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Abstract: Microalloying and heat treatment have been regarded as an efficient way to get higher
wear resistance in high manganese steel, and multiscale precipitates can be obtained randomly by the
aging process; however, most of the previous work on heat treatment was more concerned with peak
aging time and not the synergistic mechanism of different sized precipitates. Here, we propose a
novel wear-resistant mechanism by multiscale precipitates regulated via a retrogression and re-aging
(RRA) process. Micron, submicron, and nano precipitates are obtained by the RRA process and jointly
form micro-scale ultrafine precipitation zones (MUPZs), which can protect the matrix surface and
reduce the abrasive embedded probability, thus ameliorating the micro-cutting and micro-plowing
mechanisms. This novel wear-resistant mechanism induced by MUPZs shows better effect under
high impact energy due to sufficient work hardening caused by the interaction between dislocations
and multi-scale precipitates in MUPZs. This work was investigated using SEM, EDS, and TEM,
combined with mechanical properties and impact abrasive wear tests.

Keywords: high manganese steel; precipitation behavior; retrogression and re-aging; impact abrasive
wear; wear-resistant mechanism

1. Introduction

High manganese steel has been widely used in the milling industry due to its good im-
pact toughness and work hardening ability. Recently, there has been extensive research on
alloying and heat treatment processes in order to improve impact wear resistance, enhance
the efficiency of beneficiation, and reduce manpower and material costs [1–5]. Microalloy-
ing elements such as Ti, V, and Nb were introduced to strengthen high manganese steel by
the precipitation of a large number of dispersed carbonitrides [6–10]. Many scholars have
done quite a lot of research work, especially in the characterization of precipitated phases,
the acquisition of peak aging, and the characterization of microstructures after impact
abrasive wear [11–13]. Some scholars proposed that manganese steel displays distinct wear
mechanisms depending on the level of impact loads. Specifically, slip is the dominant
mechanism at low loads, twinning is the primary force at medium loads, and martensitic
transformation becomes the main mechanism at high loads [14–16]. Wen and Agunsoye,
J.O., reported [17,18] that nano-scale precipitates with a large volume fraction obtained in
the alloyed high manganese steel will affect the propagation and movement of dislocations
during the impact abrasive wear process, form more dislocation entanglement areas, and
improve the material’s ability to resist deformation.

In order to obtain more precipitates, it is necessary to increase the addition amount of
microalloying elements; however, a higher concentration of alloying elements inevitably
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leads to the formation of sub-micron or even micron-sized precipitates during solidification
or solid-state cooling due to fluctuations in composition and energy. Zhou and Li [19,20]
indicated that micron-scale precipitates can resist abrasive wear by preventing abrasive
particles from embedding into the matrix due to their high hardness and stiffness, thereby
protecting the matrix from cutting actions; however, some research claimed that this micron
precipitates, due to poor bonding with the matrix, significantly reducing the comprehensive
mechanical properties of the material. Moreover, under actual impact abrasive wear
conditions, microscopic precipitates are prone to act as crack nucleation and extension
sources, leading to the detachment of the precipitates from the matrix in a short time,
which not only decreases the resistance to abrasive action but also deteriorates the surface
continuity of the matrix, exacerbating the problem of abrasive particles embedding in
subsequent processes.

Here, we propose a novel wear-resistant mechanism by multi-scale precipitates ob-
tained via a retrogression and re-aging (RRA) process [21–25]. Firstly, we promote a
pre-aging process to obtain high density of precipitates. Then, sub-micron precipitates
agglomerated on micron-scale precipitates in studied steel were dissolved by a regressive
process. Next, dispersed sub-micron and nano precipitates boomed and formed micro-
scale ultrafine precipitation zones (MUPZs) around the initial micron precipitates during
the re-aging process. Lastly, when the specimen underwent impact abrasive wear, due
to the synergistic effect of multi-scale precipitates, this micro-region showed excellent
performance against abrasive particles, and formed a uniform and smooth abrasive layer
on the matrix surface according to the crushing and friction of abrasive particles, which
can not only resists the embedding of abrasive particles directly but can also protect the
continuity of the matrix, make the matrix deformation uniform, and reduce the nucleation
and expansion of fatigue cracks during subsequent processes.

