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Abstract: Electrical discharge machining (EDM) can use soft tool electrodes to process hard work-
pieces to achieve “soft against hard”, because it directly uses electrical energy and thermal energy
to remove metal materials. Then, it can generate complex features on harder materials and meet
the requirements of excellent surface quality. Since EDM involves many process parameters, in-
cluding electrical parameters, non-electrical parameters, and materials properties, it is essential to
optimize its process parameters to obtain good performance. In this direction, the application of
the swarm intelligence (SI) technique has become popular. In this paper, the existing literature is
comprehensively reviewed, and the application of the SI technique in the optimization of EDM
process parameters is summarized. Sinker-EDM (SEDM), wire-EDM (WEDM), and micro-EDM
(MEDM) with various hybrid techniques are among the EDM methods considered in this study
because of their broad adoption in industrial sections. The fundamental nature of all review articles
will assist engineers/workers in determining the process parameters and processing performance,
the SI algorithm, and the optimal technique by which to obtain the desired process parameters. In
addition, discussions from the perspectives of the similarity, individuality, and complementarity of
various SI algorithms are proposed, and necessary outlooks are predicted, which provides references
for the high performance of the EDM processes in the future.

Keywords: EDM process; SI; optimization; parameter; performance

1. Introduction

The tool electrode and the workpiece are submerged in the dielectric during electrical
discharge machining (EDM), and they are linked to the two poles of the pulse power
source. A large amount of heat energy is concentrated in the tiny discharge channel, the
temperature may be as high as 10,000 °C, and the pressure also sharply changes [1-3].
Therefore, at this time, a small amount of metal material on the surface of the workpiece in
the discharge area will immediately melt, vaporize, and explode into the working fluid. The
material removal in the electric discharge is realized by the electric heating in the discharge
process, and the conductivity and thermal properties of the material have a significant
impact on its machinability. Therefore, low-rigidity workpieces may be machined and
micro-machined particularly well using the EDM technique. In addition, it is particularly
suitable for machining a workpiece with a complex surface, because the tool electrode shape
can be copied to the workpiece. Since EDM involves many process parameters, including
electrical parameters, non-electrical parameters, and material properties, it is essential
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to optimize its process parameters to obtain good performance [4]. In this direction, the
application of the swarm intelligence (SI) technique has become popular.

Ant colonies, bird flocking, bee colonies, eagle hunting, grazing, fish colonies, bacterial
development, etc., are all examples of SI in nature. SI is derived from research on the
collective behavior of social insects such as ants and bees. A swarm intelligence system is
often made up of a collection of simple agents or clusters that interact one with another
and with surroundings. Swarm intelligence has been formally proposed as a theory and
has steadily caught the attention of a significant number of researchers since Dorigo [5]
put forward the Ant Colony Optimization (ACO) hypothesis in 1991, starting a research
movement. Kennedy et al. [6] presented the Particle Swarm Optimization (PSO) in 1995.
Since then, research on swarm intelligence has rapidly developed, and relevant technologies
can be applied in various fields, such as aerospace [7,8], precision medicine [9], and
advanced manufacturing [10,11].

This review focuses on the progress in parameters optimization of the EDM process
using swarm intelligence. First, the principle of different swarm intelligence techniques
is critically reviewed in Section 2, including the ACO, the PSO, the genetic algorithm
(GA), the Artificial Bee Colony (ABC), the Glowworm Swarm Optimization (GSO), the
Cuckoo Search Algorithm (CSA), the Differential Evolution Algorithm (DEA), and others.
Second, the application of the swarm intelligence technique in the optimization of EDM
process parameters is summarized, and the sinker-EDM (SEDM), wire-EDM (WEDM), and
micro-EDM (MEDM) with various hybrid techniques are reviewed in Sections 3, 4, and 5,
respectively. Third, discussions from the perspectives of similarity, individuality, and
complementarity of various SI algorithms characteristics are proposed. Finally, necessary
outlooks (involving limitations and challenges) are predicted, which provide references for
the high performance of the EDM processes in the future.

