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Abstract: Ti6Al4V (Ti64) alloy is the most used metal material for bone implants because of its
good biocompatibility and adapted mechanical properties. Nevertheless, it shows low antibacterial
activity, which may favor its failure. Addition of antibacterial elements such as copper should
avoid this drawback. This work studies the addition of Cu into a Ti64 matrix resulting in Ti64/xCu
composites. Powder mixtures of Ti64/xCu were compacted in a die and then sintered at 1100 ◦C.
Sintering kinetics indicate that densification is achieved by pore filling due to eutectic liquid formed
by the reaction of Ti and Cu. The microstructure of the sintered samples is composed mainly of α-Ti
and Ti2Cu phases, but TixCuy intermetallics were also found. Microhardness is increased by the
addition of Cu due to densification and the formation of harder phases such as Ti2Cu. However, the
stiffness and compression strength are barely the same for all composites. The corrosion resistance is
significantly improved by the addition of Cu. Finally, the material with 15 wt% of copper showed the
best compromise.

Keywords: liquid-state sintering; Ti64 alloys; mechanical properties; corrosion; microstructure

1. Introduction

Ti6Al4V (Ti64) alloy is the most-used material for biomedical implants such as dental
and orthopedic prostheses, due to its good biocompatibility, high strength, excellent corro-
sion resistance under corporal fluids and good compatibility with living organisms [1,2].
Nevertheless, Ti64 alloy shows serious drawbacks such as poor wear resistance and low
antibacterial activity, which may result in the early degradation of long-term prostheses [3].
To overcome these drawbacks, the addition of antibacterial metals such as silver and copper
has been proposed [4–12]. It has been reported in [13,14] that a high level of antibacterial
activity is reached with the addition of less than 5 wt% of Cu or Ag. Cu is preferentially
used as an addition element into Ti alloys because it is a trace element in the human body,
and it participates in different biological and physiological human functions [15]. Besides
this, Cu can be eliminated from the human body through bile, and it shows a variety of
beneficial effects on biological processes such as osteogenesis and angiogenesis [16]. Cu
shows an antibacterial ability because bacteria are killed in contact with surfaces containing
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Cu. In dry conditions this process can take a few minutes, while in wet conditions a longer
time is needed [17,18]. For Ti–Cu alloys, it was demonstrated that Ti2Cu intermetallic
showed the best antibacterial effect [19], and it was also suggested that a small amount on
the Ti2Cu surface improved bacteria elimination [20]. Ti–Cu alloys have been fabricated
by different methods, such as casting, powder metallurgy and additive manufacturing, as
reported by Akbarpour et al. [21].

Although Ti64 is nowadays the most-used alloy for orthopedic and dental implant
materials [22], only a few works have been devoted to analyzing the benefit of Cu ad-
dition [23–26]. Most of those works are devoted to the improvement of antibacterial
and mechanical properties, including an increase in hardness [27,28]. The processing of
Ti64/xCu alloys by the powder metallurgy route, comprising conventional pressing and
sintering, has received less attention, as far as we know. The complexity of fabricating
Ti64xCu alloys is due to the peritectic and eutectic reactions between Ti and Cu [29] that
induce the formation of a liquid phase. Nevertheless, this phase could be beneficial for
decreasing the sintering temperature in comparison to the one used for Ti64 alloy. Thus,
this paper focuses on investigating the effect of Cu addition on the sintering behavior
of TI64 powder and on characterizing the microstructure as well as the mechanical and
corrosion properties of sintered composites.