2. Materials and Methods

The studied microalloying high manganese steel prepared by conventional melting
and raw materials used for smelting experimental steel in this paper included the fol-
lowing: pig iron, scrap steel, ferrosilicon (Si = 85.6%), ferromanganese (Mn = 82.3%),
ferrochrome (Cr = 70.6%), pure copper (Cu > 99%), ferromolybdenum (Mo = 52.8%), nickel
plate (Ni = 57.6%), ferroniobium (Nb = 49.8%), ferrovanadium (V = 66.3%), ferrotitanium
(Ti = 51.7%), aluminum wire. N was added by melting ferrochrome nitride (N = 4.8%),
the chemical composition of raw materials is the mass percentage, and the metals were
smelted in a medium frequency induction furnace. The nitrogen content was measured
using a ONH-HMC oxygen, nitrogen, and hydrogen analyzer [26]. The carbon content was
measured using the Bruker G4 ICARUS infrared carbon sulfur analyzer [27], the remaining
elements were measured by Agilent 5110 Inductively Coupled Plasma Emission Spec-
trometer. (ICP-OES); the results are listed in Table 1. Subsequently, the samples with the
dimension of 200 mm × 20 mm × 20 mm were cut from the received ingot and then heated
to 1150 ◦C for 2 h and water-quenched to room temperature, to obtain a full austenite
structure. Next, the experimental samples (RRA) were firstly pre-aged at 450 ◦C for 23 h
and air-cooled, followed by a 15 min retrogression processing under 900 ◦C, then water
quenched. Finally, we carried out the re-ageing process at 450 ◦C for another 1 h and the
sample was air-cooled for the second time. The whole heat treatment process was described
in Figure 1.

Table 1. Compositions of studied steel (wt%).

C Mn Cr Si Ti V Nb Cu Ni Mo P S N

0.92 18.80 1.87 0.88 0.10 0.36 0.11 0.46 0.22 0.41 0.005 0.01 0.090
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Figure 1. Process diagram of retrogression and re-aging (RRA) treatment. 

The microstructures of the specimens were analyzed using various techniques. 
Firstly, the specimens were mechanically polished using 2000 grit size and then etched 
with 4% nitric acid for 20 s before being observed under a scanning electron microscope 
(SEM, ZEISS EVO 18) and a field emission scanning electron microscope (FE-SEM, 
Sigma250). Additionally, the morphology and size distribution of nano-sized precipitates 
were observed using a high-resolution transmission electron microscope (HRTEM, FEI 
Tecnai G2 TF30). Thin films used for HRTEM tests were mechanically thinned to about 
0.07 mm and then perforated in an electrolytic twin-jet solution of 8 vol% perchloric acid 
in ethanol at −25 °C. To determine the elements’ composition of the precipitates, energy 
dispersive spectrometer (EDS, Bruker XFlash 6) was used. 

The tensile samples were machined using a wire-cut electric discharge machine. 
Room temperature tensile tests were performed on a MTS E45.305 universal testing ma-
chine with laser extensometer at a grid speed of 1 mm/min. Micro-Vickers hardness tests 
were implemented for measuring the initial hardness of the matrix by using an automatic 
micro-Vickers hardness tester (Shimadzu, HMV-G). For initial hardness, a 7 × 12 matrix 
was imprinted onto the substrate with a spacing of 300 μm between each point. A hard-
ness distribution map of the sample after RRA was plotted. 

Impact abrasive wear tests were conducted using an impact abrasive wear tester 
(MLD-10, China) at different loads (2.5 J, 5 J), followed by SEM characterization of the 
wear surface and sub-surface cross section. The upper specimens were cut into 30 mm × 
10 mm × 10 mm cuboids from ingots that had undergone different stage of heat treatment 
processes (pre-aging, retrogression, and re-aging). The lower specimens were machined 
into ring shapes from a 40 Cr ingot. During the experiments, the upper specimen was 
impacted at a speed of 60 times per minute, while the lower specimen was rotated at a 
speed of 200 rpm. The abrasive used was quartz sand with a particle size of approximately 
50 mesh, and its flow rate was 30 kg/h. To ensure repeatability, tests under each condition 
were repeated three times. Prior to the tests, the specimens underwent a 15 min pre-wear 
process to ensure a stable contact surface between the upper and lower specimens. As the 
experiments continued, both the upper and lower specimens were removed every 30 min, 
washed with water, and ultrasonically cleaned in ethanol for 5 min. The mass variations 
were then recorded using a precision electronic balance (with a precision of 0.01 g) before 
being put back to continue the tests. 

