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Abstract: In order to save the time and cost of friction and wear experiments, the coating composition
(different contents of Al, Ti, and Cu elements), ratio of hardness and elastic modulus (H®/E2), vacuum
heat treatment (VHT) temperature, and wear form were used as input variables, and the wear rates of
high-entropy alloy (HEA) coatings were used as output variables. The dataset was entirely obtained
by experiment. Four machine learning algorithms (classification and regression tree (CART), random
forest (RF), gradient boosting decision tree (GBDT), and adaptive boosting (AdaBoost)) were used
to predict the wear resistance of HEA coatings based on a small amount of data. The results show
that except for the GBDT model, the other three models had good performance. Because of the small
amount of data, the CART model demonstrated the best prediction performance and can provide
guidance for predicting the wear resistance of AlICoCrFeNi-X (Ti, Cu) HEA coatings for drilling
equipment. Furthermore, the contribution of different factors to the wear rate of AICoCrFeNi-X
(Ti, Cu) HEA coatings was obtained. Al content had the greatest influence on wear rate, followed by
H3/E?, wear form, and VHT temperature.

Keywords: high-entropy alloy coating; HVOF; wear; machine learning

1. Introduction

Wear is a common form of part failure, and improving the wear resistance of materials
can increase the service life of parts. Metallurgy, drilling, mining, electric power, water
conservancy, and agricultural industries have high requirements for the wear resistance
of mechanical equipment [1-3]. Research regarding high-entropy alloys (HEAs) has been
widely concerned with four significant effects: the high-entropy effect, delayed diffusion
effect, lattice distortion effect, and cocktail effect [4-6]. HEAs demonstrate greater strength,
hardness, and wear resistance compared with traditional alloys [7,8]. Among the HEAs,
the CoCrFeNi-based HEAs are the most widely studied [9,10]. Due to the larger atomic
radius of Al, the lattice constant and deformation of high-entropy alloys will increase
significantly with the addition of Al content, which will lead to changes in its phase
microstructure and mechanical properties. In addition, increasing the Al content will
cause solid solution strengthening by forming strong covalent bonds with neighboring
atoms [11-13]. The specific strength of Ti is very high, the larger atomic radius can cause
lattice distortion and achieve solid solution strengthening, and Ti has been proven to
increase the hardness of HEAs [14]. Therefore, the addition of Ti is also expected to improve
the wear resistance of HEAs. Pure copper has good plasticity, and the addition of Cu
may lead HEAs to demonstrate better self-lubrication, thereby improving the tribological
properties of HEAs [15].

The preparation of wear-resistant coatings is one of the methods used to enhance the
wear resistance of the materials. Thermal spraying technology is a method that uses a heat
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source to heat the spraying material to a molten or semi-molten state and then sprays a
deposition material at a particular rate onto the pretreated substrate surface to form the
coating. Thermal spraying techniques include flame spraying and plasma spraying, which
are widely used in the preparation of wear-resistant HEA coatings [16,17]. Thermal-sprayed
coatings often have defects such as local segregation, cracks, and pores. Heat treatment is
a common post-treatment process for sprayed coatings. Appropriate heat treatment can
effectively homogenize the microstructure of the coating, reduce component segregation,
and improve the wear resistance of the coating [18,19].

Wear testing has a high cost and a long test time, and it requires special test equipment.
Moreover, there are many factors affecting wear, such as material composition, preparation,
hardness, surface roughness, wear parameters, etc. [20-24]. These factors often have nonlin-
ear relationships. Machine learning has strong processing ability in dealing with nonlinear
data and can be used to deal with complex data and analyze correlations; therefore, using
machine learning algorithms to predict material wear is a potentially effective means which
can greatly save test costs and time and improve research efficiency [25,26].

Studies have been carried out on machine learning algorithms for predicting material
wear [27,28]. Ulas et al. [29] predicted the wear loss of plasma transfer arc welding coatings
by using four different machine learning algorithms (artificial neural network, extreme
learning machine, kernel-based extreme learning machine, and weighted extreme learning
machine). These four machine learning algorithms predicted the amount of wear of
different coatings. The weighted extreme learning machine learning algorithm showed
the highest prediction accuracy for the wear loss of coatings. Altay et al. [30] predicted the
wear amounts of ferro-alloy coatings by using different machine learning algorithms (linear
regression and Gaussian process regression). The results show that these three machine
learning models can effectively save test time and reduce friction and wear test costs. The
Gaussian process regression algorithm demonstrated the best performance for predicting
the wear loss of ferro-alloy coatings. A neural network algorithm was used to model the
database by using coating microhardness, load, environment, and friction test duration
as the input variables and wear amount as the output variable, and the predicted results
were in good agreement with the experimental results [25]. A machine learning method
(artificial neural network) was also used to predict the erosion wear rate of cermet coatings
prepared by the high-velocity oxygen fuel and flame spray flexicord techniques [31].