2. Materials and Methods

An atomized prealloyed Ti64 powder with spherical particles smaller than 45 µm,
produced by Raymor, Quebec, Canada, was mixed with spherical Cu particles with the
same particle size distribution, provided by Sigma-Aldrich (St. Louis, MO, USA). The
fraction of Cu particles was set between 0 and 20 wt%. Mixing was carried out in a Turbula
for 30 min in dry conditions. Then, 1 wt% of polyvinyl alcohol (PVA) was added as
a binder. Next, the mixture was poured into an 8 mm diameter stainless steel die and
pressed up to 450 MPa using an Instron 1150 universal machine to obtain cylindrical
compacts of either 4 or 10 mm height. Samples of 10 mm height were used for compressive
tests. Each compact was sintered in a Linseis L75V (Selb, Germany) vertical dilatometer
at 1100 ◦C with a dwell time of 5 min in argon. After sintering, the weight density of
every sintered compact was calculated from mass and dimension measurements. The
theoretical density of the composite materials chosen to compute the relative density
was estimated by the rule of mixture. Sintered composites of 4 mm height were cut and
subjected to metallographic preparation by grinding and polishing with SiC paper and
alumina suspension to achieve a high-quality planar surface. The crystalline structure was
assessed by X-ray diffraction (XRD) using an Emperyan Panalytical diffractometer with
K-alpha copper radiation with an energy of 30 kV and 30 mA, with a 0.2 step size. A 1 s
time step in a 2θ range of 30–80◦ was used in order to identify the constituent phases of
sintered samples. Next, the polished surfaces were observed with a Jeol JSM 7600F (Tokyo,
Japan) field-emission scanning electron microscope (FE-SEM) coupled with an energy-
dispersive X-ray spectrometer (Bruker, XFlash 6|30, Billerica, MA, USA) for elemental and
mapping analysis. Microhardness tests were performed on the polished surfaces with a
Micro-Hardness tester, Mitutoyo MVK-HVL (Kawasaki, Japan), using a load of 200 gf and
a dwell time of 15 s according to ASTM E384. In order to obtain representative values,
15 indentations were made for each sample, and the average value was calculated.

In order to evaluate the mechanical properties of the sintered samples, the bottom
and top surfaces of each 10 mm high sample were polished, and simple compression
tests were performed following ASTM D695-02 with an Instron 1150 universal mechanical
testing machine at a strain rate of 0.5 mm.min−1. The elastic modulus and yield strength
were estimated from a stress–strain curve that was obtained from the load-displacement
data provided by the machine. To calculate the stress, the surface area of the sample was
corrected by assuming that the volume was constant during compression. The axial strain
was calculated as the ratio of the real axial displacement (after machine stiffness correction)
and the initial height of samples.
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To evaluate the corrosion behavior of the sintered samples, electrochemical measure-
ment was performed using a standard three-electrode system in a simulated body fluid
Hank’s solution provided by Sigma-Aldrich. A Corrtest 350CS (Wuhan, China) system was
used for electrochemical tests with a saturated calomel electrode (SCE) as the reference
electrode. The open circuit potential (OCP) was measured for 55 min after immersion
in Hank’s solution. To determine the corrosion rate, potentiodynamic polarization tests
were performed in a potential range from −600 to 600 mV at a scanning rate of 1 mV/s,
following ASTM G61. Besides this, electrochemical impedance spectroscopy (EIS) analysis
was carried out applying 10 mV amplitude vs. OCP with a frequency range of 100 kHz
up to 10 mHz. Nyquist and Bode diagrams were plotted in order to fit an Electrochemical
Equivalent Circuit (EEC) to determine electrochemical parameters such as capacitance and
resistance to charge transfer, as complementary analysis to the potentiodynamic tests.

3. Results and Discussion
3.1. Sintering

The axial strain variation during the sintering cycle for the Ti64 powder and the mixes
with different Cu contents is shown in Figure 1a. All samples exhibit the same behavior,
thermal expansion and then shrinkage (decreasing strain), which starts at 760 ◦C. Then, at
910 ◦C, the composites exhibit a small step (red rectangle in Figure 1a), which is more visible
when the strain rate is plotted as a function of temperature (Figure 1b). This tempering of
the shrinkage is likely generated by the beginning of the peritectic reaction between Ti and
Cu at 925 ◦C, according to the phase diagram [29]. After this, the axial strain continues to
decrease. This shrinkage is much faster for the samples containing 15 and 20 wt% of Cu,
whereas those with 5 and 10 wt% of Cu show a much slower shrinkage rate: only a little
faster than the rate for pure Ti64. This means that for low Cu content, shrinkage is mostly
due to Ti64 particle sintering, while for high Cu content, the liquid phase resulting from
the eutectic reaction between Ti and Cu [29] plays the prominent role.
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Figure 1. Axial strain as a function of temperature during the whole sintering cycle (a), and strain
rate as a function of temperature during heating up to the sintering plateau (b).

