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Abstract: Ultrahigh-speed continuous casting is a critical element in achieving high-efficiency con-
tinuous casting. In the present work, a three-dimensional model of a 160 mm × 160 mm billet
ultrahigh-speed continuous casting mold was developed for use in studying the influences of differ-
ent casting parameters on molten steel flow. The results showed that the flow pattern in the mold
was not associated with its casting speeds, submerged entry nozzle (SEN) immersion depths, or inner
diameters. Variation in casting speeds significantly affected the liquid level of the steel–slag interface.
Its liquid level fluctuation was reasonable at an SEN immersion depth of 80 mm. Its impact depth
reached the shallowest point, which was conducive to upward movement within high-velocity and
high-temperature regions, and accelerated the floating of non-metallic inclusions. Expanding the
inner diameter of the SEN could effectively weaken the initial kinetic energy of the jet. However, it
may cause a deeper impact depth and a degree of upward movement in the raceway, which exhibited
the shallowest impact depth in the jet and the most reasonable behavior of molten steel at a liquid
level for which the inner diameter of the SEN was 40 mm.

Keywords: numerical simulation; ultrahigh-speed continuous casting; mold; submerged entry nozzle;
flow field

1. Introduction

The endless rolling process has long been an industry-wide hot topic in metallurgy,
and ultrahigh-speed continuous casting is an essential prerequisite for endless rolling. For
this reason, the exploration of ultrahigh-speed continuous casting processes has been the
dominant trend in the field. The molten steel flow in a continuous casting mold is a complex,
turbulent flow with irregular, rotational, three-dimensional, and dissipative characteristics.
Currently, most billet continuous casting is carried out at speeds of 3.0–4.0 m/min [1,2],
while speeds of ultrahigh-speed continuous casting can exceed even 6.0 m/min [3]. Note
that enhancing continuous casting speeds significantly increases the molten steel flow in a
mold. Therefore, improperly controlled molten steel behavior may lead to the presence of
liquefied slag in the steel, which can cause a decrease in billet quality [4–7]. The control
of a mold’s flow holds significant importance, particularly in the context of continuous
casting at ultrahigh speeds. An optimal flow of molten steel can effectively mitigate the
risk of molten steel leakage due to insufficient solidification-front thickness, while also
minimizing the occurrence of entrainment resulting from liquid level fluctuations [8–11].

Given the limited technical methods for and extreme working environment of con-
tinuous casting molds, numerical simulation is an effective visualization method for in-
vestigating the characteristics of molten steel flow inside a mold [12,13]. Ren et al. [14]
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investigated the effects of electromagnetic stirring on the flow field of a continuous casting
mold at a casting speed of 2.3 m/min using a finite element model, where the swirling flow
attenuated the mold’s jet impact and liquid level fluctuations. Similarly, Cho [15] and Lee
et al. [16] conducted research on the behavior of a mold’s steel–slag interface at a casting
speed of 1.6 m/min based on a three-dimensional transient flow coupling model and
concluded that the vortex in the meniscus aggravated the slag entrainment phenomenon
and induced a decrease in slab quality. However, most studies on continuous casting molds
have been undertaken at normal casting speeds (about 3.0 m/min), and there have yet to
be studies that report on ultrahigh-speed continuous casting processes.