AlCoCrFeNi-X (Ti, Cu) HEAs are a powerful candidate for wear-resistant materi-
als, and wearable components in drilling equipment often require the preparation of
wear-resistant coatings on their surfaces to improve their wear resistance. Therefore,
HVOEF-sprayed AlCoCrFeNi-X (Ti, Cu) HEA coatings are expected to be applied in drilling
equipment. In the past, experimental methods were often used to analyze the amount of
material wear, which cost a great deal of time and money. With the rise of computer science,
machine learning technology was used to predict material wear. The machine learning
methods selected in previous relevant studies often required large amounts of data, but
the amount of data on material wear is often limited; thus, the accuracy of prediction was
not high enough. Therefore, based on a limited dataset, this study adopts the classifica-
tion and regression tree (CART) machine learning algorithm—compatible with limited
datasets—and the derived algorithms (random forest (RF), gradient boosting decision tree
(GBDT) and adaptive boosting (AdaBoost)) based on the CART algorithm to predict the
wear rate of AlICoCrFeNi-X (Ti, Cu) HEA coatings in drilling equipment. It is hoped that
an optimized model for predicting the wear-resistant AICoCrFeNi-X (Ti, Cu) HEA coatings
for drilling equipment will be obtained so as to improve the efficiency of scientific research
and save costs.

2. Methodology

This study was mainly carried out in three steps, as shown in Figure 1. Step 1:
determine the input variable and collect relevant data. Step 2: select and analyze the
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machine learning models. Step 3: evaluate the performance of the machine learning models
and analyze the feature importance of input variables.
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Figure 1. The analysis framework for machine learning.

2.1. Input Variable Determination and Data Collection
2.1.1. Input Variable Determination

The effect of composition (Al, Ti, and Cu) on the wear of AlICoCrFeNi-X (Ti, Cu) HEA
coatings was explained in the introduction. The ratio of hardness and elastic modulus
(H3/E?) can reflect the elastic strain and the resistance to plastic deformation of the coatings,
and H3/E2 can reflect the wear resistance of the material [32]. The higher the ratio of H3/E?,
the better the wear resistance of the coating. Vacuum heat treatment (VHT) can improve
the microstructure and mechanical properties of the coatings, but the mechanical properties
of the coatings are different after VHT at different temperatures. Moreover, the wear of
the coatings is affected by the wear form. Different wear forms (such as dry wear and wet
wear) are very important to the wear rate of the coatings. Therefore, the input variables
of the machine learning models were the coating composition (different contents of Al, Ti,
and Cu elements), ratio of hardness and elastic modulus (H3 /E?), VHT temperature, and
wear form.

2.1.2. Data Collection

The dataset in this study was obtained entirely by experiments. HEA powders were
prepared by vacuum atomization; according to atomic percentage, these can be expressed as
A10.4C0CrFeNi, AloyCOCI‘FeNi, AlCoCrFeNi, A10'875Ti()'125COCI'FENi, A10775Ti0.25COCI'FeNi,
and AlCoCrFeNiCu, and the six mixture powders were denoted as 1, 2, 3, 4, 5, and 6,
respectively. The coatings were prepared on an AISI 4135 steel (a common material used
in drilling equipment) substrate by HVOF technology (GTV MF-P-HVF-FP-K 2000 HVOF
system). The flow rates of Ny, Hp, and O, were 20, 580, and 190 slpm, respectively. The
powder feed rate was 40 g/min and the spray distance was 230 mm. The microstructure of
HVOF-sprayed AlCoCrFeNi-X (Ti, Cu) HEA coatings is shown in Figure 2. The coating
was well combined with the substrate, and there were few pores and local segregation.