  

Figure 1. Process diagram of retrogression and re-aging (RRA) treatment.

The microstructures of the specimens were analyzed using various techniques. Firstly,
the specimens were mechanically polished using 2000 grit size and then etched with
4% nitric acid for 20 s before being observed under a scanning electron microscope (SEM,
ZEISS EVO 18) and a field emission scanning electron microscope (FE-SEM, Sigma250). Ad-
ditionally, the morphology and size distribution of nano-sized precipitates were observed
using a high-resolution transmission electron microscope (HRTEM, FEI Tecnai G2 TF30).
Thin films used for HRTEM tests were mechanically thinned to about 0.07 mm and then
perforated in an electrolytic twin-jet solution of 8 vol% perchloric acid in ethanol at −25 ◦C.
To determine the elements’ composition of the precipitates, energy dispersive spectrometer
(EDS, Bruker XFlash 6) was used.

The tensile samples were machined using a wire-cut electric discharge machine. Room
temperature tensile tests were performed on a MTS E45.305 universal testing machine
with laser extensometer at a grid speed of 1 mm/min. Micro-Vickers hardness tests were
implemented for measuring the initial hardness of the matrix by using an automatic micro-
Vickers hardness tester (Shimadzu, HMV-G). For initial hardness, a 7 × 12 matrix was
imprinted onto the substrate with a spacing of 300 µm between each point. A hardness
distribution map of the sample after RRA was plotted.

Impact abrasive wear tests were conducted using an impact abrasive wear tester (MLD-10,
China) at different loads (2.5 J, 5 J), followed by SEM characterization of the wear surface
and sub-surface cross section. The upper specimens were cut into 30 mm × 10 mm × 10 mm
cuboids from ingots that had undergone different stage of heat treatment processes (pre-
aging, retrogression, and re-aging). The lower specimens were machined into ring shapes
from a 40 Cr ingot. During the experiments, the upper specimen was impacted at a speed
of 60 times per minute, while the lower specimen was rotated at a speed of 200 rpm. The
abrasive used was quartz sand with a particle size of approximately 50 mesh, and its flow
rate was 30 kg/h. To ensure repeatability, tests under each condition were repeated three
times. Prior to the tests, the specimens underwent a 15 min pre-wear process to ensure
a stable contact surface between the upper and lower specimens. As the experiments
continued, both the upper and lower specimens were removed every 30 min, washed with
water, and ultrasonically cleaned in ethanol for 5 min. The mass variations were then
recorded using a precision electronic balance (with a precision of 0.01 g) before being put
back to continue the tests.
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3. Results and Discussion
3.1. Microstructure Characterization

Figure 2 shows the morphology of the heterogeneous nucleation of sub-micron precip-
itates on initial micron precipitates after pre-aging stage, and it can be seen as a specimen
that has undergone a single-stage aging process. It can be observed that a large number of
spherical sub-micron precipitates nucleate at the edges of the micron precipitates. As shown
in Figure 2(a1), the micro-scale precipitates can be seen as two parts with a cubic core. An
energy spectrum point scan analysis was performed on this cubic core, and the results are
shown in Figure 2(a2). The main chemical composition of this cubic core precipitate is Ti, C,
and N, with small amounts of Nb and V, indicating that it is Ti(C, N) precipitated directly
from the liquid phase during the casting solidification process. In the subsequent heat
treatment process, other strongly precipitated elements, such as Nb and V, are wrapped
and grown in the form of a shell, forming irregular micro-scale precipitates with larger size
and more complex composition. Figure 2(b1,b2) show another typical precipitate, where
the subsequent shell-like precipitate is actually formed by the agglomeration of sub-micron
spherical precipitate clusters. This situation almost exists in every larger-sized micro-scale
precipitate, such as shown in Figure 2(c1–c3), where sub-micron precipitate clusters are
prone to agglomerate at their shell or edge positions, regardless of whether they have
grown into irregular shapes or still maintain their cubic shape. The size of these sub-micron
precipitate clusters is mostly around 200nm. Figure 2(c4) is an energy spectrum point scan
analysis image of sub-micron precipitates, which mainly contain Nb, V, C, and N, with
a particularly high content of V. Therefore, these agglomerated sub-micron precipitates
are mainly multi-component carbonitrides rich in V, which nucleate in a spherical form
and grow, and then continuously stack in a laminated form, ultimately causing further
coarsening of the micro-scale precipitates. This is consistent with the previous research by
Kuzucu et al. [28,29], which showed that when the alloying elements are more abundant
and the aging time is longer, it is easy to form large-sized multi-component precipitates
with core–shell structures.
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Figure 2. Microstructure and EDS analysis of heterogeneous nucleation of sub-micron precipitates on
micron precipitates after pre-aging process: (a1,a2) morphology and EDS spot analysis of precipitate
in area 1, (b1,b2) low and high magnification morphology of precipitates in area 2 (c1–c4) different
magnification morphology and EDS spot analysis of precipitates in area 3.

