-mechanical
models SMCS, VGM, DSPS, and CVGM can be used to predict the fracture initiation of
Q345 steel welding joints under both monotonic and cyclic loadings, respectively.

Yin et al. [47] calibrated the ULCF load of cast G20Mn5QT steel based on CVGM and
DSPS (Table 3). They tested double-notch plate specimens of the cast steel under various
loads to verify the accuracy of the two models.

Table 3. The model parameter calibration results for G20Mn5QT. Reprinted with permission from
Ref. [47]. 2020, Elsevier Ltd.

Steel E (GPa) σy (MPa) σu
(MPa)

σu
σy

α η λDSPS λCVGM

l*

Lower
(mm)

l*

Mean
(mm)

l*

Upper
(mm)

G20Mn5QT 214 427 582 1.36 1.05 0.99 0.49 0.41 - 0.202 -

3.6. The Micromechanical Cyclic Void Growth Model (MM-CVGM)

Kiran et al. [29] investigated the influence of stress triaxiality and load parameters on
void growth using the CVGM and proposed the MM-CVGM model to predict the ultra-low
cycle life of ASTM A992 steel, with the damage formula expressed as Equation (24):

D = ∑
T+

σ

∫
a1|Tσ|

b1
dε

p
m −∑

T−σ

∫
a2|Tσ|

b2
dε

p
m (24)

where a1 = 5.45, b1 = 1.98, a2 = 4.52 and b2 = 1.93.
In Kiran et al.’s [28] study, a computational unit with an embedded spherical void

was used to represent the microstructure of ASTM A992 steel in finite element analysis,
assuming an initial void volume fraction of 0.01. Reduced integration and hourglass control
were employed for discretized calculations [48], and the loading regime was cyclic loading.
The results were fitted with experimental data, demonstrating the effectiveness of the
MM-CVGM model in predicting the material’s ultra-low cycle life. However, the model
has limitations, such as only applying to high triaxial stress states and not considering the
influence of the load parameter. Additionally, some of the conclusions in the article were
verified under certain parameter assumptions. Therefore, further investigation is needed to
explore the applicability of this model in other scenarios.

3.7. Lode Parameter Cyclic Void Growth Model (LCVGM)

In the ULCF prediction model mentioned earlier, the effect of triaxial stress and the
load parameter on void growth was not taken into account. However, Huang et al. [49]
considered the influence of shear stress, introduced the lode parameter, and proposed an
enhanced cyclic void growth model (LCVGM) that takes into account shear effects. The
model is expressed as Equation (25):

ICVG = ∑
tensile

∫ ε2
ε1

exp(1.5|T|) 1
β+(1−β)θ−2 dε−P

− ∑
compressive

∫ ε2
ε1

exp(1.5|T|) 1
β+(1−β)θ−2 dε−P

= ηM exp(−λε−P
com)

(25)
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The load parameter range is denoted by the LCVGM equation above, while θ = 1
represents the axisymmetric stress state. In this case, the LCVGM can be simplified to the
CVGM, allowing the parameters calibrated with notched round bars for the CVGM to be
accurately applied to the LCVGM.

The LCVGM parameters for the base metal and weld metal were determined based on
experimental results from pure shear specimens. The ULCF fracture behavior of SHS bars
in an X-joint with CHS supports was experimentally tested and simulated. Comparing the
validation results of LCVGM and CVGM, it was found that CVGM often overestimates the
actual ULCF life of the model. The proposed LCVGM, which considers the shear effect,
accurately and consistently predicts the ULCF fracture mode of the X-joint in line with
experimental results. Figure 12 depicts a schematic diagram of the experimental loading
setup.
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3.8. Improved Cyclic Void Growth Model (ICVGM)

Li et al. [50] proposed an improved model, ICVGM, which is a combination of the
CVGM and DSPS models. The ICVGM takes into account the relationship between the
cyclic damage degradation parameter and the stress triaxiality. To establish this relationship,
an empirical formula is employed, linking the cyclic damage degradation parameter to the
stress triaxiality as expressed in Equation (26):{

λCVGM = f (T)
λDSPS = g(T)

(26)

where T(εp) denotes the loading history of stress triaxiality. The specific function forms of
f (T) and g(T) are determined by the subsequent parameter calibration. To validate the
prediction accuracy of the newly proposed ICVGM model, triaxial stresses ranging from
0.45 to 0.9 were employed. The original model parameters were also calibrated, and the
difference between the experimentally observed crack initiation and the predicted model
was compared. The results showed that the accuracy of the ICVGM model, which takes
into account the dependence of cyclic damage parameters on triaxial stress, is higher than
that of the original model.