Then, the sprayed coating was subjected to VHT at different temperatures (500, 700,
and 900 °C) for 4 h. The AlCoCrFeNi-X (Ti, Cu) HEA coatings subjected to different
temperature VHT were sorted by composition, and the 24 coatings were labeled 1, 2, ...,
24, respectively. A nano-indentation test was carried out using a nano-indenter (AGILENT
U9820A, Nano Indenter G200, KLA-Tencor, Milpitas, CA, USA) with a maximum load of
10 mN and a holding time of 20 s. Each sample used for nano-indentation test was tested
5 times. The nano hardness and elastic modulus of the coating were obtained through the
nano-indentation test. Figure 3 shows the ratio of hardness to elastic modulus (H3/E?) of
the HEA coatings.
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Figure 2. Microstructure of HVOF-sprayed AlICoCrFeNi-X (Ti, Cu) HEA coatings. (a) Alg4CoCrFeNi;
(b) Aly7CoCrFeNi; (c¢) AlICoCrFeNi; (d) AlygysTig125CoCrFeNi; (e) Alg75Tigo5CoCrFeNi; and

(f) AlCoCrFeNiCu.
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Figure 3. Ratio of hardness to elastic modulus (H3/E?) of HEA coatings with different parameters.

The friction and wear tests of HEA coatings were performed using a UMT-Tribolab
tribometer (Bruker, Saarbriicken, Germany), shown in Figure 4. The grinding ball was Si3Ny
with a diameter of 6 mm, a load of 5 N, a wear scar length of 5 mm, a sliding frequency of
4 Hz, and a wear time of 30 min. The experimental parameters of friction and wear in a
drilling fluid environment (wet) were consistent with those of the dry friction and wear
experiment (dry) except for the different environment. The drilling fluid was composed of
5% KCl, 4% bentonite, 0.25% NapyCOs3, and 0.5% xanthan gum (wt.%) with pH value of 9.
The wear experiment was repeated three times under each experimental parameter. The
coating wear rate was calculated according to the formula Q = %, where Q is the wear
rate (mm3-N~1.m~1), V}y is the wear volume (mm?), N is the applied load (N), and S is the
total sliding distance (m) [33]. N and S are determined. Vyy can be obtained by multiplying
the cross-sectional area of the wear scar by the length of the wear scar. The cross-sectional
area of the wear scar can be measured by a 3D white light interferometer (NeXView, ZYGO,
Middlefield, CT, USA), but there must be some error. In order to minimize the error,
the average cross-sectional area of the three positions of the wear scars was used as the
average cross-sectional area, and the average cross-sectional area was multiplied by the
length of the wear scars to obtain the wear rate of the coating. Therefore, the friction and
wear experiments of 24 kinds of HEA coatings with different parameters were carried out
three times in two different environments (dry sliding wear or wet sliding wear); thus,
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144 groups of wear data were obtained. The HEA coatings with different parameters were
numbered, and the sample numbers of HEA coatings are shown in Table 1. The wear rates
of HEA coatings with different parameters are shown in Figure 5. The wear resistance of
the coating is closely related to the wear rate. The lower the wear rate of HEA coatings, the

better the wear resistance.

Figure 4. The experiment on the UMT-Tribo-lab tribometer.

Table 1. Sample numbers of HEA coatings with different parameters.

Sample Number Mixture Powder VHT (°C) Wear Form
S1 1 Untreated Dry
S2 2 Untreated Dry
S3 3 Untreated Dry
S4 4 Untreated Dry
S5 5 Untreated Dry
S6 6 Untreated Dry
S7 1 500 Dry
S8 2 500 Dry
S9 3 500 Dry

510 4 500 Dry
S11 5 500 Dry
512 6 500 Dry
513 1 700 Dry
S14 2 700 Dry
515 3 700 Dry
516 4 700 Dry
517 5 700 Dry
518 6 700 Dry
519 1 900 Dry
520 2 900 Dry
521 3 900 Dry
522 4 900 Dry
523 5 900 Dry
524 6 900 Dry
525 1 Untreated Wet
526 2 Untreated Wet
527 3 Untreated Wet
528 4 Untreated Wet
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Sample Number Mixture Powder VHT (°C) Wear Form
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532 2 500 Wet
533 3 500 Wet
534 4 500 Wet
535 5 500 Wet
536 6 500 Wet
537 1 700 Wet
538 2 700 Wet
539 3 700 Wet
540 4 700 Wet
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Figure 5. Wear rates of HEA coatings with different parameters. (a) Untreated (dry); (b) 500 °C
(dry); (c) 700 °C (dry); (d) 900 °C (dry); (e) Untreated (wet); (f) 500 °C (wet); (g) 700 °C (wet); and
(h) 900 °C (wet).