The submerged entry nozzle (SEN) plays a crucial role in facilitating the flow of molten
steel into a mold, as it serves as the sole point of entry for molten steel [17,18]. Appropriate
parameters for an SEN not only prevent the spatter and secondary oxidation of molten steel,
but also optimize the temperature and flow field distribution and promote the floatation
of inclusions. Ultrahigh-speed continuous casting causes the flow of molten steel through
an SEN to increase dramatically, which leads to a complex flow field in the mold. Hence,
the use of a reasonable SEN scheme is of enormous significance for the quality of billet.
Kholmatov et al. [19] combined numerical and physical simulations to study the influence
of the SEN angle on the flow field of the mold and believed that the distance between
the raceway and the meniscus decreased alongside an increasing jet angle. In a series
of studies, Gan and Lee et al. [20,21] investigated the relationship between the stability
of molten steel flow in a slab mold at a low casting speed (0.85 m/min) with its SEN
inclination and shape using large eddy simulation (LES) and particle image velocimetry
(PIV). A rational SEN structure was believed to significantly diminish the liquid level
fluctuation and reduce the incidence of liquid level slag entrapment. Therefore, the use
of an appropriate SEN is essential for controlling the quality of a billet in ultrahigh-speed
continuous casting [20,22–24].

Casting speed is the main factor controlling the production capacity of a continuous
casting machine, but defects in billet quality that arise from higher casting speeds restrict its
further improvement [25,26]. The movement toward ultrahigh-speed continuous casting is
a powerful direction in the casting industry. Therefore, it is necessary to develop production
systems and methods that match higher-speed casting.

In the present work, a three-dimensional, transient mathematical model was devel-
oped for analyzing a billet mold’s molten steel impact depth, raceway distribution, and
liquid level velocity and fluctuation at ultrahigh casting speeds. The effects of casting
speeds, SEN inner diameters, and SEN submergence depths on the flow field of the billet
mold are emphasized. This work can provide insight into the behavior of a mold during
ultrahigh-speed continuous casting and a basis for evaluating SEN structures.

2. Model Development
2.1. Basic Assumptions

A mathematical model that couples the standard k-ε model with the volume of fluid
(VOF) model has been established based on the following assumptions:

1. The slag and molten steel in a mold are transient, incompressible, Newtonian fluids.
2. The influence of external conditions, such as mold oscillation and argon blowing on

the flow field in a mold, are ignored.
3. Thermal buoyancy due to temperature differences is ignored.
4. The molten steel in a mold is considered a homogeneous medium [27].
5. The molten steel’s composition remains unchanged, and the slag’s solidification is

ignored in continuous casting.
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2.2. Governing Equations

The flow of an incompressible fluid is described by continuity and Navier–Stokes
equations, which are expressed as follows [28]:

∂ρ

∂t
+

∂(ρvi)

∂xi
= 0 (1)

∂(ρvi)

∂t
+

∂
(
ρvivj

)
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∂

∂xj
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)
] + ρgi (2)

where ρ is the fluid-phase density, vi is the velocity vector of molten steel, xi is the direction
vector, g is the acceleration of gravity, P is the pressure, xi is direction vector, and µeff
represents the effective viscosity.

µe f f = µl + µt = µl + ρCµ
k2

ε
(3)

In mathematical models with a low Reynolds number, Cµ is an empirical value of 0.09,
µl and µt are the laminar viscosity and turbulent viscosity, respectively, k is the turbulent
kinetic energy, and ε is the turbulent kinetic energy dissipation rate.

This model introduces the standard k-ε equation model to solve the additional concern
of Reynolds stress [29,30]:
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where G is the turbulent kinetic energy production term caused by the average velocity
gradient, Cε1 and Cε2 are taken as the empirical constants 1.44 and 1.92, respectively, and
σε and σk are the Prandtl numbers 1.0 and 1.3, respectively, corresponding to k-ε.

In this study, the VOF model was used to model the two phases of the steel–slag
interface by solving a single set of momentum equations and tracking the volume fraction
of each fluid throughout the domain. The tracking of the interface between phases was
accomplished by calculating the volume fractions of the two phases, which is performed as
follows:

∂αp

∂t
+∇ ·

(
αpv
)
= 0 (7)

where αp is the volume fraction of the P-phase in the control unit and, in this paper, of
molten steel; αp = 0 means there is no P-phase and indicates slag; 0 < αp < 1 indicates the
mixing layer at the interface of steel and slag; and αp = 1 means that the control unit is full
of P-phase and indicates molten steel.

