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Abstract: The modeling of austenite grain growth of 25Cr2Ni4MoV steel for super-large nuclear-
power rotors was investigated during the common heating process including the continuous heating
and isothermal heating process. Based on the isothermal grain growth model considering the steady-
state grain size and the rule of additivity, a new grain growth model during the continuous heating
process was established. The comparison between experimental and predicted results indicates
the model has good predictability. To describe the anisotropic and isotropic grain growth during
the different isothermal heating stages of the super-large nuclear-power rotor, a cellular automaton
model considering anisotropic grain boundary energy for grain growth of 25Cr2Ni4MoV steel was
developed. It is found that the anisotropic grain boundary energy mainly exists in the early isothermal
heating stage at lower temperatures, and the normal grain growth occurs under anisotropic grain
boundary energy conditions. When the temperature is not less than 1273 K and the cellular automaton
step is not less than 15, the normal grain growth containing only isotropic grain boundary energy
occurs. The analysis of the morphology, energy variance, topology and growth kinetics further
indicates that normal grain growth of 25Cr2Ni4MoV steel can be simulated fairly well by the present
CA model.

Keywords: 25Cr2Ni4MoV steel; super-large nuclear-power rotor; steady-state grain size; modeling
of austenite grain growth; cellular automaton model; anisotropic grain boundary energy

1. Introduction

As an important component in the energy industry, the requirements for the mi-
crostructure and mechanical properties of nuclear-power rotors are very strict [1–3]. The
super-large nuclear-power rotor has a huge size, with a maximum length of about 16 m
and a diameter of about 3 m, which leads to high manufacturing costs and long manu-
facturing cycles. Obviously, it is not feasible to use physical experiments to reveal the
microstructure evolution of its manufacturing process, which are key factors affecting me-
chanical properties. As a clean and environmentally friendly research tool, the numerical
method has become an important means to explore the microstructure evolution during
the manufacturing process of metals and alloys [4–6].

The manufacturing process of super-large nuclear-power rotors usually includes pre-
forging heat treatment, open die forging, property heat treatment and machining. The
pre-forging heat treatment refers to heating the nuclear power rotor to a deformation
temperature and holding it for a period of time. The main microstructure evolution
of the material during this process is the austenite grain growth. The pre-forging heat
treatment provides the initial microstructure for the subsequent open die forging, and
its grain growth results seriously affect the design of the subsequent open die forging
processes. Moreover, open die forging of rotors has the characteristics of discontinuous
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deformation and long time, the grain growth may still occur in the undeformed area of
nuclear power rotors during open die forging. Apparently, grain growth has become a
relatively common and influential process of microstructure evolution in the manufacturing
process of nuclear power rotors. Hence, mastering the grain growth is very important
for regulating the microstructure and properties of nuclear power rotors and developing
optimal manufacturing processes. With the decreasing of the carbon and impurity content,
25Cr2Ni4MoV steel has a good balance of toughness, strength and corrosion resistance
in severe service environments [7–9]. So 25Cr2Ni4MoV steel has a great potential for a
super-large nuclear-power rotor. However, the grain growth of 25Cr2Ni4MoV steel during
the continuous and isothermal heating processes was seldom reported.

To study the grain growth of 25Cr2Ni4MoV steel for super-large nuclear-power rotors
using numerical simulation methods, it is necessary to establish a grain growth calculation
model. The grain growth process of nuclear power rotors is divided into two stages, namely,
the grain growth during the continuous heating process and isothermal heating process,
respectively. Usually, the grain growth model during continuous heating is established
based on an isothermal model and the role of additivity. For example, Jiao et al. [10]
deduced a new model for the grain growth of Si-Mn TRIP steel occurring during continuous
heating based on the role of additivity and an isothermal model. By making use of this
idea, Anelli et al. [11] developed a grain growth model of C-Mn steel, and Jiang et al. [12]
proposed a model for predicting the grain growth of 42CrMo steel. Obviously, the grain
growth model during the isothermal heating process significantly affects the accuracy of the
grain growth results of materials after a common heating process, which has also attracted
extensive research interest. For instance, Beck et al. [13] proposed an austenite grain growth
model during isothermal heating, which only considered time and ignored the effect of
initial grain size. Sellars et al. [14] developed the grain growth model considering the effect
of initial grain size. When fitting the model based on experimental data, it is required that
the fitting curve should pass through the (0, D0) point. Then by forcing the fitting curve to
pass exactly through a certain measured data point, some additional error is introduced
into the regression analysis results. Anelli et al. [15] adjusted the model proposed by Sellars,
which indicates the austenite grain will keep growing with time increasing. However,
experiments have found the grain grows slowly after a certain period of time [16], which
means there is a stable value for the austenite grain size. To consider the effect of steady-
state grain size, Jin [17] suggested a new grain growth model, which can not only calculate
the static grain growth size, but also obtain the steady-state grain size. Therefore, using this
model to describe the austenite grain growth during a common heating process including
the continuous and isothermal heating processes is very promising.