In subsequent studies, to address the issue of high prediction costs caused by a large
number of model parameters, Li et al. [51] proposed a single-parameter model to predict the
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ULCF damage of structural steel based on the concepts of ductile damage under monotonic
tension and cyclic damage under cyclic loading. The model parameters were calibrated
under monotonic tension. The ductile damage under tensile load can be expressed as
shown in Equation (27):

Dductile =
∫ εc

0

1
ε f (T)

dε
p
eq (27)

The cyclic damage under cyclic loading can be evaluated using the following damage
index as Equation (28):

Dcyclic =


∫ εc

0

(
εpt

ε f (T)

)
dε

p
eq

ε f (T)
T ≥ −1/3

0 T < −1/3
(28)

In this study, no damage accumulates when stress triaxiality is below 1
3 .

In Equation (29):

ε f (T) = In
R f

R0
/(C. exp(1.5T)) = α · exp(−1.5T) (29)

The ductile fracture of material occurs when plastic strain reaches plastic fracture
strain. The expression for the new damage model is Equation (30):

DULCF = Dductile + Dcyclic (30)

During the deduction process, the only unknown in the model is the α material
parameter that determines the critical plastic fracture strain. When the plastic strain reaches
the plastic fracture strain, the material undergoes ductile fracture.

3.9. The Summary of This Section

The proposed prediction model offers theoretical support for predicting the life of
materials under cyclic loading. However, material void growth theory is a complex process,
and it may be challenging to obtain practical results solely relying on theoretical models.
Therefore, when developing theoretical models, it is essential to pay more attention to
the consistency between theory and practice. In Table 4, a summary of the life prediction
models for this section is provided.

Table 4. Microcosmic ductility fracture model based on void growth.

No. Name Material Loading Protocol Reference

1 Coffin-Manson model Aluminum alloy 7075-T6 C-PTF
CTF [15,16]

2 XUE Model 2024-T351 aluminum alloy CTF [21,22]
3 VGM SS400 steel (BRB) Monotonic loading [24]
4 MM-VGM ASTM A992 Steel Monotonic loading [28]

5 SMCS Three rolled, low alloy, quenched, and
tempered sheets of steel Monotonic loading [30]

6 CVGM

AS72-Grade 50
A572-Grade 50

AS14-Grade 110
HPS70W

JIS-SN490B Grade 50
JIS-SM490YBTMC-5L Grade 50

JIS-SN490B Grade 50

C-PTF
CTF [38–40]
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Table 4. Cont.

No. Name Material Loading Protocol Reference

7 DSPS

AS72-Grade 50
A572-Grade 50

AS14-Grade 110
HPS70W

JIS-SN490B Grade 50
JIS-SM490YBTMC-5L Grade 50

JIS-SN490B Grade 50

C-PTF
CTF [45]

8 MM-CVGM ASTM A992 steel CTF [29]
9 L-CVGM X steel tubular joints CTF [49]

10 ICVGM Q345qC C-PTF
CTF [50]

CTF = cycle to failure. The specimen is cycled between the displacement limits (in mm) described in the
parentheses. C-PTF = cycle and pull to failure. The specimen is cycled between displacement limits (or a series of
displacement limits) and then pulled in tension to failure.

4. Fracture Model Based on Porous Plasticity
4.1. Gurson-Tvergaard-Needleman (GTN) Model

Gurson et al. [52] were the first to propose a yield function constitutive model for
ductile metals based on material spherical voids. This model considers the influence of
hydrostatic pressure, void volume fraction, and equivalent stress on the yield function, and
couples material plasticity and ductile fracture. Rudnicki [53] and Yamamoto [54] consid-
ered local shear factors and obtained optimized models. Subsequently, Tvergaard [55–57]
and Needleman et al. [58] modified the Gurson model parameters, and the new model is
called the Gurson-Tvergaard-Needleman (GTN) model, which is widely used in predict-
ing the failure analysis of metal materials. The expression for the yielding function is as
follows [59]:

φ =
3σ′ijσ

′
ij

2σ2 + 2q1 f ∗ cosh
(

3σm

2σ

)
−
[
1 + (q1 f ∗)2

]
= 0 (31)

f ∗ =

{
f for f ≤ fc

fc + K( f − fc) for f > fc
(32)

where fc is the critical value at which void coalescence occurs. The parameter defines the
slope of the sudden drop of the load on the load-diameter reduction diagram and is often
referred to as the accelerating factor. For f ∗ = 0, the plastic potential (Equation (32)) is
identical to that of Von Mises.

4.2. The Application and Development of the GNT Model

The GNT model optimized by Mear et al. [60] can not only predict uniaxial loading but
also cyclic loading by considering isotropy and kinematic hardening. Leblond et al. [61] in-
troduced kinematic hardening into porous plasticity and proposed the GTN-LPD (Leblond,
Perrin, and Devaux) model.

Huang et al. [62] conducted a study on beam-column welded joints (Figure 13) and
used the GNT model to verify the prediction of node-bearing capacity and fracture load
under both monotonic and cyclic loading conditions. The displacement-load curves for both
the experiment and simulation shown in Figure 14 exhibit consistent trends, indicating
agreement between the results. The study involved calibrating the hardening model
parameters and micro-mechanical damage model parameters for the base metal, weld metal,
and welding zone of a Q345 beam-column welded joint through monotonic stretching
experiments (as shown in Table 5). Based on the experimental data, simulation analysis was
conducted, and the results were found to be highly consistent with previous experimental
findings. This confirms the reliability of the micro-mechanical damage model for predicting
the fatigue life of beam-column welded joints under both cyclic and monotonic loading.
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Figure 14. Comparison of FEA with test results for load versus displacement relations of welded
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Table 5. Parameters of micromechanics damage constitutive model. Reprinted with permission from
Ref. [62]. 2013, Elsevier.

σ0/MPa σm/MPa b C1/MPa b1 C2/MPa b2 f0 fc fF fN εN sN q1 q2

346
150 8 7000

80
660 0.8

0.0050
0.25 0.28 0.04 0.3 0.1 1.5 0.71402 300 0.0100

366 110 0.0085

Wang et al. [63] calibrated the initial parameters of Q690 high-strength steel and
welded joints based on the GTN model using an exhaustive search method and particle
swarm algorithm and achieved good simulation results. Oh [64] simulated the ductile
fracture process of STPT410 carbon steel pipes under pure bending using the GTN model
and incorporated the size effect of finite elements into the GTN model. The study also
considered the influence of crack tip mesh design on determining GTN model parameters.
Li [65] qualitatively described the influence of element size on damage parameters for
DP600 cold-rolled high-strength steel plates under different stress conditions, based on the
GTN damage model incorporating strain gradient plasticity and shear correction, combined
with experimental and simulation results. Qiang et al. [66] calibrated the parameters of the
GTN model (as shown in Table 6) through uniaxial tensile and single-edge notched bending
tests on X80 pipeline base metal, weld metal, and heat-affected zone. The calibrated GTN
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model was then used to analyze the behavior of ductile crack propagation in single-edge
notched tension tests at different locations of the weld.

Table 6. GTN model parameters and N for different X80 weld joint locations. Reprinted with
permission from Ref. [66]. 2019, Elsevier.

Locations q1 q2 q3 εN SN f0 fc fF fN N

WM 1.5 1 2.25 0.3 0.1 0.001 0.2 0.2 1.54 × 104 0.06
CGHAZ 1.5 1 2.25 0.3 0.1 0.0006 0.2 0.2 4.77 × 105 0.11
FGHAZ 1.5 1 2.25 0.3 0.1 0.002 0.2 0.2 4.77 × 105 0.10
ICHAZ 1.5 1 2.25 0.3 0.1 0.0025 0.2 0.2 4.77 × 105 0.09

BM 1.5 1 2.25 0.3 0.1 0.00025 0.2 0.2 4.77 × 105 0.06

4.3. The Summary of This Section

The GTN model can characterize the nucleation, growth, and merging of voids, but
this model has more than 10 parameters to determine a single material, which is difficult in
practical applications [67,68]. Coupled models are more reasonable considering the material
degradation caused by pore growth and agglomeration, which can more accurately predict
the ductile fracture of materials [69]. However, considering the complexity of the coupled
micromechanical fracture model, non-coupled micromechanical fracture models are still
the basic models that provide simple and convenient guidelines for predicting ductile
fracture in engineering practice [70].