2.2. Machine Learning Models

The coating composition (different contents of Al, Ti, and Cu elements), H3/E2, VHT
temperature (500, 700, and 900 °C) and wear form (dry sliding wear or wet sliding wear)
were used as input variables, and the wear rates of HEA coatings with different param-
eters were used as output variables. To test the model used to predict the wear rate of
AlCoCrFeNi-X (Ti, Cu) HEA coatings, the dataset was divided into two parts: the training
dataset and the test dataset. The training dataset included 126 samples (87.5% of all data)
and the test dataset included 18 samples (12.5% of all data). Training and predicting wear
rates by using the scikit-learn (0.24.2) algorithm database in Python 3.9. Four machine
learning algorithms were used to model the test dataset: CART, RF, GBDT, and AdaBoost.
The introduction of the four machine learning algorithms is as follows:

The CART model is a kind of decision tree, and it can be used to create classification
trees and regression trees. This algorithm uses the Gini index based on the minimum
distance to estimate the function, with high computational efficiency. The CART algorithm
can allow partial misclassification and appears very robust in the face of problems such as
missing values and many variables. When the dataset is small, this algorithm often has
high prediction accuracy, but it is prone to overfitting.

The RF model is an integrated learning algorithm based on trees. It is an integrated
technique to obtain final prediction results from multiple decision trees, and it can be
used for classification and regression tasks. The basic principle of the RF algorithm is
as follows: Samples from the training set are randomly selected to build a decision tree.
Then, repeating the process, multiple trees are built, and, finally, the results of each tree
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are aggregated as the final forecast. The advantage of the RF algorithm is that it can make
good use of the existing data, can extract useful information from the data, and has high
accuracy. It can deal with a large number of features effectively and has a certain degree of
fault tolerance [34].

The GBDT model is a gradient boosting decision tree algorithm, developed rapidly
in machine learning algorithms in recent years. This algorithm uses the weak learning
algorithm to construct a strong learning model several times iteratively. It is an integrated
algorithm composed of multiple weak learners. The basic idea of the GBDT algorithm is to
combine the results of multiple weak learners to improve the prediction accuracy of the
classifier. The GBDT algorithm is an iterative algorithm; each iteration will build a decision
tree, and each tree will be built based on the error of the last tree, so as to build a stronger
set of decision trees and provide more accurate results [35].

The AdaBoost model is an iterative algorithm that uses a series of weak classifiers
to build a strong classifier and effectively converts the learning task into an optimization
problem. The basic principle of the AdaBoost algorithm is to allow weak classifiers to
better fit the data, thus improving the accuracy of classification. The AdaBoost algorithm
is simple, easy to implement, and can solve most classification problems. In addition,
AdaBoost algorithm has high accuracy and does not easily overfit. Therefore, the AdaBoost
algorithm can effectively solve the classification problem in machine learning [36].

The differences and connections between these four machine learning algorithms are
as follows: CART is a binary recursive segmentation technology that is an implementation
of a decision tree. It can be used for both classification tasks and regression tasks [37]. In
view of the data characteristics of this study, this algorithm was used to solve the regression
problem. The CART algorithm is a nonparametric method suitable for modeling with small
amounts of data and does not require prior assumptions about the relationship between
input variables. It mainly trains the model from the dataset. The other three algorithms
(RF, GBDT, and AdaBoost) are all derived and extended from this algorithm. RF is an
integration algorithm based on bagging that integrates multiple decision trees to train
and predict samples. Bagging can be simply understood as randomly sampling from the
dataset with replacement. Both GBDT and AdaBoost are boosting algorithms; that is, each
calculation is carried out to reduce the residual error of the previous one, strengthening
the weak decision tree continuously until the desired effect is achieved [38]. AdaBoost
uses misfraction data points to identify problems and improves the model by adjusting the
weight of misfraction data points. GBDT identifies problems through negative gradients
and improves the model by calculating negative gradients [39]. For a specific dataset, it
is incorrect to state that the more complex the algorithm, the better the prediction effect.
Therefore, these four machine learning algorithms were selected and their application
effects are discussed.