Apart from the grain size, it is very important to analyze the typical characteristics
of 25Cr2Ni4MoV steel during grain growth including the morphology, energy, topology
and growth kinetics. The cellular automaton (CA) method has been widely used in the
field of grain growth simulation due to its ability to comprehensively and accurately reveal
grain growth, and to flexibly compile cellular transformation rules [18–20]. Currently,
there are a large number of reports on the simulation of the isotropic and anisotropic grain
growth using CA methods. The condition of an isotropic grain growth assumes that the
grain boundary energy and grain boundary mobility of different grain boundaries are
equal [21,22]. While the anisotropic grain growth considers the impact of anisotropic grain
boundary energy and anisotropic grain boundary mobility on the grain growth. Anisotropic
grain boundary energy and mobility are mainly caused by temperature distribution dif-
ferences, solute atom segregation at different grain boundaries and grain boundary phase
transitions [23–25]. However, researchers mainly focus on abnormal grain growth under
anisotropic conditions, for instance, some experiments and numerical methods were carried
out to investigate the influence of anisotropic grain boundary energy and the second phases
on abnormal grain growth [26–28]. There are only a few CA simulation studies on normal
grain growth under anisotropic conditions. For example, based on the Read-Shockley
relationship, combined with curvature-driven mechanism and probabilistic transition rules,
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Li [29] and Wang [30] established the CA model of normal grain growth under the condi-
tions of anisotropic grain boundary energy and mobility. Nevertheless, those studies are
only a theoretical exploration and mainly predict grain growth for a short simulation time.
During the isothermal heating process of the super-large nuclear-power rotor, it takes time
to achieve a completely uniform temperature due to its huge size. Therefore, different states
of grain boundary energy may occur during the grain growth. For example, some uneven
temperature conditions in the early holding stage lead to the generation of anisotropic
grain boundary energy. Then with the extension of the holding time, this uneven condition
is alleviated, and in the later stage, it may be isotropic grain boundary energy. In order to
more accurately simulate the grain growth of nuclear power rotors during the isothermal
heating, the effects of anisotropic and isotropic grain boundary energy at different isother-
mal heating stages on grain growth should be considered. However, few studies in this
field have been reported so far.

Based on the isothermal grain growth model considering the steady-state grain size
and the rule of additivity, a grain growth model of 25Cr2Ni4MoV steel during the contin-
uous heating process was established in this paper. Moreover, the accuracy of the model
was verified by comparing the calculated results with the experimental results. Then the
CA model of 25Cr2Ni4MoV steel was developed to simulate the anisotropic and isotropic
grain growth during the isothermal heating process. The morphology of grain growth,
variation of grain boundary energy, topology, growth kinetics and grain size distribution at
different temperatures and holding time were analyzed. This paper systematically investi-
gates the austenite grain growth of 25Cr2Ni4MoV steel during a common heating process
including the continuous and isothermal heating process, which has an important guiding
significance for the control of microstructure and mechanical properties of super-large
nuclear-power rotors and the design of the manufacturing process.

2. Prediction Model for Austenite Grain Growth during the Continuous Heating

The development of the model for grain growth during the continuous heating process
requires a model for isothermal grain growth. Adopting an isothermal grain growth
model that considers steady-state grain size can more accurately predict the grain size
of 25Cr2Ni4MoV steel. Eventually, the general principle and establishment method of
the grain size model during a common heating process including the continuous and
isothermal heating processes are clarified in 25Cr2Ni4MoV steel.

2.1. The Model for Isothermal Grain Growth

The chemical composition of 25Cr2Ni4MoV steel is shown in Table 1. The materials
were provided by Sinomach-he Co, Ltd, Deyang, China. The previous research found
the grain size reaches a relatively stable value when the holding time exceeds 2 h, and
developed the following model to describe the isothermal grain growth of 25Cr2Ni4MoV
steel during the isothermal heating process [9]. It relates the real grain size to the steady-
state grain size, holding temperature and time as shown in Equation (1).{

Ds = R1 exp(R2T)
D = D0 + (Ds − D0)[1 − exp(−R3t)]

(1)

where D0 is the average grain diameter at the end of the heating process. Corresponding
to different heating temperatures, the different values of D0 are shown in Table 2. t is
the holding time. Ds is the steady-state grain size. T is the holding temperature. R1,
R2 and R3 are material constants as shown in Table 2, which can be calculated from the
experimental data.
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Table 1. Chemical compositions of steel 25Cr2Ni4MoV (wt.%).

C Si Mn P S Cr Ni Cu

0.22 0.05 0.25 0.005 0.001 1.65 3.42 0.02
Mo V Ti Al As Sn Sb Fe
0.44 0.1 0.002 0.004 0.003 0.002 0.002 Bal.

Table 2. Values of D0, R1, R2 and R3.