The green and sintered densities of the samples are listed in Table 1. The green
densities (D0) of Ti64 and the composites are very close to each other. Ti64 and Cu powders
have similar shapes and particle size distributions, but copper is softer than Ti64. We thus
expected to find higher green densities for the composites. After sintering, the relative
density (Ds) increases with increasing Cu fraction. The sample without Cu particles shows
a low relative density, 78.8%, which is due to the low temperature used, 1100 ◦C, compared
to usual sintering temperatures for this powder. The addition of 5 and 10 wt% of Cu
increased the relative densities up to 81.3% and 83.4%. The addition of 15 wt% of Cu or
more densifies the sample by over 90%. The maximum relative density is around 97% for
20 wt% of Cu. The final densification ratio defined as ((Ds − D0)/D0) is therefore three
times larger for the sample with 20 wt% of Cu in comparison to that of the pure Ti64 sample.
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Table 1. Green and sintered densities and densification ratio of all sintered samples.

Wt% of Cu D0 Ds (Ds − D0)/D0

0 0.697 0.788 0.130
5 0.691 0.813 0.175
10 0.698 0.834 0.195
15 0.701 0.905 0.291
20 0.691 0.967 0.398

3.2. Microstructure Analysis

The microstructure of Ti64 and the composites was studied by SEM observation and
EDS analysis of the polished surfaces of the samples.

3.2.1. SEM Observation

The microstructure of the Ti64 sample sintered at 1100 ◦C was analyzed in [5], in which
large, cusped interparticle pores and small interparticle necks were seen. The addition of
5 and 10 wt% of Cu increased the relative densities up to 81.3% and 83.4%. Figure 2a,b
shows smaller, more rounded pores and larger necks. The addition of 15 wt% of Cu or more
densifies the sample by over 90%. The pores seem to be isolated, and most of them have a
spherical shape (Figure 2c,d). Although it is likely that densification is mainly due to liquid
formation and its flow through the interparticle pores of Ti64, the microstructures observed
in Figure 2c,d are similar to those obtained by solidification. It can also be deduced that a
strong solid-state diffusion of Cu to form intermetallics is achieved during the densification
process. This is contrary to the observation of different systems that were sintered in a
semi-solid state, in which the distribution of liquid is around the Ti64 particles either by
means of a eutectic reaction [30] or the melting of one element [6]. Thus, the densification
mechanism based on shrinkage during sintering and the microstructure obtained after
sintering could be pore filling by eutectic liquid and growth of lamellae of Ti2Cu during
solidification of that liquid, which is increased by solid diffusion of Cu into the Ti64 matrix.
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The sample without Cu shows a classical α-β Ti phase microstructure, with predomi-
nant α-Ti and thin lamellae of β-Ti, as reported elsewhere [5]. The addition of Cu generates
the formation of secondary phases inside the Ti64 particles that are mainly composed of Ti
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and Cu. These components could be TiCu or Ti2Cu intermetallics. Besides this, the lamellae
of β-Ti are no longer detected; thus, the microstructure is formed by Ti–Cu intermetallics in
a matrix of α-Ti (Figure 2d). As the quantity of Cu increases, the Ti–Cu phases are more
homogeneously distributed inside the α-Ti matrix. It is interesting to note that for 20 wt%
of Cu, the microstructure is composed of thick lamellae of Ti–Cu intermetallics embedded
in an α-Ti matrix (Figure 2d).

Elemental mapping of the sample with 20 wt% of Cu illustrates that Cu is mainly
located in the lamellae, although small quantities are detected over the whole surface
(Figure 3a,c). In order to evaluate the composition of the phases, EDS analysis (spot mode)
was performed at the three points indicated in Figure 3d. Point 1 is inside the Ti–Cu
lamellae, and the atomic composition (Table 2) suggests that the Ti2Cu phase is the main
compound. This is consistent with the composition of the eutectic phase reported in the
phase diagram [29]. The composition found at Point 2 shows a low quantity of Cu, which
could indicate that solid-state diffusion of Cu is possibly occurring from the thick lamellae
to the Ti64 matrix during solidification. Finally, the composition at Point 3 indicates mainly
Ti64 alloy with a small increment in Al content. As Al is an α-Ti stabilizer, the β-Ti phase is
no longer observed.
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Figure 3. EDS elemental mapping of the composite containing 20% of Cu particles sintered at 1100 ◦C:
(a) BSD image, (b) distribution of Ti, (c) distribution of Cu and (d) SEM image of the same composite
indicating where (+) the EDS analysis (spot mode) was performed. Composition obtained from EDS
is listed in Table 2, point 1, etc.