2.3. Model Performance and Feature Importance

The error between the predictive values using different machine learning algorithms
and the experimental values was analyzed in order to estimate the measurement uncertainty
of the obtained results. Aiming at the problem of overfitting of the algorithm, 10-k cross-
validation was used for verification to maximize the generalization ability of the model.
Multiple evaluation indicators were used to evaluate the prediction accuracy of machine
learning models, including the mean absolute error (MAE), root-mean-square error (RMSE),
and R-squared (R?). An optimized model for predicting the wear-resistant AlCoCrFeNi-X
(Ti, Cu) HEA coatings for drilling equipment was obtained. The feature importance of each
input variable was analyzed to evaluate the influence of different factors on the wear rate
of HEA coatings.

3. Results and Discussion

The experimental values and predictive values from different machine learning al-
gorithms are shown in Figure 6. It can be seen that the four machine learning algorithms
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were able to predict the wear rates of HEA coatings to a certain extent. The predictive
values from CART, RF, and AdaBoost are basically consistent with the experimental values;
therefore, these algorithms have higher prediction accuracy. Furthermore, GBDT has high
discreteness of individual data.
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Figure 6. Experimental and predictive values from different machine learning algorithms. (a) CART;
(b) RF; (c) GBDT; and (d) AdaBoost.

The errors between the predictive values using different machine learning algorithms
and the experimental values are shown in Figure 7. The error of the CART model is mainly
concentrated within —0.2 to 0.1, and that of RF is mainly concentrated within —0.2 to 0.4.
Part of the error of the GBDT model is large, with five groups of data exceeding £0.5, and
the rest are mainly concentrated within —0.3 to 0.4. The error of the AdaBoost model is
mostly concentrated within —0.1 to 0.1, among which the error of three groups of data is
more than +1.0. Because the AdaBoost algorithm is sensitive to outliers, the prediction
effect may not be very good when there is an order of magnitude difference in the dataset.
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Figure 7. Errors from different machine learning algorithms. (a) CART; (b) RF; (c) GBDT; and
(d) AdaBoost.

It is easy to overfit the data in the growth process of the decision tree; therefore,
10-k cross-validation was used for verification to maximize the generalization ability of
the model [40]. All data were used as test and training datasets for 10-k cross-validation,
and the accuracy of the four machine learning models was further tested using multiple
evaluation indicators. MAE is the average value of the absolute error, which is used to
evaluate the closeness between the prediction results and the real dataset. MAE can reflect
the actual situation of predicted error; the smaller the MAE value, the better the model
fitting effect. The equation is as follows [29]:

1 «N .
MAE = & Y0 —vil 1

RMSE is the square root of the ratio of the square sum of the deviation between the
observed value, the true value, and the observation number, which is used to measure
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the deviation between the observed value and the true value. RMSE is more sensitive to
outliers. The equation is as follows [29]:

1
RMSE = /4 T 7 ) @

R? is an effective indicator to measure the prediction ability of the regression model,
which can accurately reflect the accuracy of the prediction degree of the regression model.
This index often needs to be combined with other indicators to evaluate the fitting degree
of the regression model. The formula is as follows [29]:

A \2
R2—1— Y(yi —9i) ©)
(i —7)°

In the above four formulas, y; represents the actual value, J; represents the predicted
value, and y; represents the mean of all actual values. The evaluation indicators of dif-
ferent machine learning models and the results of evaluation indicators are shown in
Figure 8 and Table 2. The average MAE of the four models (CART, RT, GBDT, and Ad-
aBoost) is 3.3%, 5.0%, 7.2%, and 3.4%, respectively, and CART has the smallest MAE value.
The average RMSE is 5.7%, 8.0%, 9.7%, and 5.7%. The smaller the RMSE, the higher the
prediction accuracy of the model. The average values of MAPE are 4.4%, 10.0%, 18.9%, and
8.5% and the average values of R? are 99.0%, 98.0%, 94.0%, and 98.7%, respectively. The
closer R? is to 1, the higher the prediction accuracy of the model. A comprehensive analysis
of several evaluation indicators shows that all models achieved good results except for the
GBDT model, which also proves the reliability of the decision tree model for predicting the
wear rate of AICoCrFeNi-X (Ti, Cu) HEA coatings. Because of the small amount of data, the
CART model had the best prediction performance and can provide guidance for predicting
the wear resistance of AICoCrFeNi-X (Ti, Cu) HEA coatings for drilling equipment.
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Figure 8. Evaluation indicators of different machine learning models. (a) MAE; (b) RMSE; and (c) R2.
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Table 2. The results of evaluation indicators of different machine learning models.