Temperature/K D0/µm R3 R2 R1

1173 24.5 0.0179

0.0096 8.6 × 10−4

1273 43.3 0.0139
1373 90.8 0.0234
1423 119.9 0.0144
1473 220.0 0.0146
1523 387.0 0.0191

2.2. The Calculation of the Austenite Grain Size in a Continuous Heating Process

The previous studies indicate that the phase transformation and the inhomogeneous
distribution of the second phases play an important role in abnormal grain growth [31–33].
Therefore, the material parameters related to the phase transition and the distribution of
the second phase, including the AC1 temperature, AC3 temperature, the homogeneous
temperature and the heating rate should be taken seriously. Based on the Time-Temperature-
Austenitization (TTA)diagram, the AC1 temperature, AC3 temperature and homogeneous
temperature of 25Cr2Ni4MoV steel are calculated at different heating rates as shown
in Figure 1. AC1 is the temperature at which austenite formation begins, and AC3 is
the temperature at which austenite formation ends. Because the driving force of the
grain growth from AC1 to AC3 temperature is the interface movement caused by phase
transformation instead of grain boundary movements, the grain growth in this temperature
range is ignored. The homogeneous temperature can be defined as the temperature at
which the phase transformation and the homogenization of carbon and alloying elements
have been fully completed. According to the actual heating process, the heating rate of
the super-large nuclear-power rotors is generally lower than 100 K/s. Figure 1 indicates
that 25Cr2Ni4MoV steel will not undergo abnormal grain growth caused by the secondary
particle pinning or the element segregation at the grain boundary when the final heating
temperature is not lower than 1173 K.
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The grain size at the beginning of the continuous heating process is d0. Due to ignoring
the grain growth during the austenite formation stage within the AC1–AC3 temperature
range, d0 is taken as the grain size when the heating temperature reaches AC3 temperature.
The grain size at the end of the continuous heating is dj. The continuous heating process is
divided into several isothermal grain growth processes, each of which has an equal time
interval ∆t. The value of ∆t can be calculated by Equation (2).

∆t = (Te/hv − Ts/hv)/N (2)

where Ts is the temperature higher than AC3 temperature, which means the austenite
formation is completed. Te is the temperature at the end of the continuous heating, and hv
is the heating rate. N is an integer not less than 2. The temperature at any time during the
continuous heating process can be expressed as:

Ti = Ts + hv × i × ∆t (3)

The value range of i is an integer between 0 and N. The grain sizes and temperatures
corresponding to the two end points in the time interval (ti, ti+1) are di, Ti, di+1 and
Ti+1, respectively. The steady-state grain sizes at Ti and Ti+1 temperatures are ds,i and
ds,i+1, respectively.

The grain size di−1 obtained at a temperature Ti−1 after a continuous heating time ti−1
is considered to be obtained through an isothermal heating treatment at temperature Ti
during a fictitious time t∗i . This time can be calculated by means of Equation (4):{

ds,i = R1 exp(R2Ti)

t∗i =
ln(1−(di−1−d0)/(ds,i−d0))

−R3

(4)

after the time interval ∆t, the grain size di can be calculated by Equation (5):

di = d0 + (ds,i − d0)[1 − exp(−R3(t∗i + ∆t))] (5)

The workflow of the calculation is shown in Figure 2. The convergence of the program
is ensured by increasing the N value which leads to the decreasing of ∆t value during the
iteration. The values of dj and dj−1 are calculated according to the workflow. When the
absolute difference value of dj and dj−1 is lower than δ, the iteration is completed. Then dj
can be the value of the final grain size. The constant δ is the threshold value with respect
to the accuracy of the calculation. The dj value at the end of the heating process equals
to the D0 value at the beginning of the isothermal heating process. Substituting the dj
value into Equation (1) can calculate the grain size during the isothermal heating process.
Eventually, the prediction model of the final grain size D during the common heating
process consisting of continuous heating followed by an isothermal one is established for
the austenite grain growth of 25Cr2Ni4MoV steel.

To verify the accuracy of the grain growth model, the above numerical model is used to
predict the grain size during continuous heating. The parameters of the calculation model
are consistent with the experimental parameters. The parameters are stated as follows: the
heating rate is 20 K/min, and the final heating temperatures are 1173, 1273, 1373, 1423,
1473, and 1523 K. d0 is the grain size of the sample heated to the AC3 temperature, which is
approximately 22.4 µm. The specimens were water quenched immediately after reaching
the specified heating temperature. Finally, the specimen were cut along the axial direction
and the cut surface were mounted, polished, and etched with a saturated aqueous picric
acid solution to observe the austenite morphology using a metallographic microscope Axio
Scope A1. The average grain sizes at the sliced section were measured according to ASTM
standards. Figure 3 indicates that the predicted results show good agreement with the
experimental results, and the average absolute relative error (AARE) is 7.00%.
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3. CA Model for Austenite Grain Growth during the Isothermal Heating

Anisotropic grain boundary energy is applied to express the influence of uneven
heating conditions, such as uneven temperature distribution, on the grain growth of the
super-large nuclear-power rotor. Based on the detailed description of the basic physical
metallurgical principles and the transition rules for grain growth, a CA model is established
to describe the anisotropic and isotropic grain growth of 25Cr2Ni4MoV steel during differ-
ent isothermal heating periods. Then the morphology, the grain boundary energy variance,
topology and growth kinetics of the normal grain growth under different temperatures and
holding time are analyzed systematically.