Table 2. EDS results of point analysis of Ti64–20 wt% Cu sample after sintering.

Element At. %

Point 1 Point 2 Point 3

Ti 63.25 79.85 85.02
Cu 34.33 5.75 2.81
Al 2.41 10.28 7.99
V 0 4.09 4.17

Possible phase Ti2Cu α-Ti α-Ti

3.2.2. X-ray Diffraction Patterns

X-ray patterns of Ti64 and Ti64/xCu samples are plotted in Figure 4. The microstruc-
ture of Ti64 is mainly composed of hexagonal α-Ti with a small quantity of cubic β-Ti.
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Addition of 5 wt% of Cu generates the formation of smaller quantities of TixCuy phases,
which are formed during the peritectic and eutectic reactions occurring between Ti and Cu.
Besides this, an V5Al8 intermetallic was found, which was probably formed because the
Ti64 particles reduce their Ti quantity due to the formation of TixCuy phases. The formation
and stabilization of Ti2Cu, which increases with an increasing amount of Cu, is detected
by an increment in the intensity of the main peak of this phase at 39.6◦, as well as other
characteristic peaks indicated in Figure 4. This confirms the phases detected by EDS in
Figure 3d, which indicated two main phases of Ti2Cu and α-Ti, similarly to Takada et al.,
who observed this in Ti/20Cu alloy fabricated by melting [31]. Evolution of the microstruc-
ture occurs because the quantity of Cu is sufficient to form eutectic liquid that can fully
densify the sample and also solid-state diffusion during solidification. The formation of
different TixCuy phases is possible during eutectic reaction since the quantities of Ti and
Cu are not those reported in the equilibrium phase diagram [29]. It is also noticed that the
main peak of the α-Ti phase at 40.4◦ is reduced as the wt% of Cu increases. This is different
from other studies on Ti–Cu alloys fabricated by arc melting [32], vacuum sintering [13]
and laser melting sintering of Ti64/6Cu [4], which report a predominant α-Ti phase for
10 wt% of Cu. This confirms that a significant space of the surface of the Ti64/20Cu sample
is occupied by the Ti2Cu phase, which is beneficial for antibacterial activity as reported
elsewhere [20].
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3.3. Mechanical Properties
3.3.1. Microhardness

The microhardness of the samples is plotted in Figure 5a as a function of the wt% of
Cu and in Figure 5b as a function of the remaining porosity after sintering. This shows a
continuous increase with an increase in the amount of Cu and with the diminution of pores.
The microhardness is 190 Hv for pure Ti64 alloy with a porosity of 0.21, and 420 Hv for the
composite with 20 wt% of Cu and porosity of 0.03. The observed variation could be a direct
effect of Cu resulting from the formation of Ti2Cu, whose microhardness has been reported
to be 800 Hv [33]. It could also be a consequence of the reduction of porosity caused by
the presence of Cu. To evidence both effects of Cu, it can be reported that Ti64 powder
sintered at 1260 ◦C with a porosity of 0.04 exhibited a hardness of 350 Hv [34], which is
lower than that of Ti64/20wt% Cu with about the same relative density and is higher than
that of Ti64 with a lower relative density. The microhardness value of the samples with 5
and 10 wt% of Cu agreed with those reported for Ti–Cu alloys fabricated by casting with
the same quantity of Cu [35]. However, the values reported for Ti64/Cu alloys fabricated
by SLM are slightly higher than those obtained here, likely because of internal stresses
generated during processing [36].
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3.3.2. Compression Tests