5. Fracture Model Based on Micromechanical Damage

Fracture models at the fine level of the material target scales in the range of 10−2~10−1 mm,
while the scales for metals are in the range of 102~103 mm. Continuous damage mechanics
provides an alternative approach to modeling ductile fractures at the macroscopic level.
In 1958, Kachanov first proposed the macroscopic damage index for predicting creep
fracture [71]. Later, Chaboche [72] and Lemaitre [73] established constitutive models of
continuum damage mechanics within the framework of thermodynamics.

5.1. Barcelona Plastic Damage Model

The Barcelona plastic damage model, proposed by Lubliner et al. [74] in 1989, is a
damage model based on the principle of energy dissipation. It can be used to predict the
ULCF of concrete under irregular cyclic loading. The influence of elastic-plastic stiffness
degradation was considered. By simple post-processing of the finite element model, the
starting time and quantity of cracks can be obtained, and the effectiveness of the model
can be validated. However, the model was originally proposed for concrete materials, and
further verification is needed to predict the ULCF life of structural steel.

Martinez et al. [75] proposed the use of the Barcelona damage model and a specially
designed isotropic hardening law to simulate steel and analyze ULCF problems, predicting
the material’s life by considering the fracture energy dissipation of the material. The model
assumes that damage begins when the plastic law reaches the softening zone, and the
material completely fails when all the fracture energy is dissipated. Another advantage of
this model is its considerable prediction accuracy for irregular cyclic loading. Figure 15
shows Response of the model after ten seismic-type cycles.

Further verification is required to determine whether the Barcelona model has a
significant predictive effect in practical engineering applications. Due to the complexity of
the theory and the parameters of the model, its application in predicting ULCF life is not
common in subsequent research.
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5.2. The Damage Model Based on CVGM

The researchers utilized the void growth process in CVGM to represent the accumu-
lation of damage. By integrating the void growth index with the concept of damage, a
crack initiation criterion was obtained that better reflects engineering reality. The degree of
material damage can be used to better reflect the level of fatigue.

Li et al. [76] proposed a model parameter calibration method that separately cali-
brated the damage degradation parameters under high-stress triaxiality and medium-stress
triaxiality, as shown in Equation (33):

VGIcrit
cyclic = VGIcrit

mon exp(−λεaccu
P ) (33)

f = VGIcrit
cyclic/VGIcrit

mon = exp(−λaccu
P ) (34)

where f is the material damage rate. When VGIcrit
cyclic exceeds VGIcyclic, the material under-

goes ultra-low-period fatigue damage. To quantify the degree of damage from ultra-low-
period fatigue, the damage index is defined as Equation (35): D = max{Dn−1, Dth}

Dth = 1−
(VGIcrit

cyclic−VGIcyclic)

VGIcrit
mon

(35)

During the loading process, if Dth exceeds the previous step, it is updated Dth, other-
wise, it remains unchanged. When D reaches 1, it is considered that ULCF has occurred.
The parameter calibration method proposed by this model reduces the randomness of ex-
perimental results and the range of triaxial stress. The curve shown in Figure 16 represents
the cumulative process of damage during cyclic loading. The increasing part of the curve
represents the damage caused by the growth of voids due to loading, while the horizontal
part of the curve represents the unloading process during the latter half of the cycle, with
zero damage. The figure presents the results of two different specimens with different
notch radii: Figure 16a,c have a notch radius of 7.5 mm, while Figure 16b,d have a notch
radius of 15 mm. The different radii represent distinct levels of triaxial stress.
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Xiang et al. [77] proposed a new ULCF model based on the CVGM that highlights
how the model may underestimate the number of cycles to failure. The authors divided
metal hardening into isotropic hardening (IH) and kinematic hardening (KH). Figure 17
shows the stress triaxiality and equivalent plastic strain curves, with the IH and KH strain
increments decomposed for positive and negative stress triaxialities. Under the same plastic
strain conditions, IH often causes more damage than KH. Assuming that IH and KH have
different damage accumulation rates in the same stage, the expression for the damage
increment is given by Equation (36):

dDULCF = dDIH + dDKH (36)