Figure 3 show the microstructure of micro-scale ultrafine precipitation zones (MUPZs)
near micron precipitates after the RRA process. Figure 3a demonstrates that after the RRA
process, the heterogeneous nucleation of sub-micron precipitates on the initial micron
precipitates disappears, and micro-scale ultrafine precipitation zones (MUPZs) with a large
number of sub-micron precipitates form around the initial micron precipitates. Figure 3b
shows the TEM morphology of specimen after RRA process, the bright rectangular prism
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has been confirmed to be Ti(C, N), and many dislocations can also be seen around it. The
light-blue dashed box shows the MUPZ near the Ti(C, N), and the enlarged morphology
can be seen in Figure 3c. As shown in Figure 3c, a significant number of dispersed nano
precipitates are present within the MUPZs. These nanoscale precipitates are mostly spher-
ical in shape. Figure 3d is a statistical distribution of the particle size of the nanoscale
precipitates shown in Figure 3c, which reveals that their sizes are all within 0–25 nm,
with an average size of 10.5 nm. Therefore, the MUPZs are actually regions containing a
significant number of sub-micron and nanoscale precipitates, which are first formed by
the dissolving of non-uniform nucleation and aggregation sub-micron precipitates onto
sub-micron precipitates, and then further developed during the subsequent aging process.
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(b) TEM morphology, (c) TEM enlarged view of the blue dotted box in (b), and (d) size distribution
statistics of nano precipitates.

Figure 4 shows the high-resolution transmission electron microscopy analysis of the
phase boundary between the sub-micron precipitate and the matrix in MUPZ after RRA
process. In Figure 4a, a distinct flat interface can be observed between the two phases.
There are some darker regions in both the brighter left area and the darker right area, which
are surface defects caused by the sample preparation process. The fast Fourier transform
(FFT) of the yellow dashed box area in Figure 4a yields diffraction spots shown in Figure 4b.
Two sets of spots appear simultaneously, with similar basic shapes but obvious differences
in size. Therefore, the two phases have a semi-coherent relationship, with similar structures
but different atomic spacings. To further analyze the specific information of the two phases,
the two sets of diffraction spots were separated into Figure 4c,d. Figure 4c is the diffraction
spot of the brighter left area in Figure 4a, and the phase analyzed is V(C, N). Figure 4d is
the diffraction spot of the darker right area in Figure 4a and the phase analyzed is austenite.
Therefore, we can conclude that, in the sample, there is a semi-coherent interface between
the nanoscale precipitates and the austenite matrix. A semi-coherent interface refers to the
situation where the lattice spacings between the two phases at the interface differ greatly,
and it is impossible to achieve complete correspondence at the interface. Therefore, some
dislocations will be generated on the interface to reduce the elastic strain energy of the
interface. At this point, the atomic arrangement of the two phases on the interface can
partially maintain matching, which is called a semi-coherent interface [30–33].
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(a) microstructure, (b–d) FFT analysis.