2.3. Model Domain and Boundary Conditions

Figure 1 shows the model domain and the computational grid used for the simu-
lations. A straight-through SEN was adopted, as well as a billet mold with a section of
160 mm × 160 mm and a length of 900 mm. The mold’s outlet was extended by 600 mm
to ensure the full development of turbulence. As shown in Figure 1a, a three-dimensional
mold of a 1/4 model was built considering the symmetry of the model. The number of
grids and the calculation time were significantly reduced with guaranteed calculation
accuracy. Taking into account the influence of slag on the steel–slag interface, a slag layer
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of 50 mm was added to the top of the molten steel, and the grid of the steel–slag interface
was encrypted to improve the simulation accuracy, as shown in Figure 1c.
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Figure 1. (a) Model domain, (b) billet section, and (c) computational grid in the simulations.

The SEN was located in the upper part of the mold, and molten steel was poured
through the velocity-inlet boundary based on a mass balance with the casting speed.

vinlet =
voutlet Aoutlet

Ainlet
= vz (8)

vx = vy = 0 (9)

where vinlet is the inlet velocity of steel; voutlet is the casting speed; Ainlet and Aoutlet are the
areas of the SEN inlet and mold outlet, respectively; and vx, vy, and vz are the velocity
components of the inlet velocity in the x, y, and z directions, respectively.

The turbulence parameter was set to k and ε, calculated according to the empirical
formula.

k = 0.01v2
inlet (10)

ε =
k1.5

DSEN
(11)

where DSEN is the diameter of the SEN outlet.
The physical parameters of the molten steel and the slag are shown in Table 1. The

absorption of the slag’s composition and inclusions in the molten steel were not considered
to facilitate the calculation. Based on the composition of slag and molten steel, the interfacial
tension between the molten steel and slag was calculated to be 1.35 N/m [31].
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Table 1. Operation conditions of the billet continuous casting.

Parameters Values

Mold section (mm ×mm) 160 × 160
Effective length of mold (mm) 900

Computational length of mold (mm) 1500
Steel density (kg/m3) 7200
Steel viscosity (Pa·s) 0.0065
Slag density (kg/m3) 2600
Slag viscosity (Pa·s) 0.1

Thickness of slag layer (mm) 50
Interfacial tension between molten steel and slag (N/m) 1.35

A mass flow outlet condition was applied to the bottom of the domain at the mold’s
exit. The liquid level of the billet mold was assumed to be in a fixed and free-slip condition.
Additionally, all mold walls were assumed to be stationary and non-slipping. Unsteady
simulations were selected for describing the movement of molten steel in the mold due
to the time-varying flow field in the mold. In the present work, the time step for the
calculation was 0.001 s.

The computational domain was dissected using a hexahedral mesh. The finite volume
method was employed to discretize the conservation equations, and the Semi-Implicit
Method for Pressure-Linked Equations (SIMPLE) algorithm was used to complete a coupled
calculation of pressure and velocity. The least squares cell-based and PRESTO! algorithms
were used to identify differences in gradients and pressure terms, respectively. When
the residuals of the energy equation were lower than 10 × 10−6, and the residuals of the
other physical variables were less than 10 × 10−3, the calculations could be regarded as
converging.

3. Results and Discussion
3.1. Effects of Casting Speeds

Symmetrical-plane flow fields in the mold at different casting speeds are exhibited in
Figure 2, where the SEN depth was 80 mm and the inner diameter was 40 mm. The main
stream of molten steel flowed to the bottom of the mold after passing through the straight-
through SEN, and its jet velocity gradually decreased along the impact direction. The
molten steel flow was fully developed, as there was more space in the vertical direction of
the mold. The stream gradually diverged towards the mold wall during the development
process, and the radial velocity of the molten steel declined alongside this increase in
divergence. Although the throughputs of molten steel by mold (1.92, 2.30, and 2.69 m3/h
for 5.0, 6.0, and 7.0 m/min casting speeds, respectively) increased alongside an increase
in casting speed, this had only a minor effect on the speed of the molten steel in the
low-flow-velocity area of the mold as well as on the flow pattern of the molten steel.