The effect of Cu addition on compression behavior has been analyzed from the stress–
strain curves shown in Figure 6. It is observed that strain before failure is significantly
reduced for all composite samples except for the one with 10 wt% of Cu. Alshammari
et al. [37] reported a reduction in compressive strain of 62% between Ti0.5Cu and Ti5Cu
samples prepared by vacuum sintering, but the relative density was similar in their samples
and lower Cu quantities were used.
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The Young’s modulus is around 35 GPa for every sample. It is most likely that the
slight variations found are within the inaccuracy range. These values are low in comparison
with those evaluated by ultrasonic methods for Ti–Cu alloys fabricated by arc melting
(110–135 GPa, depending on the Cu content) [35] and by SPS (greater than 110 GPa for
different Cu contents) [38]. The Young’s modulus of Ti–Cu alloys was also numerically
estimated by Zhu et al. [33], taking into account the formation of Ti–Cu intermetallics. These
authors obtained a value of 41 GPa for an alloy with 28 at.% of Cu, which corresponds to
around 30 wt% of Cu. This reduction was mainly associated with the positive formation
enthalpy of the Ti3Cu phase.

The yield stress continuously increases from 590 to 781 MPa with increasing Cu content
from 5 to 20 wt%, with the Ti64 sample showing a slightly lower value of 630 MPa. This
increase is due to both the different microstructure, which is mainly composed of Ti2Cu
and α-Ti phases, and the lower porosity. These values are low compared to those reported
for Ti–Cu alloys fabricated by vacuum sintering with amounts of Cu up to 10 wt% [39,40],
but a close result was found for low Cu content by Alshammari et al. [37], who reported a
yield stress of 627 MPa for a sintered Ti/5Cu alloy. This value is close to that obtained for
our Ti64/5Cu sample. The ultimate strength is between 930 and 1100 MPa, without a clear
trend. This suggests that the details of the microstructure do not play a major role in this
property, which might be related to Ti64 interparticle necks formed during sintering before
eutectic liquid appears. The values obtained are higher than that of 754 MPa reported by
Alshammari et al. [37] for various Ti/Cu alloys, but much lower than that reported by
Zhang et al. [39] for Ti/10Cu, of around 1800 MPa.

In addition, admissible strain, σy/E, has also been calculated for each sample. This
increases slightly with increasing Cu wt% (Table 3). The admissible strain should be as
high as possible for improved behavior of bone implants, as suggested in [41]. The values
reported for compact and trabecular vertebrae bones are 17.5 × 10−3 and 20.8 × 10−3,
respectively [42], and are thus in the same range as those found here.

Table 3. Mechanical properties of Ti64 and Ti64/xCu composites.

Wt% Cu E (GPa) σy (MPa) σu (MPa) σy/E (10−3)

0 35.9 630 1004 17.5
5 32.5 590 930 18.1
10 33.3 684 1104 20.5
15 36.7 759 1000 20.7
20 37.5 781 1093 20.8

3.4. Corrosion Analysis
3.4.1. Potentiodynamic Analysis

In order to evaluate the corrosion behavior of Ti64/xCu samples, potentiodynamic
tests were carried out, and polarization curves for the different samples sintered at 1100 ◦C
are plotted in Figure 7. The corrosion potential Ecorr and corrosion current density Icorr
were estimated by using the Tafel extrapolation method, which is detailed elsewhere [43],
and the values obtained are summarized in Table 4. It is observed that the addition of Cu
improves corrosion resistance because Ecorr increases towards electropositive values and
Icorr decreases with increasing Cu content, caused by a reduction in the anodic reaction rate.
Ecorr clearly indicates that the addition of Cu improves the corrosion susceptibility. Ecorr is
−0.40 V for Ti64 and around−0.2 V for the Ti64/xCu composites. This indicates a reduction
in the corrosion tendency, the highest value being −0.18 V, which was obtained with 5 wt%
of Cu. A decrease in the Ecorr value for Ti–Al–xCu alloys was also reported elsewhere, for
Cu additions from 5 to 20 wt% [44]. In spite of the fact that Ti64 exhibits the more negative
Ecorr value, it is more positive than that reported for Ti64 samples fabricated by additive
manufacturing under Hank’s solution, which is −0.548 V [44]. There is no measurement
reported for Ti64/xCu alloys under Hank’s solution, but Ecorr absolute values of Ti/5Cu
and Ti/10Cu alloys are reported by Chen et al. [45], who obtained −0.662 and −0.598 V,
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respectively, which are lower than those obtained in this work. The Ecorr values reported
for Ti64/xCu composites under artificial sea water were also more negative (−0.39 to
−0.42 V) [26] than those found in this work, and the values reported for similar composites
under simulated body fluid were similar to those here (−0.22 V) [7]. The positive effect
of adding Cu could be due to the formation of Ti2Cu and intermetallic phases formed
during sintering that could promote a more stable passive layer than that formed by Ti, as
described elsewhere [7,32].
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Figure 7. Polarization curves of composites under Hank’s solution after sintering at 1100 ◦C.