Assuming the CVGM damage accumulation rule holds, i.e.,

dDIH =

{
dε

p
eq

χcr ·e−1.5T , T ≥ − 1
3

0, T < − 1
3

(37)

And have a linear relationship:

dDKH =

{
ηc

dε
p
eq

χcr ·e−1.5T , T ≥ − 1
3

0, T < − 1
3

(38)

The numerical values of the two damage indicators and the equivalent plastic strain
curve are shown in Figure 18. The slope of the curve is the same at the beginning of the
first and third half cycles. According to the definition in Figure 17, the damage is related
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to IH damage. The curve also includes many flat plateaus, which correspond to the stress
state at T = −1/3. When the damage accumulates to 1, the material undergoes a fracture.
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The damage modulus of the material for Equation (41) is as follows: 

Figure 18. Damage accumulation histories for different fracture models. Reprinted with permission
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5.3. Continuous Damage Model (CDM)

The CDM is a method for predicting damage using the ULCF approach. By introducing
a damage variable, this model can directly describe the macroscopic mechanical behavior
and damage evolution process of materials [78]. The expression for CDM in the ULCF
direction is Equations (39) and (40):

dD = α
(Dcr − D0)

1/α

ln(ε f /εth)
f (

σm

σeq
)(Dcr − D)(α−1)α dεp+

εp (39)
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
dεp+ = dεp · H(T)

H(T) =

{
0 T < 0
1 T ≥ 0

(40)

The damage modulus of the material for Equation (41) is as follows:

E = E0[1− D · H(T)] (41)

The researchers calibrated the parameters through monotonic tensile tests by using
the deformation corresponding to the sudden drop point of the displacement-load curve as
the monotonic plastic strain threshold (as shown in Figure 19). In finite element analysis,
the stress triaxiality T and accumulated plastic strain at the notch bottom were recorded
and used to calibrate the model through Equation (37) when the elongation length of the
extensometer reached the experimental plastic strain threshold.
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Figure 19. Load-deformation curves of notched round bar specimens at the gauge segment with
notch radii. Reprinted from Ref. [78].

This method is not only suitable for analyzing toughness, but also for modeling
brittle fracture damage behavior [79]. Compared to CVGM, the CDM model is capable of
predicting the relationship between fatigue and fatigue life, fracture life, the post-fracture
path, and the number of cycles for initial damage. Additionally, the parameter calibration
for the CDM model is simple, and the prediction error is small. The finite element size
is not limited by the characteristic length, making the calculation efficiency high [80].
Furthermore, the CDM model can represent the evolution law of damage and the post-
fracture path [81].

5.4. Stress-Weighted Ductile Fracture Model (SWDFM)

The SWDFM [82,83] is expressed as follows:

D =
∫

dD = CSWDFM ×
∫ εp

0
[2× exp(1.3T)− exp(−1.3T)] · exp[kSWDFM(|X| − 1)] · dεp ≥ 1 (42)

Zhu et al. [84] applied the stress-weighted ductile fracture model (SWDFM) to predict
ULCF fracture of buckling steel brackets and investigated the effectiveness of the model in
predicting fracture of large structural components. The experimental results were compared
with the model predictions, and the results are shown in Figure 20. The fracture point is
indicated by the star-marker in Figure 20, as per Equation (42).
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Figure 20. Force-deformation comparisons between experiments and ABAQUS simulations for the
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Di et al. [85] proposed a continuous medium damage mechanics model, Equation (43):

dinc =

{
d f ·

√
‖ 2

3 εp‖ − dp, T ≥ 0
0, T< 0

(43)

The model considers the influence of reverse loading on damage and applies the
concept of effective strain to only calculate the cumulative damage during the tensile stage.