The molten steel streamline diagram shows that jet flows caused the inner wall of
the lower part of the mold to split either downward or upward. The upward flow to
the meniscus flowed back along the upper wall, leading to a disturbance in the liquid
level. Affected by the Bernoulli effect, the slower surface flow was carried back to the
SEN, producing a raceway with a new jet flow. This raceway expanded with casting speed,
which resulted in a deeper impact depth and higher liquid level. The flow pattern in the
mold was a single-roll flow (SRF), and the raceway was mainly distributed in the middle
and upper parts of the mold. The downward flow followed the direction of the continuous
casting and continued to move downward, evolving fully developed turbulence.
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The impact depth, which is a crucial indicator in determining the floating of inclusions
in the mold, is defined as the distance from the meniscus to the location where the molten
steel velocity on the mold’s central axis matches the casting speed. When the impact depth
was excessively deep, inclusions are captured by the shell, making it difficult for them to
float, and the liquid level activity was weakened and developed a difficulty melting slag.
In contrast, slag entrapment and other problems appeared at shallow impact depths. As
shown in Table 2, when the inner diameter of the SEN was 40 mm, and the immersion
depth was 80 mm, changes in casting speed had little effect on jet impact depths or raceway
center positions. When the casting speed was increased from 5.0 to 7.0 m/min, the impact
depth and the position of the raceway center were located near 316 and 352 mm, indicating
that neither were sensitive to the change in casting speed.

Table 2. Effect of casting speed on impact depth and raceway center position of molten steel.

Casting Speeds (m/min) Impact Depth (mm) Distance from Raceway
Center to Liquid Level (mm)

5.0 315 351
6.0 316 352
7.0 317 353

Figure 3 reveals the distribution of the liquid level velocity of molds at different casting
speeds. The average liquid level flow velocities were 0.037, 0.041, and 0.508 m/s for the
casting speeds of 5.0, 6.0, and 7.0 m/min, respectively, while the maximum flow velocities
were 0.067, 0.081, and 0.100 m/s, respectively. In addition, the flow of molten steel was
faster in the middle of the liquid level than in the outer wall or corner of the SEN. The
high-speed area of the liquid level kept growing as the casting speed rose, and the area of
the dead zone kept decreasing but could not easily be eliminated.
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The molten steel’s behavior varied from position to position at the liquid level. Gen-
erally, the molten steel’s activity at the center of the liquid level was much faster than at
the corner of the mold. Turbulence kinetic energy and liquid level fluctuation were critical
indexes of level stability. Three typical data sampling points were selected at the liquid
level, according to the simulation results, to analyze the molten steel behavior at the mold’s
steel–slag interface, as shown in Figure 4.
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Figure 5 shows the changes to turbulent kinetic energy at the liquid level alongside
changes to casting speed. Overall, the turbulent kinetic energy strengthened with the
rise of casting speed. The turbulent kinetic energy at the middle of the liquid level was
substantially stronger than at the corners. Based on the jet theory, as the initial kinetic
energy of a jet increases, the degree of disturbance from the jet to the surrounding fluid
also rises. Therefore, a boost in casting speed results in a stronger turbulent kinetic energy
in the raceway, but flow is commonly weaker at the mold’s corners because of the wall
effect, which is consistent with the results in Figure 3.
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An increase in liquid level velocity and turbulent kinetic energy was directly reflected
in an increase in liquid level fluctuation. The fluctuation of liquid levels at different casting
speeds is exhibited in Figure 6. The maximum fluctuation of the liquid level at 5.0, 6.0, and
7.0 m/min were 2.54, 3.06, and 5.64 mm, respectively. Higher casting speeds caused the
liquid level disturbance to widen and the liquid level to fluctuate more drastically at each
position. In practice, liquid level fluctuation is required to be controlled within 3.0 mm to
improve the quality of billet. However, level fluctuation was excessive when casting speeds
were 6.0 and 7.0 m/min, which improved the opportunity for slag entrapment significantly.
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In summary, while the flow patterns of the mold’s flow field at different casting speeds
were identical, and the liquid level velocity was within a reasonable range, the liquid
level fluctuations at 6.0 and 7.0 m/min casting speeds were overly wide, resulting in slag
entrapment and affecting the final product quality. Relatively, the impact depth of molten
steel at a 5.0 m/min casting speed was the shallowest, which may have driven the high-
temperature area in the mold to move up, and the fluctuation range of the liquid level was
also in an ideal state. Therefore, a 5.0 m/min casting speed is the best in these working
conditions.