Table 4. Corrosion parameters of Ti64 and Ti64/xCu samples sintered at 1100 ◦C.

Wt% Cu Icorr (µA/cm2) Ecorr (V) Vcorr (mm/year)

0 3.810 −0.407 0.079
5 0.855 −0.184 0.0143
10 0.375 −0.223 0.00625
15 0.276 −0.246 0.00461
20 0.512 −0.228 0.00829

Icorr shows a similar trend, as the highest value is found for Ti64, 3.81 µA-cm−2. The
composites show values lower than 1 µA-cm−2, with a minimum of 0.276 µA-cm−2 for
the Ti64/15Cu sample. The value obtained for Ti64 is much higher than those reported
for additively manufactured Ti64 (0.008 µA-cm−2) under Hank’s solution [45], which is
probably due to the high porosity of the sample sintered at 1100 ◦C. However, the values
obtained for the Ti64/xCu samples are lower than those reported for Ti–Cu alloys fabricated
by melting [45–47] under Hank’s solution or by sintering under NaCl [13], in spite of the
remaining porosity. Icorr is linked to the corrosion rate (Vcorr) by means of Faraday’s
law [47]:

Vcorr =
MIcorr

nFρm
(1)

where M is the molar mass of the alloy, n is the charge of the metal ions, F is the Faraday
constant and ρm is the density of the alloy. The corrosion rates for each sample were
calculated and are listed in Table 4. The addition of Cu results in a strong reduction in the
corrosion rate. It is found that Vcorr is 17 times lower with 15 wt% of Cu with respect to
pure Ti64. This value is also 10 times lower than that reported for Ti64/xCu composites
under sea water [26]. Although Ecorr indicates corrosion tendency, a more appropriate
parameter to measure corrosion would be Icorr or Vcorr, which confirm that corrosion is
improved by the addition of Cu. The optimum behavior is obtained with the Ti64/15Cu



Metals 2023, 13, 888 10 of 14

sample, which also shows a stable passivation film at a potential of 0.1 V, similar to that
reported for Ti–Cu alloys [7].

3.4.2. Electrochemical Impedance Spectroscopy Analysis

In order to evaluate the corrosion mechanism of the Ti64/xCu samples, EIS tests were
carried out for the different samples sintered at 1100 ◦C in Hank’s solution, and the EEC
were fitted as presented in Figure 8. In addition, the EIS parameters obtained from the EEC
are listed in Table 5. Figure 8a corresponds to a Nyquist plot, in which real impedance
(Z′) and imaginary impedance (Z”) are observed. These have a tendency to form a linear
behavior of about 45◦, characteristic of a mass transfer of chemical species from the Hank’s
solution into the sample. This behavior is observed in all Ti64/xCu samples. However,
it is important to observe that the Ti64 condition showed a lower impedance related to
a higher susceptibility to corrode in the evaluated media. Otherwise, the samples which
contain Cu increased their impedance values, indicating a higher resistance to corrosion in
general terms. This behavior is corroborated in Figure 8b, a Bode vs. frequency plot, which
represents the impedance magnitude |Z| as a function of frequency, which is higher as
Cu content increases. However, Ti64/20Cu showed a slight decrease in its values, which
could be related to the presence of intermetallic composites such as Ti2Cu, which reduce
corrosion resistance by a lower solid solution of Cu content. Figure 8c shows a Bode
vs. phase angle plot, which shows a maximum peak of phase angle near to −70 degrees
at lower frequencies for the Ti64/xCu samples. However, the Ti64 condition showed a
lower phase angle peak of about −40 degrees, which represents different processes that
are analyzed by an EEC (Figure 8d). The behavior observed in the EIS analysis are in
concordance with the corrosion parameter obtained by potentiodynamic tests.
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To quantify the effect of Cu content in the Ti64 samples, an EEC model was proposed
and showed accurate fitting between the experimental and theoretical data, which are
composed of the following elements: a resistive element that represents the solution
resistance between the working electrode and the reference electrode (RS); and porous
resistance (Rp) and its corresponding constant phase element (CPE1). However, in parallel
to those elements are proposed a charge transfer in the electrode/electrolyte interface
(RCT) element and a capacitive element that was replaced by a constant phase element
(CPE2) which is generally used to adjust stabilization times due to the effect of rough
or porous surfaces [48–50]. From these parameters, it is important to analyze the Rp
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values of the different samples evaluated; the Ti64 condition obtained an Rp value of
about 674 Ω·cm2, which reduces considerably as Cu content increases up to 22 Ω·cm2