3.1. CA Model for Normal Grain Growth Considering Anisotropic Grain Boundary Energy

Rollett once introduced the simulation work of abnormal grain growth considering
anisotropic grain boundary energy and mobility based on the Monte Carlo model [34]. In
their work, the grains which are distinguished by the orientation values are divided into
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two grain types (Type I and Type II) according to a critical orientation value. These two
grain types might correspond to two components of different crystallographic orientations.
Two kinds of grains form four kinds of grain boundaries, which are the Type I-Type I, Type
I-Type II, Type II-Type I and Type II-Type II boundaries, to which different grain boundary
energies can be assigned. In this paper, Rollett’s idea was adopted to describe anisotropic
grain boundary energy. When grain boundary lengths are equal, Type II-Type II boundaries
are assumed to have low energy, while other boundaries have high energy. The interfacial
energy of different kinds of grain boundaries is defined in Equation (6), δ is the Kronecker
symbol. Si is the orientation of the site i, while Sj is the orientation of the site j, which is one
of the neighbors of site i. J1 and J2 are positive constants such that J1 > J2, the summation
of j is over the M nearest neighbors of the ith site.

E =



J2
M
∑
j

(
1 − δSiSj

)
Type II − Type II

J1
M
∑
j

(
1 − δSiSj

) 
Type I − Type I
Type I − Type II
Type II − Type I

(6)

The simulation mesh is 500∆x × 500∆y square lattice, ∆x and ∆y represent the length
of each cell along the x and y axes such that ∆x = ∆y. In the CA model, every cell has three
state variables: one orientation variable, one grain type variable and one grain boundary
variable. The orientation variable and grain type variable of each grain are randomly
generated, which are uniform inside a grain. Each grain has a unique orientation value.
The grain boundary variable distinguishes between different grains. The cellular automaton
step (CAS) measures time in the CA model.

Grain boundary migration is achieved only by transferring the grain type variable
and the orientation variable of the center cell to the neighbor cell, which means that if
the grain type variable of the center cell is type I, then grain boundary migration occurs
according to the grain growth mechanism, the neighbor cell type should only be type I.
Hence Type I-Type I grain boundary cannot be converted to Type I-Type II. Similarly, type
II-Type II cannot be converted to Type II-Type I. The same situation applies to Type II center
cells. It can be seen that Type I-Type II and Type II-Type I are two different kinds of grain
boundaries in this CA model, because there are differences in the grain type variables of
randomly selected center cells in each CAS.

The internal cause of grain growth is self-reducing grain boundary energy, while the
external cause is physical factors that promote grain change, such as temperature and
grain boundary curvature. Based on this, the CA method has developed different grain
growth driving mechanisms, including the lowest energy principle, thermodynamic driving
mechanism and curvature-driven mechanism, which have been widely used in isotropic
grain growth [35–38]. In this paper, the above three types of grain growth mechanisms are
extended to establish a CA model for grain growth considering anisotropic grain boundary
energy, in which the von Neumann neighborhood with the nearest neighbor sites is adopted,
and the periodic boundary condition is applied to simulate the infinite space. The workflow
of the CA model for grain growth considering the anisotropic grain boundary energy is
shown in Figure 4. The formulation of state transition rules in accordance with the physical
mechanism is explained as follows:
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(1) Rule 1 introduces the use of the CA method to describe the thermodynamic driving
mechanism. Grain growth is a thermally activated process, and the cells located at the
grain boundaries must have sufficient energy to complete the state transition. According
to the theory of statistical thermodynamics, it is assumed that the thermal energy in the
system satisfies Maxwell Boltzmann distribution. Whether the cell state changes in each
CAS is related to P1, and the expression is as follows:

P1 = exp(−Qb/RT) (7)

where Qb is the boundary diffusion activation energy. In this work, Qb is constant and
the value of Qb can be referred in [39]. R is the universal gas constant, T is the absolute
temperature. Each grain is randomly assigned a probability value Prand. If the Prand value
of the randomly selected cell is not greater than P1, the state of the selected cell may change
to a new state. Equation (7) shows that the P1 value increases as the temperature increases,
which means that the state of the selected cell is more prone to transition.

(2) Rule 2 considers the effect of the lowest energy principle on grain growth. The
reduction of grain boundary energy can provide the driving force for grain growth. The
more Type II grains, the higher the likelihood of forming Type II-Type II grain boundaries,
and the lower the system energy according to Equation (6). Therefore, the CA model
assumes that Type II grains have the advantage of swallowing Type I grains for grain
growth, but Type I grains cannot swallow Type II grains for grain growth. For example,
when the randomly selected grain boundary cell belongs to Type II, as a center cell it may
form Type II-Type I grain boundaries. Then Type II center cells transfer the orientation and
grain type values to neighbor cells that originally belong to Type I grains, resulting in the
disappearance of Type II-Type I grain boundaries and a decrease in grain boundary energy.