Figure 5 shows the high-resolution transmission electron microscopy analysis of the
nano precipitates in a MUPZ. In Figure 5a, it can be observed that the nano precipitates
have a grainy morphology with a diameter of approximately 18 nm. Some Moiré fringes
are visible on the surface due to height variations, while the atomic arrangement of the
austenite matrix is more regular in the upper left and right regions. Figure 5 displays
the FFT pattern of the orange boxed area in Figure 5a, which reveals the presence of two
sets of diffraction patterns represented by Figure 5c,d, respectively. By calibrating the
diffraction patterns, it is possible to determine that the diffraction spots of the matrix
correspond to austenite, whereas those of the precipitates require measuring multiple
sets of interplanar spacings after IFFT. To minimize the interference of the Moiré fringes,
Figure 5e displays the overlaid inverse fast Fourier transform (IFFT) images of Figure 5c,d
obtained using Photoshop. The selected region is the orange boxed area in Figure 5a. The
red signal points represent the diffraction pattern of austenite matrix obtained after inverse
Fourier transformation, while the green signal points represent the diffraction pattern of the
precipitates obtained after IFFT. To further observe the information at the interface between
the precipitates and the matrix, the yellow boxed area was selected for enlargement, as
shown in Figure 5f,g. Figure 5f shows the presence of phase boundaries with slip steps
of two atomic layers. Hussein et al. [34] provided an explanation of the mechanism of
cross-slip for the formation of these phase boundaries. Figure 5g shows another phase
boundary, with sub-steps between two red dashed lines of two atomic spacings, equal to
0.44 nm. Additionally, there is a wedge dislocation between the red dashed lines. When
compared to the standard PDF card, the interplanar spacings of the (002) crystal planes of
VN and Nb2C are 0.2416 nm and 0.2016 nm, respectively. NbC, V2C, and V8C7 either do not
have diffraction information for the (002) crystal plane or only have diffraction information
for higher-index planes, such as (004), due to their crystal structure. The (002) interplanar
spacing of V2N is 0.2202 nm, indicating that the precipitates are V2N.
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3.2. Mechanical Properties

Figure 6a shows the engineering stress–strain curve obtained from the tensile test of the
RRA specimens, indicating a yield strength of 490 MPa, a tensile strength of 965 MPa, and
an elongation of 40.0%. Compared to the single-stage aging specimen, the material exhibits
higher yield and tensile strengths. Figure 6b displays the morphology of the tensile fracture
surface, showing typical ductile fracture features with small dimples of approximately
2 µm distributed uniformly across the entire fracture surface. Additionally, a small amount
of sub-micron precipitates is retained within the dimples, demonstrating good toughness
of the material. Moreover, the plastic deformation of each micro-region during the tensile
process is very uniform and able to coordinate with each other for deformation. Figure 6c
shows the micro-Vickers hardness distribution map of the RRA sample, indicating that
the hardness range is approximately 320 HV–340 HV with a concentration around 332 HV.
There is only one point below 320 HV, which may be due to the detachment of sub-micron
precipitates during the polishing process, resulting in a lower hardness value at that point.
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3.3. Impact Abrasive Wear Sub-Surface Characterization