2. Principal of Swarm Intelligence
2.1. ACO

Ants seek food sources, and there are numerous routes to the food source. As they
select a way, they emit a pheromone. This pheromone’s concentration decreases as time
passes. As a result, the number of ants with shorter paths will grow, as will the pheromone
content. The ants will take the path with the most pheromones. With the passage of
time, the number of ants using shorter paths will increase. Then, corresponding is the
best answer to the problem to be solved [5,12]. The ACO algorithm is a probabilistic
technique for determining the best path. It was originally intended to solve the problem
of the traveling salesman (TSP). Currently, the ACO algorithm has been continuously
improved and gradually built with a mature algorithm framework, becoming one of the
most promising algorithms in the field of combinatorial optimization [12,13]. Its application
extends to all aspects of optimization problems, such as the assignment problem, the vehicle
routing problem, the graph coloring problem, the job-shop scheduling problem, and the
network routing problem [12-15].

2.2. PSO

PSO is a group behavior that mimics the predation process of birds and fish, and is a
branch of evolutionary computation [6]. A single particle is an individual of a group of
birds or fish. It describes the members of the group as individuals without mass or volume,
and it is also convenient to describe its speed and acceleration state [6,16]. PSO utilizes three
simple behaviors of separation, alignment, and cohesion to describe the population, and
moves the individuals in the population to a good region according to their adaptability to
the environment, thus guiding the particles to find the global optimal solution. It is worth
noting that the GA does not include the “crossover” and “mutation” operations [17]. It
seeks the global optimum by following the currently searched optimal value. Compared
with other modern optimization methods, the PSO algorithm has an obvious feature in
that it requires few parameters to be adjusted and has a fast convergence speed [18]. It has
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become a key topic in the field of modern optimization methods. The PSO algorithm has
now been widely used in optimization problems in various engineering fields [19,20].

23.GA

The strong adapt and thrive in nature, whereas the weak typically perish. The GA
search optimization algorithm mimics the idea of “survival of the fittest” by basing itself
on the mechanism of natural selection [21,22]. The GA is a group-based technique where
participants score each other based on how suitable their answers are. The technique
uses mathematics and computer simulation to change the problem-solving process into
a process such as the crossing, reproduction, and mutation of chromosomal genes in
biological evolution [23,24]. In comparison to certain conventional optimization techniques,
they may frequently produce better optimization outcomes more rapidly when handling
complicated combinatorial optimization issues [23,25,26]. Consequently, the GA has been
widely applied in combinatorial optimization, signal processing, artificial life, machine
learning, adaptive control, and other fields.

2.4. ABC

A single bee’s behavior is quite basic, yet the social group it belongs to exhibits
extraordinarily sophisticated behavior. The actual bee population can efficiently gather
nectar from flowers (food sources) in settings. They may also adjust to environmental
changes at the same time. An optimization technique called the ABC algorithm is put forth
by emulating bee behavior [27,28]. The population’s overall optimal value is eventually
highlighted by the local optimization behavior of individual artificial bees. A novel swarm
intelligence algorithm is the ABC algorithm. It merely requires a comparison of the benefits
and disadvantages of the problem and has quick convergence; it does not require extensive
knowledge of the topic. The algorithm is considered as simple to code as the PSO and
the DEA [29,30].

2.5. GSO

The GSO algorithm is a new multi-modal function optimization technology of swarm
intelligence proposed by Krishnanad and Ghose [30,31]. The GSO algorithm is memoryless
and does not need global and gradient information. It has the characteristics of a fast
calculation speed, fewer adjustment parameters, and easy implementation. In the process of
population evolution, each iteration consists of five parts: the population initialization stage,
the fluorescein update stage, the mobile probability calculation stage, the location update
stage, and the neighborhood range update stage. After several years of development, the
GSO algorithm has good application prospects in the optimization process of continuous
space and some production scheduling.

2.6. CSA

The cuckoo has a unique breeding pattern in nature as a nest parasite bird. Nest
parasitism is the practice of using other birds’ nests to hatch their own eggs. To increase
egg survival, the parasite birds destroy or conceal the host’s eggs. If the host discovers the
egg, the host will either find a new nest or kill the egg. Because this is a natural selection
process, the quality of nest selection has a direct impact on the survival rate of the following
generation. The CSA is a method for solving optimization problems by imitating the
parasitic brood of a particular species of cuckoo [32-34]. Compared with other methods,
the CS algorithm has the advantages of a multi-modal objective function and requires less
parameters to be fine-tuned [35-38].