3.2. Effects of SEN Immersion Depths

The SEN immersion depth was also an important factor in determining the flow field
of molten steel. The flow field at different immersion depths when the casting speed was
5.0 m/min and the inner diameter of the SEN was 40 mm is shown in Figure 7; the red
horizontal line in the figure shows the position of the raceway center. An increase in the
SEN immersion depth led to the overall downward movement of the high-velocity region,
resulting in the downward movement of the impact depth and the raceway center position.
However, there were no changes to the flow velocity of molten steel at the SEN outlet as
there were for flow field characteristics. Once entering the mold, the jet impinged towards
the bottom. Then, the weaker stream diverged towards the wall and flipped upward along
the wall for backflow movement. The size of the raceway at different immersion depths
was substantially homologous.

As shown in Table 3, with an increase in the immersion depth of the SEN, the impact
depth and the position of the raceway center exhibited an obvious downward trend. The
change in impact depth was slightly greater than that of the immersion depth, while the
change in raceway center position was nearly consistent with the change in immersion
depth. When the immersion depth was 160 mm, the jet impact depth and the raceway
center position reached their deepest points.
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Table 3. Effect of immersion depth on the impact depth and raceway center position of molten steel.

Immersion Depth (mm) Impact Depth (mm) Distance from Raceway
Center to Liquid Level (mm)

80 315 351
120 362 392
160 412 434

The depth of the jet impingement and the position of the raceway were closely related
to the molten steel velocity in the mold. The disturbance of the liquid level tended to decline
alongside a rise in the distance from the raceway to the liquid level. Figure 8 exhibits the
distribution of the liquid level flow velocity in the mold under different immersion depths.
The change in immersion depth from 80 mm to 160 mm had a crucial influence on liquid
level velocity. With an increase in immersion depth, the maximum flow velocity of the
liquid level decreased continuously. The maximum flow velocities at immersion depths of
80, 120, and 160 mm were 0.066, 0.054, and 0.045 m/s, respectively. When the immersion
depth was 160 mm, the maximum flow velocity of the liquid level was 32% lower than
when the immersion depth was 80 mm. Therefore, compared with the effects of casting
speed, an increase in immersion depth has a greater effect on reducing flow velocity.
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As a result of the downward movement of the impact depth and raceway, the area
of the dead zone at the corner was constantly expanding. The temperature drop at the
corner of the billet was too steep under the effects of two-dimensional heat transfer and
entered the low-temperature brittle zone, resulting in corner cracks. Moreover, the renewal
of molten steel on the corner’s surface was slow, which was not conducive to the slag’s
descent into the channel between the mold wall and the primary billet shell, and weakened
the billet’s quality.