(3) Rule 3 is about curvature-driven grain growth. During grain growth, the grain
boundaries always move towards the center of the curvature. The CA model developed
in this paper assumes that the curvature-driven mechanism only affects the movement of
grain boundaries formed by the same type of grain. For example, if the selected center
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cell and the neighbor cell form Type II-Type II boundaries, then the number of neighbor
cells with the same orientation as the center cell is counted. If the number is not less than
2, the state of all neighbor cells changes to that of the center cell. This can be explained
in two ways as mentioned in reference [27]. When the number is 3, the curvature-driven
mechanism explains the phenomenon of the fourth neighbor cell changing into the status
of the center cell. When the number is equal to 2, two is half of four neighbors, which
guarantees that the like types of grain grow uniformly in all directions. Rule 3 of this CA
model also works with the condition that the grain boundary type is Type I-Type I.

3.2. Microstructure Evolution during the Isothermal Heating

Figure 5 shows the microstructure of the grain growth at different temperatures
and Figure 5 shows the microstructure of the grain growth at different temperatures and
simulation time calculated by the CA model. The white closed boundary represents
the grain boundary, and the interior of the grain is filled with color. Due to the unique
orientation of each grain, the grain growth caused by the grain coalescence is avoided,
which is inconsistent with the actual situation. Then the grain coarsening is dominated by
diffusion at grain boundaries and consumption of smaller grains adjacent to larger grains.
The previous studies indicate that if the simulation model of grain growth only considers
the lowest energy principle, the calculated grain boundaries are smooth and straight [40].
As the CA model developed in this paper considers the effects of the thermodynamic
driving mechanism, the lowest energy principle and curvature-driven mechanism on the
grain growth, the homogeneously distributed grains have the polygonal shape with zigzag
rather than smooth grain boundaries, which is consistent with the grain growth mechanism.
Figure 5 suggests that the grain size increases as the CAS increases at a certain temperature,
and the larger temperature leads to a larger average grain size at a certain CAS.

Metals 2023, 13, x FOR PEER REVIEW 9 of 18 
 

 

form Type II-Type I grain boundaries. Then Type II center cells transfer the orientation 
and grain type values to neighbor cells that originally belong to Type I grains, resulting in 
the disappearance of Type II-Type I grain boundaries and a decrease in grain boundary 
energy.  

(3) Rule 3 is about curvature-driven grain growth. During grain growth, the grain 
boundaries always move towards the center of the curvature. The CA model developed 
in this paper assumes that the curvature-driven mechanism only affects the movement of 
grain boundaries formed by the same type of grain. For example, if the selected center 
cell and the neighbor cell form Type II-Type II boundaries, then the number of neighbor 
cells with the same orientation as the center cell is counted. If the number is not less than 
2, the state of all neighbor cells changes to that of the center cell. This can be explained in 
two ways as mentioned in reference [27]. When the number is 3, the curvature-driven 
mechanism explains the phenomenon of the fourth neighbor cell changing into the status 
of the center cell. When the number is equal to 2, two is half of four neighbors, which 
guarantees that the like types of grain grow uniformly in all directions. Rule 3 of this CA 
model also works with the condition that the grain boundary type is Type I-Type I. 

3.2. Microstructure Evolution during the Isothermal Heating 
Figure 5 shows the microstructure of the grain growth at different temperatures and 

Figure 5 shows the microstructure of the grain growth at different temperatures and 
simulation time calculated by the CA model. The white closed boundary represents the 
grain boundary, and the interior of the grain is filled with color. Due to the unique ori-
entation of each grain, the grain growth caused by the grain coalescence is avoided, 
which is inconsistent with the actual situation. Then the grain coarsening is dominated by 
diffusion at grain boundaries and consumption of smaller grains adjacent to larger 
grains. The previous studies indicate that if the simulation model of grain growth only 
considers the lowest energy principle, the calculated grain boundaries are smooth and 
straight [40]. As the CA model developed in this paper considers the effects of the ther-
modynamic driving mechanism, the lowest energy principle and curvature-driven 
mechanism on the grain growth, the homogeneously distributed grains have the polyg-
onal shape with zigzag rather than smooth grain boundaries, which is consistent with the 
grain growth mechanism. Figure 5 suggests that the grain size increases as the CAS in-
creases at a certain temperature, and the larger temperature leads to a larger average 
grain size at a certain CAS.  

 
(a) 

 
(b) 

Metals 2023, 13, x FOR PEER REVIEW 10 of 18 
 

 

 
(c) 

Figure 5. Microstructure evolution at different temperatures with different simulation time. (a) 
Microstructure evolution at 1173 K with different simulation time (CAS is equal to the number of 
program cycles divided by the grid size, and the grid size is ). (b) Microstructure evolu-
tion at 1373 K with different simulation time. (c) Microstructure evolution at 1523 K with different 
simulation time. 