2.7. DEA

The DEA is a population-based algorithm based on the genetic annealing technique. It
is comparable to a genetic algorithm due to the employment of similar operators (mutation,
crossover, and selection) [39,40]. The primary distinction between the DEA and the GA is
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the ability to build superior solutions. The DEA is dependent on mutation, whereas the GA
is dependent on crossover. In the DEA, regardless of their fitness value, all solutions in the
population have the same chance of being chosen as parents. This is the primary operational
distinction between the DEA and the GA. Although the DEA offers advantages in terms of
improving local search ability and preserving population diversity, its convergence can be
gradual and unpredictable [4,41].

2.8. Others

There are also other interesting evolutionary algorithms, such as genetic programming
(GP), evolutionary programming (EP), evolutionary strategy (ES), the firefly algorithm
(FA), the bat algorithm (BA), and the grey wolf optimizer (GWO) [42—45]. GP is an-
other evolutionary algorithm, involving a process similar to the genetic algorithm [46].
The ES algorithm, using the same method as the GA and DE, is another optimization
method. However, it uses an adaptive mutation rate [47]. Initialization, mutation, and
evaluation are comparable processes in both the EP and GA. The EP does not employ a
crossover operation to produce offspring, which is the primary distinction between it and
the GA [45,48]. The FA was influenced by how fireflies interact with one another by flashing
their lights. The BA algorithm is another recently introduced optimization technology
inspired by the feeding behavior of bats. It is very similar to the PSO and consists of
speed and position equations [45]. The GWO achieves the goal of optimization based on
the mechanism of wolf group cooperation by simulating the predatory behavior of gray
wolf groups [49,50].

3. Sinker-EDM
3.1. Brief Introduction for Sinker-EDM

Sinker EDM is performed in a liquid media, with the machine tool’s automated
feed adjustment unit accurately controlling the spark to treat conductive materials [51].
Sinker EDM works by eroding conductive materials via a sequence of spatially discrete
high-frequency discharges (sparks) between the tool and the workpiece [52,53]. Figure 1
depicts the four stages of EDM. When a high pulse is delivered between these two elec-
trodes (attaining the breakdown voltage of the medium in the gap), the dielectric insulation
strength is destroyed at the weakest spot. Because the energy is highly short and concen-
trated, the instantaneous high temperature in the machining surface partly melts, vaporizes,
and evaporates the metal on the two electrodes’ surfaces. Under the action of the explosive
force, the partially melted and vaporized metal is propelled into the working fluid, cooled
into minute metal particles, and is swiftly washed away from the working area, producing
a small crater on the surface of the two electrodes. The dielectric insulation strength will
recover after the initial discharge and await the next discharge. Therefore, sinker EDM
involves many process parameters, including electrical parameters (discharge current,
pulse width, pulse frequency, gap voltage, etc.), non-electrical parameters (dielectric fluid,
scouring mode, pressure, etc.), and material thermal properties. Therefore, it is essential to
optimize its process parameters to obtain the required performance, such as the material
removal rate (MRR), Ra, the tool relative wear rate, machining accuracy, etc.
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Figure 1. Four stages of the process of EDM; (a) spark beginning stage, (b) melting and vaporization
stage, (c) removing debris stage, and (d) recovery stage.