for Ti64/20Cu. This Rp reduction is related to the increase in relative density (Ds) as
Cu content increases; as observed in the micrographs in Figure 2, the porosity is lower
due to the higher densification effect of Cu. On the other hand, the Rct values represent
a charge transfer resistance mechanism which is directly related to the susceptibility to
corrosion in the evaluated samples. A similar behavior is observed in the Vcorr values
obtained in potentiodynamic tests; the Ti64 sample gave a value of 21,097 Ω·cm2, which
increased as Cu content increased. However, the same behavior is observed for Ti64/20Cu:
a slight reduction in Rp values, as observed in Vcorr, which was abovementioned. Another
important factor to take into account for the increase in Rct values is related to the active
area of the samples. The Ti64 condition showed a lower densification ratio, and therefore a
higher electrochemical active area, which increases the rate of anodic reaction. Otherwise,
the Ti64/15Cu and Ti64/20Cu showed a better performance of corrosion behavior with a
reduction in the electrochemical active area, which reduces the rate of anodic reaction, and
this is related to a higher densification ratio as presented in the previous section [51]. This
effect was studied by Fangxia Xie et al. [52], and they concluded that an increment of pores
in the sample means that it is more susceptible to corrosion attack.

Table 5. Electrochemical parameters obtained from electrochemical equivalent circuit of Ti64 and
Ti64/xCu samples sintered at 1100 ◦C evaluated under Hank’s solution.

Wt% Cu Rs (Ω·cm2)
CPE1

(F sα−1 cm−2) N Rp
(Ω·cm2)

CPE2
(F sα−1 cm−2) n Rct

(Ω·cm2)

0 44.41 0.000146 0.7477 674.77 0.001310 0.6424 21,097
5 29.25 0.000124 0.6110 199.98 0.000641 0.7051 52,120
10 17.12 0.000105 0.6429 56.64 0.000249 0.8141 70,253
15 11.67 0.000561 0.4255 26.82 0.000601 0.8270 122,103
20 14.05 0.000223 0.7779 22.03 0.000306 0.7703 85,505

However, additional tests of cytotoxicity should be made to determine the concentra-
tion of Cu ions, since it has been demonstrated that high Cu ion concentration inhibits cell
proliferation and could have a toxic response in humans [53,54].

4. Conclusions

Ti64/xCu composites have been successfully fabricated by conventional powder
metallurgy. Sintering is driven by a liquid phase due to the eutectic reaction occurring
during the heating stage. The shrinkage kinetics indicate that adding 15 wt% of Cu strongly
improves densification, which is assumed to be achieved by pore filling by eutectic liquid
and solid diffusion of Cu into the Ti64 matrix during solidification. The maximum relative
density reached was 97% for 20 wt% of Cu after sintering at 1100 ◦C.

The final microstructure of the composites is mainly composed of two phases, α-Ti
and Ti2Cu, although small amounts of Ti–Cu intermetallics with different compositions are
also present. It was also assessed that Cu diffusion forms thin lamellae of Ti2Cu that grow
and form thicker lamellae when the quantity of Cu is 20 wt%.

The microhardness was improved by the addition of Cu in comparison with that of
Ti64 sintered at the same temperature, which is attributed to the higher relative density and
the formation of the Ti2Cu phase. On the contrary, the mechanical strength obtained from
compression tests does not show an increase with respect to the Ti64 sample, because the
mechanical response is governed by the size of necks formed during sintering.

Corrosion under Hank’s solution is improved by Cu addition because of the formation
of a stable Ti2Cu layer. It can be concluded that the material with 15 wt% of Cu shows
the best compromise between corrosion and mechanical properties, although its relative
density is only 90%.
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