The value of C  is used to measure the grain boundary length calculated by Equation (8): 

(1 ) (1 )
i j i j

M M

s s s s
j j

C x yδ δ δ δ= − × Δ = − × Δ    (8)

Moore neighborhood is adopted to compute the grain boundary length, hence the 
value of M  is 8. The other variables in this equation can be referred to in Equation (6). 
Figure 6 shows the distribution of two types of grains in the initial microstructure of 
25Cr2Ni4MoV steel just reaching 1173 K. The initial Type II-Type II grain boundary 
length is 21,377, while the total length of Type I-Type I, Type I-Type II and Type II-Type I 
grain boundaries is 73,498. Therefore, the proportion of Type II-Type II grain boundaries 
is about 25%, indicating that different types of grain boundaries are uniformly distrib-
uted in the initial microstructure. As shown in Figure 6, the total grain boundary length 
decreases at the condition of 1173 K/25 CAS. The length of the Type II-Type II grain 
boundary was 79,066, and the ratio of the Type II-Type II grain boundary length to the 
total grain boundary length rapidly increased to 86.5%. The total length of the Type 
I-Type I, Type I-Type II, and Type II-Type I grain boundary rapidly decreased to 12,358, 
and correspondingly its proportion decreased to 13.5%. Although there is anisotropic 
grain boundary energy in the system at this time, the uniformly distributed grains exhibit 
normal grain growth. Figure 6 shows the Type I grain and the grain boundaries formed 
by the Type I grain basically disappear at 50 CAS, and there are mostly Type II-Type II 
grain boundaries in the system. Therefore, when the temperature is constant, with the 
extension of the simulation time, only the type of grain boundary with the lowest energy 
exists in the grain system. Hence, the system presents an isotropic grain growth. More-
over, the higher the temperature, the faster the grains enter the isotropic grain growth. 
When the temperature is not less than 1273 K and the simulation time is not less than 15 
CAS, the anisotropic grain growth considering the anisotropic grain boundary energy 
disappears and 25Cr2Ni4MoV steel undergoes the isotropic grain growth. This is because 
the higher the temperature and the longer the holding time, the closer the material is to 
the equilibrium and homogenization state, and the more likely it is to achieve isotropic 
grain growth. 

 

500 500×

Figure 5. Microstructure evolution at different temperatures with different simulation time.
(a) Microstructure evolution at 1173 K with different simulation time (CAS is equal to the num-
ber of program cycles divided by the grid size, and the grid size is 500 × 500). (b) Microstructure
evolution at 1373 K with different simulation time. (c) Microstructure evolution at 1523 K with
different simulation time.
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The value of C is used to measure the grain boundary length calculated by Equation (8):

C =
M

∑
j
(1 − δsi δsj)× ∆x =

M

∑
j
(1 − δsi δsj)× ∆y (8)

Moore neighborhood is adopted to compute the grain boundary length, hence the
value of M is 8. The other variables in this equation can be referred to in Equation (6).
Figure 6 shows the distribution of two types of grains in the initial microstructure of
25Cr2Ni4MoV steel just reaching 1173 K. The initial Type II-Type II grain boundary length
is 21,377, while the total length of Type I-Type I, Type I-Type II and Type II-Type I grain
boundaries is 73,498. Therefore, the proportion of Type II-Type II grain boundaries is about
25%, indicating that different types of grain boundaries are uniformly distributed in the
initial microstructure. As shown in Figure 6, the total grain boundary length decreases
at the condition of 1173 K/25 CAS. The length of the Type II-Type II grain boundary was
79,066, and the ratio of the Type II-Type II grain boundary length to the total grain boundary
length rapidly increased to 86.5%. The total length of the Type I-Type I, Type I-Type II,
and Type II-Type I grain boundary rapidly decreased to 12,358, and correspondingly its
proportion decreased to 13.5%. Although there is anisotropic grain boundary energy in the
system at this time, the uniformly distributed grains exhibit normal grain growth. Figure 6
shows the Type I grain and the grain boundaries formed by the Type I grain basically
disappear at 50 CAS, and there are mostly Type II-Type II grain boundaries in the system.
Therefore, when the temperature is constant, with the extension of the simulation time, only
the type of grain boundary with the lowest energy exists in the grain system. Hence, the
system presents an isotropic grain growth. Moreover, the higher the temperature, the faster
the grains enter the isotropic grain growth. When the temperature is not less than 1273 K
and the simulation time is not less than 15 CAS, the anisotropic grain growth considering
the anisotropic grain boundary energy disappears and 25Cr2Ni4MoV steel undergoes the
isotropic grain growth. This is because the higher the temperature and the longer the
holding time, the closer the material is to the equilibrium and homogenization state, and
the more likely it is to achieve isotropic grain growth.
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Figure 6. The distribution of two types of grains at 1173 K with different time (The red filled area
represents Type I grains, while the blue filled area represents Type II grains).