Figure 7 shows the sub-surface morphology of the pre-aging stage sample after a 5 h
impact abrasive wear test with an impact energy of 5 J. Numerous cracks appeared in the
sub-surface wear layer within a few micrometers with some extending to form detachment
pits. Additionally, larger particles, exceeding ten micrometers in size and composed of Si,
O, and Cr, were embedded in the sub-surface layer. This composition corresponds to the
abrasive material SiO2 and the counterface high-chromium cast iron. The high content of Cr
in the abrasive particles indicates that they were not initially embedded in the substrate to
such a depth. Rather, it is more likely that they were carried by the abrasive flow between
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the upper and lower samples, and when they reached the incomplete area of the substrate
(where local spalling pits had already appeared) without any significant enrichment zone
of micron or sub-micron precipitates, the particles became partially embedded into the
substrate. During subsequent impact loading, the particles were further embedded, even
breaking into two smaller abrasive particles. Due to continuous material contact with the
lower sample made of high-chromium cast iron, material exchange occurred, resulting in a
high content of Cr on the entire surface of the abrasive particle. The presence of expanding
cracks in the sub-surface layer indicates that the material did not fully resist the abrasive
particle’s action under the sustained dynamic loading, possibly due to the hardening effect
reaching its limit, with multiple slip directions of dislocations being blocked, preventing the
release of stress and leading to the formation of cracks. Alternatively, the cracks may have
nucleated due to the presence of micron precipitates and their significant strain instability
with respect to the substrate, leading to rapid crack propagation along the phase boundary
and subsequent detachment. Overall, under the condition of a relatively high impact
energy of 5 J, the material after pre-aging stage did not fully exert its resistance to abrasive
particle action, resulting in only moderate wear resistance.
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Figure 8 shows the sub-surface morphology and EDS analysis of the sample which has
undergone a regression treatment stage after 5 h of impact abrasive wear with 5 J of impact
energy. It can be seen that the embedding of abrasive particles has been improved in the
area with micron-scale precipitates, but the effect is not significant. After the regression
treatment, the aggregation of sub-micron precipitates on the micron precipitates has been
improved, but due to the high temperature and water quenching, MUPZs will not be
formed during the process. It can be seen that the depth of abrasive particle embedding
is about several microns, which is shallower compared to the pre-aging sample. The
embedding direction of the left abrasive particles is about 45 degrees to the sample surface,
and it is clearly blocked by the triangular micron-scale precipitates, which prevents the
abrasive particles from embedding into deeper areas of the substrate. In addition, due to
the high hardness of the abrasive particles and micron precipitates relative to the substrate,
under continuous impact, the upper substrate undergoes severe plastic deformation and
local fracture, resulting in discontinuity on the surface of the entire substrate material, which
promotes the subsequent embedding of abrasive particles. Therefore, the wear resistance
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will be greatly reduced in the subsequent impact abrasive wear process. Overall, the sample
after the regression treatment stage can provide some resistance to abrasive particle action
through the micron-scale precipitates, but this effect only exists when the abrasive particles
are close to the micron-scale precipitates. Moreover, due to the large plastic deformation of
the substrate, crack propagation occurs, which leads to surface discontinuity, and is thereby
not conducive to sustained resistance to abrasive particles. Under high impact energy, such
as 5 J, the wear resistance performance shows good performance in the initial stage, but
deteriorates severely in the subsequent stages.
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Figure 9 shows the sub-surface morphology and EDS analysis of the sample with
re-aging process after 5 h of impact with a 5 J impact abrasive wear test. It is noteworthy
that the sample surface is almost continuous, without any obvious pit formation due to
crack propagation. Most of the abrasive grains are blocked at the surface, and due to the
continuous impact, a cohesive layer is formed after their fragmentation. The cohesive
layer formed by the broken abrasive grains adheres well to the underlying matrix surface,
forming a smooth arc surface. Therefore, in the subsequent impact abrasive wear process,
not only does the matrix surface not break (there is no sharp point causing a significant
decrease in pressure), but also the plastic deformation is uniform, as the micro-regions
on the matrix surface can match well with each other. Moreover, the cohesive layer has
a high hardness, which can resist other abrasive grains from embedding in it during
the subsequent wear process, effectively protecting the matrix surface. Interestingly, the
formation of this broken abrasive grain cohesive layer is worth further investigation. From
Figure 9a,e, it can be observed that there are micron Nb precipitates several micrometers
deep from the worn surface, and the cohesive layer appears above these micrometer-
scale precipitates. In the several micrometer regions between the cohesive layer and
the micrometer-scale precipitates, the matrix remains relatively complete without any
microscopic cracks or embedded abrasive grains. Interestingly, this micrometer-scale
region around the micron precipitates corresponds to the MUPZs observed in the previous
electron microscopy characterization of the RRA sample. When subjected to continuous
impact loading, the MUPZs can interact with a large number of nano precipitates and
dislocations, resulting in a significant increase in the dislocation multiplication ability. Due
to the mechanism of dislocation bypass, a large number of dislocations increase in the form
of dislocation rings, cells, and walls. On the other hand, the slip of dislocations is hindered,
resulting in a smaller amount of plastic deformation in the region. MUPZs have excellent
work hardening ability, so even if there is a distance of several micrometers between the
micrometer-scale precipitates and the abrasive grains, the work-hardened MUPZs can
resist abrasive grain embedding well. Moreover, with the support of micrometer-scale
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precipitates below, a smooth arc surface cohesive area has formed above. Under the same
impact load, the pressure per unit area is greatly reduced, and the work hardening ability
continues to improve, resulting in a uniform and slow increase in plastic deformation. The
stress dispersion leads to a decrease in the formation of microscopic cracks. Overall, the use
of RRA processing significantly improves the wear resistance of materials by promoting
the formation of MUPZs around micron precipitates. The specific changes to the wear
mechanisms caused by MUPZs, as well as the effects of MUPZs on wear performance
under different impact loads, will be discussed in the next section.
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in (a), (c–f) EDS mapping of O, Si, Nb, V in (a).