Model MAE RMSE R2
CART 3.3% 5.7% 99.0%
RF 5.0% 8.0% 98.0%
GBDT 7.2% 9.7% 94.0%
AdaBoost 3.4% 5.7% 98.7%

Different input variables in the dataset have different effects on wear resistance of
AlCoCrFeNi-X (Ti, Cu) HEA coatings; therefore, the feature importance of input variables
affecting wear rates in the four models was evaluated separately, as shown in Figure 9. Some
variables are prominent, such as the Al element and addition amount. This phenomenon is
more obvious in AdaBoost. The addition of Al causes lattice distortion; with an increase
in the amount of added Al, lattice distortion is further intensified and the strength of
the coating improves [41]. The second is the wear form. The friction and wear failure
mechanism of HEA coatings under different environments (dry sliding wear or wet sliding
wear) are different. Drilling fluid not only plays a corrosive role in wear, but also plays
a lubricating role. The third is H3/E?; this data point can reflect the elastic strain and
resistance to plastic deformation of the coating. As a result, H/E? is closely related to wear
resistance. The fourth is the VHT temperature. VHT temperature affects the hardness and
elastic modulus of the coating, but the relationship between VHT temperature and these
factors is not linear. The addition of Ti and Cu in machine learning has the least effect on
wear rates of HEA coatings. It is worth noting that the addition of Ti and Cu elements does
not have zero effect on the wear resistance of AICoCrFeNi-X (Ti, Cu) HEA coatings, but it
has less impact on the wear rate compared with other influencing factors.

- Bl CART
- I R
I GeDT
04k AdaBoost
0
2
o]
=
203
§ 0.2
0.1
0.0 -
Al Ti Cu HY/E? Wet VHT

Figure 9. Feature importance of input variables.

It should be explained that there are some limitations in this study. First, for the
possible overfitting problem, we adopted the 10-k cross-validation method and solved
this problem well. Secondly, in terms of input variable determination, the addition of Ti
and Cu elements had no significant effect on the wear rate of AICoCrFeNi-X (Ti, Cu) HEA
coatings. This may be due to the fact that the addition of Ti or Cu also affects the content
of Al, so the relationship between these elements is not completely nonlinear. Thirdly, the
amount of data was limited by the experimental conditions. For example, only six different
compositions of powders were designed for HVOF spraying. In the future, the amount of
data will be further expanded to further improve the prediction accuracy of the machine
learning model.
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4. Conclusions

(1) The coating composition (different contents of Al, Ti, and Cu elements), ratio of
hardness and elastic modulus (H3 / Ez), VHT temperature (500, 700, and 900 °C), and wear
form (dry or wet) were used as input variables, and the wear rates of AICoCrFeNi-X (Ti, Cu)
HEA coatings were used as output variables. The dataset was obtained entirely by experi-
ment. Four machine learning algorithms (CART, RF, GBDT, and AdaBoost) were used to
predict the wear resistance of HEA coatings based on a small amount of data.

(2) All models demonstrated good performance except for the GBDT model, which
also proves the reliability of the decision tree model for predicting the wear rate of
AlCoCrFeNi-X (Ti, Cu) HEA coatings. Because of the small amount of data, the CART
model demonstrated the best prediction performance. After the use of 10-k cross-validation,
the average MAE, RMSE, and R? values of the CART model were 3.3%, 5.7%, and 99.0%,
respectively. The CART model can provide guidance for predicting the wear resistance of
AlCoCrFeNi-X (Ti, Cu) HEA coatings for drilling equipment.

(3) By analyzing the feature importance of input variables, the contribution of different
factors to the wear rate of AlICoCrFeNi-X (Ti, Cu) HEA coatings was obtained. Al content
had the greatest influence on wear rate, followed by H?/E?, wear form, and VHT tempera-
ture. The addition of Ti and Cu had no significant effect on the wear rate of AICoCrFeNi-X
(Ti, Cu) HEA coatings.
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