The liquid level’s turbulent kinetic energy distribution is illustrated in Figure 9. The
minimum amount of turbulent kinetic energy appeared at the corner of the mold, which
indicates that the fluidity of the molten steel was poor and that inclusions tended to
accumulate. Nevertheless, the molten steel flow in the middle of the liquid level was
completely developed, which is conducive to improving the quality of the billet.
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Liquid level fluctuation was the dominant index for measuring the fluidity of a
flow field in the upper part of a mold. In contrast, the longitudinal crack index of a
slab increased with a rise in liquid level fluctuation. The fluctuation of the liquid level at
different immersion depths is exhibited in Figure 10. The maximum fluctuation values were
2.54, 2.06, and 1.41 mm at immersion depths of 80, 120, and 160 mm, respectively, while the
fluctuation decreased by 19% and 32%. This indicates that the change in immersion depth
greatly influenced the liquid level fluctuation; the collision point between the jet and the
wall was closer to the liquid level when the immersion depth was shallower. Subsequently,
there was less energy loss from kinetic energy being converted into gravitational potential
energy during the rising process of the jet, and the raceway area was closer to the free
surface, leading to a more significant liquid level fluctuation.
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The following formula is the expression for upstream momentum:

F =
ρQVm(1− sin α)

4D
(12)

where, F is the characteristic value of upstream momentum, ρ is the molten steel density, Q
is the outlet flow, Vm is the velocity at which the stream reaches the narrow surface, and α
is the impact angle of the stream.
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It was determined using this formula that the kinetic energy of the upstream flow and
the liquid level fluctuation decreased with the enhancement of the SEN immersion. This
was performed on the premise of determining the casting speed and SEN angle.

To sum up, when the casting speed was 5.0 m/min and the inner diameter of the SEN
was 40 mm, the maximum flow velocity of the liquid level was reasonable at different
immersion depths. When the liquid level fluctuated under 3.0 mm, slag entrapment on the
liquid level had little effect. Therefore, without considering slag entrapment, immersion
depth can be reduced to intensify liquid level disturbance and, thus, improve the melting
rate of slag. From the perspective of impact depth, an immersion depth of 80 mm is also
more conducive to the upward movement of the high-velocity zone and the promotion of
inclusion floating. Consequently, considering the melting rate of the slag and the efficiency
of inclusion removal, an immersion depth of 80 mm is more suitable.

3.3. Effect of SEN Inner Diameters

Figure 11 compares the flow field of the symmetrical plane of the mold with different
SEN inner diameters when the casting speed was 5.0 m/min and the SEN immersion
depth was 80 mm. The velocity of the molten steel jet at the outlet of SEN slowed down
from 1.6 m/s to 1.2 m/s, and the main stream of molten steel thickened with the increased
SEN inner diameter. Although the longitudinal space was compressed and the raceway
tended to decline, the flow pattern of the molten steel showed a minor change. The proper
enhancement of the inner diameter promises to reduce the initial velocity of the jet and
the scouring of the stream on the solidified shell on the mold wall, which is conducive to
high-speed casting.
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With the expansion of the inner diameter of the SEN, the jet’s impact depth gradually
deepened while the formation position of the raceway center moved up (Table 4). When
the inner diameter of the SEN was 50 mm, its impact depth reached its deepest point at
362 mm, and the formation position of the raceway was the nearest to the liquid level, at
only 337 mm.
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Table 4. Effect of inner diameter on the impact depth and raceway center position of molten steel.

Inner Diameters (mm) Impact Depth (mm) Distance from Raceway
Center to Liquid Level (mm)

40 315 351
45 343 346
50 362 337

Figure 12 exhibits the flow field of the liquid level at different inner diameters of the
SEN. When the inner diameter of the SEN was 40, 45, and 50 mm, the maximum flow rate
of the liquid level was 0.066, 0.057, and 0.048 m/s, respectively. A decrease in the liquid
level flow velocity also directly led to the expansion of the dead zone area at the corner of
the mold, where the inclusion collided and polymerized. With the same molten steel flux,
the expansion of the SEN inner diameter caused the raceway to move up, but the increase
in impact depth decreased the kinetic energy of the rising and backflow significantly and
subsequently slowed down the liquid level flow.
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Figure 12. The effect of inner diameter on the flow field at the liquid level of the mold. (a) 40 mm;
(b) 45 mm; (c) 50 mm.