3.4. Impact Abrasive Wear Properties and Wear-Resistant Mechanism

Figure 10a shows the cumulative weight loss and average weight loss per half-hour
during the first and second 2.5 h of impact abrasive wear test on the RRA specimens at
2.5 J and 5 J impact energies, respectively, over a 5 h period. The line graph indicates
that the material’s cumulative wear at 2.5 J was 1.17 g, which was much higher than the
0.46 g at 5 J. The bar chart reveals that the performance of the RRA specimens varied under
different impact energies during the first and second 2.5 h of the experiment. Specifically,
the average weight loss per half hour increased at 2.5 J from 0.10 g to 0.13 g, while it
decreased from 0.05 g to 0.04 g at the 5 J condition. This suggests that, although the
presence of MUPZs improves the material’s wear resistance, its performance is more
pronounced under high impact loads (5 J), which is clearly related to the dislocation motion
in MUPZs. When the impact energy is high, the material can absorb more energy to
provide sufficient dislocation proliferation and motion, and the interaction of MUPZs
directly affects dislocation proliferation and motion, thereby improving work hardening
ability and wear resistance. However, when the impact energy is low, although MUPZs are
present, the interaction with dislocations is limited, thus limiting work hardening ability
and relatively moderate wear resistance improvement. Figure 10(b1–b4) shows the surface
morphology of an RRA specimen after impact abrasive wear test, where Figure 10(b1,b2)
corresponds to an impact energy of 2.5 J. It can be seen that the wear surface exhibits some
short and shallow grooves, as well as some deeper and shallower microcracks. These cracks
tend to appear at the edges of the grooves and are not fully continuous, often appearing
unidirectionally along the direction of the grooves. Figure 10(b3,b4) corresponds to an
impact energy of 5 J. It can be observed that there are only a few shallow cracks and fewer
grooves with shallower depths that tend to appear individually. Additionally, the wear
surface exhibits obvious spalling-induced fatigue plateaus. No significant microcracks were
found near the grooves. This indicates not only that MUPZs exhibit an improved resistance
to abrasive particle embedding at an impact energy of 5 J but also that, due to sufficient
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work hardening, deformation becomes more uniform and microregions can coordinate well
for deformation, reducing the possibility of crack nucleation and propagation, especially
near the micron-sized precipitates, thus decreasing the probability of micron precipitates
detaching from the matrix in the early working period.
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Figure 10c,d shows the sub-surface morphology of the specimens after 5 h impact
abrasive wear tests with impact energies of 2.5 J and 5 J, respectively. The cross-sectional
area selected for observation was approximately 800 µm deep beneath the wear surface.
Figure 10c indicates that the sub-surface of the specimen subjected to 2.5 J impact energy
can be divided into two regions: the severe plastic deformation layer (SEDL) within the
top 150 µm and the slight plastic deformation layer (SLDL) within the bottom 650 µm.
The difference between these two regions is evident: within the SEDL, most of the micron
precipitates have been detached due to the significant plastic deformation of the matrix,
which resulted in large strain mismatches with the brittle micro-scale precipitates that
underwent almost no deformation. As a result, micro-cracks propagated throughout the
precipitates, causing them to fall off easily during polishing, leaving behind pits that are
surrounded by micro-cracks. In contrast, in the SLDL, the plastic deformation is relatively
small, and the interface between the matrix and the micro-scale precipitates remains intact.
Therefore, micro-crack initiation and propagation are less pronounced, and most of the
micron precipitates remain embedded in the matrix after polishing. The thickness of
the SEDL is reduced to approximately 50 µm at 5 J impact energy, and even within the
SEDL, some micron precipitates remain. This indicates that the material has a good work
hardening effect, which reduces the plastic deformation of the matrix, resulting in a thinner
severe plastic deformation layer and slower detachment of micron precipitates during
impact abrasive test.