In this paper, Beck’s equation is used to calculate the relationship between the average
grain size and the simulation time [13]. The grain growth kinetics can be expressed by:

D = k1tn (9)

where D is the average grain diameter, t is the simulation time, k1 is the constant and n is
the growth exponent. The research on the growth exponent has always been controversial.
Different simulation methods [41–43] and experiments [44–46] can obtain different grain
growth exponents. Many studies have pointed out that the growth exponent range is
0 ≤ n ≤ 0.5 [47–49]. When the influence of impurities and second phase particles on
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normal grain growth can be ignored, the grain growth exponent is usually 0.5. Figure 7
shows the relationship between the average grain diameter and the simulation time at
different temperatures. Figure 8 shows the linear relationship between ln D and ln t. The
fitting results are basically consistent with the experimental results as shown in Figure 9. It
is determined that the grain growth exponent simulated by the CA model is approximately
0.35 by taking the average slope value. It can be explained that more lattice points are
occupied within the grain as the simulation time increases. Due to the strong randomness
of the CA method, randomly selected lattice points are more likely to fall within the grain
rather than at the grain boundary. Therefore, with the extension of the simulation time the
possibility of achieving the grain growth through the grain boundary migration decreases,
and the grain growth slows down, resulting in a growth exponent of less than 0.5.
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One of the advantages of computer simulations is that the properties of a large num-
ber of individual grains can be monitored. Hence the kinetics of individual grains can
be studied.

Hillert proposed the relationship between the growth rate of an individual grain and
its size as shown in Equation (10) [50]:

dR/dt = −k2(1/R − 1/Rcr) (10)

where k2 is a positive coefficient, R is the radius of a given grain. Rcr is the critical grain
radius. Generally, in two-dimensional systems, the critical radius is equal to the average
grain radius (Ra).

Figure 10 shows the relationship between the average growth rates and the grain radii
by analyzing the results of 2928 grains at different temperatures with different CAS. It is
shown that the grains with radii larger than Rcr will grow and those with radii less than
Rcr will shrink, which conforms to the Hillert equation well. However, each individual
grain may not follow Hillert’s equation. It is clear that the plot shows a large fluctuation in
the data, especially for grains close to the average grain size. Therefore, it is impossible
to obtain a linear relationship between the average grain growth rate and the grain radii,
which is different from previous research results [22].
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Figure 10. Average data for grain growth rate dR/dt in grain size (1/R − 1/Rcr) space. The data
were averaged with the interval ∆(1/R − 1/Rcr) = 0.01.



Metals 2023, 13, 1072 13 of 18

As shown in Figure 11, the highest grain size frequency is 34.2% for grains (1/R −
1/Rcr = 0.00344) slightly smaller than the average grain size, followed by 32.5% for grains
(1/R − 1/Rcr = −0.00358) slightly larger than the average grain size. Apparently, the
difference in frequency between these two types of grains is not significant. It indicates
that when some grains grow, there will be a corresponding number of grains shrinking,
so the grains have grown normally. The frequency of the grain size (−0.00358 ≤ 1/R −
1/Rcr ≤ 0.00344) near the average value is the highest. Meanwhile, the number of grains
(1/R− 1/Rcr ≤ −0.021) significantly larger than the average grain size is 0, and the number
of grains (1/R− 1/Rcr ≥ 0.067) significantly smaller than the average grain size is also very
small, which also indicates that the grain size distribution is relatively uniform. The growth
rate of grains (1/R − 1/Rcr = −0.00358) slightly larger than the average grain size is the
highest, while the shrinking rate of grains (1/R − 1/Rcr = 0.00344) slightly smaller than
the average grain size is the highest. The maximum grain shrinking rate is approximately
six times the maximum grain growth rate. This is significantly different from abnormal
growth, where the maximum grain growth rate is twice the maximum grain shrinking
rate [27], indicating that a few grains have significant growth advantages. Figures 10 and 11
also indicate that the normal grain growth calculated by the CA model is mainly achieved
by the grains slightly larger than the average grain size swallowing grains slightly smaller
than the average grain size, and the number of two types of grains that undergo significant
growth and shrinkage is nearly equal.
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Figure 11. The distribution of grain size (1/R − 1/Rcr).

Figure 12 shows that there are only a few grains with the grain size smaller than
4 or larger than 9. The 5-sided grains have the highest probability of occurrence nearly
among all the topological classes, followed by 6-sided grains, and finally the 4-sided grains.
The number of sides with the highest frequency has always been controversial. Some
experimental and simulation models show that the value is 5 [51,52], while others indicate
that the value is 6 or greater [22,41,53]. Studies have shown that the initial microstructure
significantly affects the topology during grain growth [54,55]. Figure 12 shows the highest
frequency in the initial microstructure is 5-sided grains, followed by 6-sided grains. This
may promote the occurrence of the phenomenon that the frequency of the 5-sided grains
rather than the 6-sided grains is the highest during the subsequent grain growth process.
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Figure 12. The distribution of the grain side (n) at different temperatures.