The distribution of turbulent kinetic energy at different SEN inner diameters is illus-
trated in Figure 13. The maximum turbulent kinetic energy at each position of the liquid
level decreased with an increase in the SEN inner diameter. It reached its maximum when
the inner diameter was 40 mm, and its behavior law was similar to the liquid level flow
velocity. The wall effect influenced molten steel on the outer wall and at the corner of the
SEN, and turbulence had difficulty developing.
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Figure 13. Effect of inner diameter on turbulent kinetic energy of the mold’s liquid level. (a) 40 mm;
(b) 45 mm; (c) 50 mm.

Figure 14 reveals the fluctuation of the liquid level at different SEN inner diameters,
showing that the fluctuation amplitude of the liquid level decreased with an increase in
the SEN inner diameter. The maximum fluctuation of SEN liquid levels at 40, 45, and
50 mm inner diameters was 2.54, 1.98, and 1.40 mm, respectively. As a result of the
shallow immersion depth, the “Bernoulli effect” was slightly active near the SEN wall.
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Still, the maximum fluctuation of the liquid level at different inner diameters was within a
reasonable range.
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In general, when the casting speed was 5.0 m/min and the immersion depth was
80 mm, an enhancement of the SEN inner diameter may have brought about an increase
in its impact depth and a rising of the raceway. However, the molten steel flow velocities
and fluctuations were consistently within a reasonable range without considering slag
entrapment. Therefore, to accelerate the slag’s melting rate and prevent the solidified shell
from thinning at the lower part of the mold, a SEN with an inner diameter of 40 mm is
more conducive to high-speed casting.

4. Conclusions

In this paper, the influences of casting speed, SEN immersion depth, and SEN inner
diameter on the flow field in a mold at an ultrahigh casting speed were studied using
simulation. The main research indicators included the symmetrical plane flow field of the
mold, its liquid level velocity, its turbulent kinetic energy, and the fluctuation of the liquid
level. The main conclusions were as follows:

(1) The mold’s flow field patterns at different casting parameters were SRF, and there was
no obvious change. The position where the liquid level flow velocity and fluctuation
amplitude were the largest is concentrated in the middle of the liquid level. The
turbulence of molten steel at the corner of the mold is difficult to develop, which can
easily cause inclusion accumulation.

(2) Changes to the casting speed had a minimal influence on the impact depth of the
molten steel jet and the position of the raceway center. The velocity and fluctuation
amplitude of the liquid level increased with the acceleration of the casting speed.
When the casting speed was 7.0 m/min, the maximum velocity of the liquid level
reached 0.1 m/s, and the maximum fluctuation value of the liquid level reached
5.64 mm.

(3) When the SEN immersion depth deepened, the flow field in the mold moved down-
ward as a whole, and changes to the impact depth and raceway center position
were close to the shift of the immersion depth. When the SEN immersion depth
was 160 mm, the liquid level flow velocity and liquid level fluctuation reached their
minimum points of 0.066 m/s and 2.54 mm, respectively.

(4) Although increasing the inner diameter of the SEN deepened the impact depth,
it effectively weakened the initial velocity of the molten steel jet and reduced the
scouring effect on the solidified shell. The main stream, after the inner diameter
increased, also compressed the longitudinal space of the mold, reduced the overall
area of the raceway, slowed down the liquid level disturbance, and facilitated high-
speed casting. The velocity and fluctuation of molten steel at the liquid level also
slowed down with the expansion of the inner diameter.

The direction of research into continuous casting technology is shifting towards
ultrahigh-speed casting. In addition to the fundamental parameters of the SEN, further
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research on supporting facilities, such as electromagnetic systems, is necessary for the
advancement of continuous casting.
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