Figure 11 illustrates the wear-resistant mechanism of impact abrasive wear. It can be
observed that after the RRA treatment, MUPZs are formed around the micron precipitates,
and during the three stages of the experiment, the wear-resistant mechanism undergoes
changes. In the absence of MUPZs, as was with the specimen that only underwent a
single-stage aging treatment, the abrasive particles on the wear surface can very easily to
cut into the substrate due to the normal impact load and tangential friction. In the second
stage, due to the insufficient work hardening ability, the abrasive particles can only play a
resistance role when they directly contact the micron precipitates, and as the experiment



Metals 2023, 13, 902 12 of 14

progresses, the lack of coordination in the dislocation movement of the micro-zones leads
to a large strain difference, and cracks nucleate and rapidly propagate along the micron
precipitates. In the third stage, as the cracks have extended along the entire micron-sized
precipitate, the particles detach from the substrate, leaving pits and losing their ability to
resist abrasive particles, and the depth of subsequent abrasive cutting increases, resulting
in a severely discontinuous material surface and a serious deterioration of wear resistance.
In contrast, for specimens with MUPZs, the MUPZs have a very good work hardening
ability under high load impact wear conditions, so in the first stage, when abrasive particles
cut into the surface, they will cause severe work hardening of the MUPZs located between
the hard micron precipitates and the abrasive particles, and the abrasive particles will no
longer cut into the interior after being embedded slightly into the surface. In the second
stage, due to the continuous work hardening of the MUPZs, the abrasive particles continue
to be resisted on the surface. According to the normal impact load and tangential friction,
the abrasive particles are partially broken and form an adhesive layer that closely sticks to
the substrate surface. As the experiment progresses to the third stage, the adhesive layer
formed by the broken abrasive particles connects to each other, and the range becomes
larger and more closely fits the matrix surface. Subsequent abrasive particles are resisted
by the adhesive layer, and the continuity of the material surface is maintained very well
until the fully work-hardened MUPZs and the abrasive-particle adhesive layer peel off due
to fatigue effects, forming a fatigue platform.
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4. Conclusions

The present work proposed by using RRA treatment to form micro-scale ultrafine
precipitation zones (MUPZs) around initial micron precipitates, and the impact-wear
resistance can be elevated. The microstructure evolution including the formation of MUPZs,
wear surface morphology combined with sub-surface characterization, and novel impact
abrasive wear-resistant mechanism induced by MUPZs were studied. The following major
conclusions were drawn:

(1) Through the complete RRA treatment, the retrogression process can be used to dis-
solve the aggregated sub-micron precipitates formed at the edges of the initial mi-
cron precipitates during the pre-aging stage, and alloying elements such as V and
Nb can diffuse a certain distance. Then, in the short-term re-aging process, the
(Nb, V)x (C, N)y are dispersed again at the sub-micron and nanoscales, and form the
micro-scale ultrafine precipitation zones (MUPZs);

(2) Through the complete RRA treatment, the specimen can be given good mechanical
properties with a yield strength of 490 MPa, tensile strength of 965 MPa, elongation of
40.0%, and micro-Vickers hardness of nearly 322 HV;

(3) The specimens after different stage of the RRA process (pre-aging, retrogression,
re-aging) are compared under a 5 h impact abrasive wear test with a 5 J impact
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load. The subsurface characterization shows that MUPZs can play a significant role
in resisting the abrasive and decreasing the wear loss caused by micro-cutting and
micro-plowing mechanism;

(4) The RRA specimens with MUPZs were compared after 5 h of impact abrasive wear
tests under 2.5 J and 5 J energies. It was demonstrated that MUPZs exhibit better work-
hardening and wear-resistant abilities. Additionally, an adhesive layer composed of
broken abrasive particles can be formed near the wear surface with MUPZs. This layer
resists abrasive particles and causes them to bounce off, presenting a novel impact
abrasive wear-resistant mechanism.
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