5.5. Liu Model [86]

Liu proposed formulas for predicting crack initiation based on the ductility ratio and
equivalent plastic strain. The definition of ductility ratio is Equation (44):

µpi =

∣∣∣δi − Pi
Ke

∣∣∣
δy0

(44)

According to the Mason-Coffin rule, the crack initiation life (loading half cycles N f i)
can be expressed in terms of the ductility ratio in Equation (45) as follows:

N f i = Cd·(µpi)
kd (45)

However, Equation (37) applies to cases under constant loading amplitudes. To apply
to the ones under random loading amplitudes, a damage index D can be defined according
to the linear damage accumulation rule, i.e., Miner’s rule, as Equation (46):

∆Di =
1

N f i
(46)

where ∆Di is the incremental damage during the i − th loading half cycle. Failure is
postulated to occur when D reaches 1.

Previous methods for evaluating ULCF were based on the plastic strain method of
the material, which resulted in high calculation costs. To address this issue, Xie et al. [87]
proposed a new damage index based on the deformation process of the material. For
structures with a variable deformation amplitude, the cumulative damage index D is
calculated using Equation (47):

D =
n

∑
i = 1

1
N f ,i

=
1

2k1

n

∑
i = 1

(∆δi)
−k2 (47)
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The cumulative damage index D is equal to zero when there is no damage, and it is
assumed that structural failure would occur if D = 1 is satisfied.

5.6. Cyclic Multiaxial Fracture Strain Energy (CMFSE)

The CMFCSE model was developed based on the Multi-Axial Fatigue Strain Energy
(MFSE) model with the stress correction proposed by Nam. In [88], to account for the
expansion and contraction of micro-voids during cyclic loading, the accumulated effective
equivalent plastic strain energy is defined using Equation (48):

Weff
p,cyc = ∑ sign(T)∆Wp,cyc = ∑ sign(T)(σ− α) : ∆εpl (48)

The signed term operates as a sign (T) = 1 when T ≥ 0 and sign (T) = −1 when
T < 0. The εpl denotes the plastic strain tensor, σ and denotes the stress tensor and back
stress tensor.

5.7. Cyclic Lode Parameter Enhanced Continuum Damage Mechanics (CLCDM) Model

In [13], the author proposed a new damage-based life prediction model, the expression
of which is given in Equation (49):

dD = α
(Dcr − D0)

1/α

ln(ε f /εth)
f (

σm

σe
)(Dcr − D)1−1/α 1

β + (1− β)θ
2

dε
p+
c

εp (49)

5.8. The Summary of this Section

In Table 7, a summary of the life prediction models for this section is provided.

Table 7. Fracture model based on micromechanical damage.

No. Name Material/Application Loading Protocol Reference

1 Barcelona Plastic
Damage Model Concrete Monotonic loading [74]

2
Improve Barcelona

Plastic Damage
Model

X52 steel ULCF loading [75]

3 CDM Q345qC ULCF loading [78]
4 Liu Model welded T-joints CTF [86]

5 CMFSE Mn-Si steel C-PTF
CTF [88]

6 CLCDM Q235 & Q690 Monotonic loading
ULCF loading [13]

6. Summary

In most cases, ULCF causes the extension of ductile cracks inside the steel, whose
mechanism is very different from plain fatigue, ultimately leading to material failure. In
recent years, a number of studies have been carried out by many research institutions
to better understand this degradation mechanism. Research has focused on the accurate
measurement of plastic strain, the development and validation of effective predictive
models, and the study of the microstructural evolution of damage mechanisms.

From the current research results, the study of ultra-low circumference fatigue has
made great progress in revealing the nature and mechanism of fatigue damage to structural
materials. It has also provided important theoretical support for engineering practice. In
this paper, ULCF life prediction models are classified into three types: microcosmic ductility
fracture model based on void growth; fracture model based on porous plasticity; fracture
model based on micromechanical damage. The development history of each type of model
is shown in Figure 21. The conclusions are as follows:
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(1) VGM has the disadvantage of only describing void growth without providing a
ductile fracture criterion. The cyclic void growth model (CVGM) extends the theory
to cyclic loading and includes mechanisms such as void nucleation, void growth, void
coalescence, and fracture. This is currently the recognized theory, and improvements
have been made to the model to consider the effects of stress triaxiality and load
parameters.

(2) GNT shows higher prediction accuracy when void parameters are considered in
the application process. However, the model has 10 unknown parameters, making
parameter calibration difficult.