As there are only few grains that have less than 4 sides or more than 9 sides, only
the growth kinetics of grains with 4–9 sides were studied. As shown in Figure 13 the area
change rate of all grains with a side number of not less than 6 is greater than 0, and the
average area change rate of all 4-sided grains is less than 0. Therefore, grains with a side
number not less than 6 are growing, while 4-sided grains are shrinking. The situation
for 5-sided grains is complicated. Those grains can either grow or shrink as well as have
zero growth rate depending on their sizes and their neighbor grains or local topology
arrangements. As shown in Figure 14, by taking the average value of the results of all
temperatures and step sizes, it is found that the average area change rate is less than 0 for
grains with less than 6 sides, while the average area change rate is greater than 0 for grains
with no less than 6 sides. However, the area change rate of the 5-sided grain rather than
the 6-sided grain is closer to zero, which is inconsistent with the Mullins equation [56].
One of the reasons for this disagreement may be the fact that this equation comes purely
from the mathematical requirement of space-filling, and surface tension constraints are not
considered. Regardless of the number of sides, the total growth rate is larger than zero for
all grains in the system.
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Figure 13. The relationship between the growth rate (dA/dt, A is the grain area of all the grains with
the same number of grain side) and the simulation time at different grain sides (n).
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Figure 14. The dependence of the average growth rate (dAn/dt) on number of grain side (n).

Grain size distribution is widely used to study the uniformity of microstructure.
Figure 15 shows the grain size distribution at 1523 K with different simulation times. The
grain size distribution obeys logarithmic normal distribution at 400 CAS. With the extension
of the simulation time, the grain size distribution is not very stable. This instability is
mainly due to changes in the number of larger and smaller grains. For example, grains
with 0 < R/Rm < 0.2 appear at 400 CAS, 1000 CAS and 3000 CAS, while grains with this
size disappear at 2000 CAS and 4000 CAS. Then a small number of grains with R/Rm > 2
appear at 400 CAS and 1000 CAS, which disappear with the increase of the simulation
time. The results of all different simulation steps indicate that the maximum frequency
is at R/Rm ≈ 0.9 ∼ 0.1, which means that most grain sizes are close to the average grain
size. When R/Rm approaches 0 or 2, the distribution frequency approaches 0, indicating
that there are few grains of larger and smaller sizes than the average grain size and the
grain size distribution is relatively uniform. Figure 15 shows that the cutoff positions for
400 CAS and 1000 CAS are 2.1, and the cutoff value for other simulation steps is 1.9. It is
close to the cutoff value of 2–2.5 reported in most studies [57–59].
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Figure 15. The grain size distribution at 1523 K with different simulation time.
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4. Conclusions

It is necessary to reveal the grain growth of 25Cr2Ni4MoV steel to optimize the
manufacturing process design of the super-large nuclear-power rotor. The grain size
of 25Cr2Ni4MoV steel reaches stability when the holding time exceeds 2 h. Then an
improved isothermal grain growth model during the isothermal heating process was built
by considering the steady-state grain size. Based on the isothermal grain growth model and
the rule of additivity, a grain growth model for 25Cr2Ni4MoV steel during the continuous
heating process was established. The prediction results of the model are basically consistent
with the experimental results, indicating the grain growth models for a common heating
process including continuous heating and isothermal heating have good predictability.

The CA model considering anisotropic grain boundary energy based on the thermody-
namic driving mechanism, curvature-driven mechanism and the lowest energy principle
has been established to simulate the grain growth during the isothermal heating process of
25Cr2Ni4MoV steel. The CA simulation shows that the grains have a polygonal shape with
zigzag rather than smooth grain boundaries. Among the grains with different sides, 5-sided
grains have the highest frequency, followed by 6-sided grains. The local growth kinetics
shows that the relationship between the area change rate and the grain side is inconsistent
with the Mullins equation, as the average area change rate of the 5-sided grains rather than
the 6-sided grains is closer to zero.

The grain size distribution shows a maximum frequency of R/Rm is 0.9–1.1. When
R/Rm approaches 0 or 2, the distribution frequency approaches 0, indicating the grain
size distribution is relatively uniform. The kinetics of normal grain growth follows Beck’s
equation and the growth exponent is 0.35, and the relationship between grain growth rates
and grain radii is not linear. It is found that the normal grain growth of 25Cr2Ni4MoV steel
is mainly achieved by the grains slightly larger than the average grain size swallowing
grains slightly smaller than the average grain size, and the number of two types of grains
that, respectively, experiencing significant growth and shrinkage is nearly equal.

The energy variance of the grain growth of 25Cr2Ni4MoV steel during the isothermal
heating process is explained by the present CA model considering anisotropic grain bound-
ary energy. The anisotropic grain growth of 25Cr2Ni4MoV steel considering anisotropic
grain boundary energy mainly exists at the early stage of the isothermal heating process
with lower temperatures, and the normal grain growth occurs under anisotropic grain
boundary energy conditions. The anisotropic grain boundary energy disappears faster
with the increasing temperature and holding time. According to the CA model, when
the temperature is not less than 1273 K and the CAS is not less than 15 CAS, the normal
grain growth containing only isotropic grain boundary energy occurs. The analysis of the
morphology, energy variance, topology, grain growth kinetics and grain size distribution
indicates that the normal grain growth of 25Cr2Ni4MoV steel can be simulated fairly well
by the present CA model.
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