(3) The models introduce damage as a criterion for material fracture, which is more in
line with engineering reality. The degree of material damage can better reflect changes
in fatigue life. The model has high prediction accuracy, and the accumulation process
of damage can better reflect the internal fatigue condition of the material. However,
multiple factors, such as stress state and load history, also need to be considered.
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Future research priorities of the ULCF should include the improvement of measure-
ment techniques and standards, the study of the fatigue failure mechanism and its mi-
crostructural evolution characteristics, and the discovery and development of more efficient
and reliable material and structural design methods. ULCF research has made significant
progress in understanding fatigue damage mechanisms and providing theoretical sup-
port for engineering practice. Future research should focus on improving measurement
techniques and standards, investigating failure mechanisms and microstructure evolution
characteristics, and developing more efficient material and structural design methods.
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Nomenclature

∆εp plastic strain range
N f number of half cycles to fail
k material-dependent constants
C material-dependent constants
ni the number of half cycles
N f i fatigue life in the ith plastic strain range
∆εeq multiaxial plastic strain range
T stress triaxiality
C(T),k(T) C(T) and k(T) are determined by the parameter calibration

εd εd =
√

2
3

√
ε2

1 + ε2
2 + ε2

3(ε1, ε2, ε3 are the three principal components of the
plastic strain tensor)

εf fracture strain
R cavity radius
εeq equivalent strain
dε

p
eq equivalent plastic strain increment

ε f r(T) the functions related to the triaxiality of stress define the material properties
dint(εe f f , Tσ) damage integral
dcr critical damage index
l∗ characteristic length
λc0 computational cell aspect ratio
λv0 void aspect ratio
f0 initial void volume fraction
fR micromechanical void growth indicator
Tσ macroscopic stress triaxiality
lz0 initial length of the computational cell
lr0 initial radius of the computational cell
rr0 initial semi axial length of void in r-direction
rz0 initial semi axial length of void in z-direction
∑rr macroscopic stress in r direction
∑zz macroscopic stress in z direction
R0 initial void size
σe effective stress
σm actual yield stress of the matrix
εcritical

p critical value of cumulative equivalent plastic strain
VGIcritical critical void growth index
(ε

cyclic
P )critical critical value of cumulative equivalent plastic strain under cyclic loading

(εmonotonic
P )critical critical value of cumulative equivalent plastic strain under monotonic loading

VGIcrit
cyclic void growth rate under monotonic loading

E elasticity modulus
σy yield stress
σu tensile stress
η toughness parameter
λCVGM damage degraded parameter of the material under cyclic loading
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f material damage rate
n number of incremental steps
Dth damage index value calculated
D total damage
DIH ,DKH the associated damage of IH and KH
ε

p
m the macroscopic strain

β It reflects the effect of the Lode parameter on the cyclic cavity growth index
θ range of values of the Load parameter
T = 1

ε f

∫ ε f
0

∣∣T(εp)
∣∣dεp average stress triaxiality

ε f plastic fracture strain
εpt transient plastic strain
ε f t/ε f (T) damage rate of material
T(εp) loading history of stress triaxiality
R f critical void radius
σ actual yield stress of the matrix of the material
σ′ij stress deviator
f ∗ function of the void volume fraction
fc critical value at which void coalescence occurs
fN volume fraction of nucleated voids
fF maximum volume fraction of microvoids
εN ,sN the mean equivalent plastic strain and standard deviation at void

nucleation, respectively
q1, q2, q3 damage correction factor for interaction between adjacent microvoids
εp+ plastic tensile strain
H(T) damage state
λDSPS material degradation parameter for DSPS model
d0 initial diameter
d f final diameter
Cd,kd material constants
εpl plastic strain tensor
εth plastic strain threshold under uniaxial stress
Dcr critical damage variable
E0 elastic modulus before damage
E elastic modulus after damage
H(T) damage state
CSWDFM,kSWDFM material constants
dinc Damage increment
d f Parameter for damage evolution
δi plastic displacement of the i-th loading half cycle
δy0 initial yield displacement of the first loading half cycle
∆Di incremental damage
∆δi constant amplitude loads of deformation range
∆Wp,cyc incremental equivalent plastic strain energy
Weff

p,cyc accumulated effective equivalent plastic strain energy
σ,α stress tensor and back stress tensor, respectively
ηc material constant
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