3.2. Single-Objective Optimization

ACOis a popular optimization technique that has been used for optimization problem-
solving. Mondal et al. [54] investigated the optimization of EDM process parameters
using the ACO algorithm while cutting AISI 304 stainless steel. The findings revealed
that, after 50 iterations, the highest MRR of 9.232 (mm?3/min) was attained, and at the
end of all iterations, the optimal solution was found. The PSO technique is one of the
most advanced evolutionary computational intelligence-based optimization methodologies
for optimizing real-world multimodal problems. Aich and Banerjee [55] determined the
desired process parameters combination of the maximum MRR and the minimum Ra
through the PSO algorithm, with an average searching time of 4.334 s. The EDM processing
optimization proposed by Saffaran et al. [56] was highly effective, and the error of single-
objective and multi-objective optimization was less than 4% and 7%, respectively. Tzeng
and Chen [57] optimized the EDM process using the GA approach while machining SKD 11,
and discovered that GA had better prediction than RSM. Mahanta et al. [58] carried out
GA-based optimization to produce high-quality jobs with low power consumption in the
process of EDM. Mukherjee and Chakraborty [59] compared the optimization performance
of the EDM process by using various swarm intelligence algorithms, and found that
the performance of the ABC algorithm was better that of the ACO or GA algorithms.
Zainal et al. [60] employed linear regression and the GSO method to conduct an integrated
assessment of surface roughness in the EDM process. Furthermore, the minimal Ra of
2.03 pm could be searched for by the proposed method. Shen et al. [61] proposed an
improved beta-distributing cuckoo search (IBCS) algorithm, and utilized this proposed
IBCS to obtain the single-objective optimization (Ra) in the EDM process. The results
demonstrated that the number of iterations of the IBCS algorithm (eight iterations) was half
of that of the BCS algorithm (seventeen iterations). The DEA method was also used in the
parameter optimization of the EDM process [62], and the optimization performance could
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be acceptable. As for the GP algorithm, its effect in terms of EDM parameter optimization
was also better than the traditional response surface method (RSM), and the previous study
showed that it had better and more accurate estimation [63]. The ES method could be
used in the EDM process optimization of machining Inconel 718 alloy [64]. For different
materials, such as die steel [65], Al-SiCp [66], FA was applied in the EDM process for
optimizing the process parameters to obtain the desired machining performance.

For the hybrid-EDM process, the single-objective optimization can also be performed
by various swarm intelligence techniques. A continuous ACO method was used to select
the best magnetic-field-assisted-EDM (ME-EDM) process parameters for maximum MRR
and specified surface roughness (SR) by Teimouri and Baseri [67]. The optimal input
values (process parameters) for different desired SR were obtained, and the variation of
SR and MRR were heavily dependent on discharge energy fluctuation. Singh et al. [68]
proposed an intelligent hybrid approach, using the PSO algorithm, to obtain a desired
prediction of gas-assisted EDM (GA-EDM) performance. The results showed that the
improved PSO algorithm was effective for the G-EDM performance estimation. Rouniyar
and Shandilya [69] performed the optimization of process parameters in magnetic field
assisted powder mixed EDM (MFAPM-EDM) for cutting Al 6061, and compared the
optimized performance of GA method with others. Danish et al. [70] used the GWO
approach to optimize the hydroxyapatite powder mixed electric discharge machining
(HPM-EDM) process in order to improve modified surface characteristics, such as the
recast layer thickness (RLT), of 316L stainless steel. The test demonstrated that the gray
wolf optimizer’s predicted solution sets are very accurate, with less than 10% inaccuracy.
As listed below, the comparison of various swarm intelligence techniques for parameters
optimization in the sinker-EDM process is depicted in Table 1.

Table 1. Comparison of various swarm intelligence techniques for parameters optimization in the
sinker-EDM process.

Year, Authors,

Shortcomings or

[68], GA-EDM

pressure (Gp)

productive approach.

Techniques Process Parameters Performance Findings Limitation
s With the help of the
2014, Teimouri %ﬁgﬁ;&; ?;il)d ACO algorithm, the It is not compared
and Baseri [67], rotational speed of MRR and SR magnetic field assisted Wl.th .Oth?r
ME-EDM electrode (Rs), and rotary EDM process can optimization
ACO discharee ener. ! (Ee) also be successfully algorithms.
& 8y optimized.
. . The performance of
Pulse-on time (Ton), The ACO algorithm had o .
2022[’52/502%611\1/[& al. discharge current (Ip), MRR and SR converged after af;r;?rigcge rtilieoe%t;%ate
! gap voltage (Vg) 50 iterations. p .
improved.
. . The PSO algorithm had ~ The search time of the
Bai?alﬁle,ﬁ[?; aESM Tor(lr,r(}:;;sz—r?éfltlme MRR and Ra converged after algorithm is longer
Y / ! P 20 iterations. than 1 h.
Optimization error was ~ The sample data is too
PSO 2020, Saffaran et al. Ton, Toff, Ip, Vg and MRR, SR, less than 7%; the small, which affects
[56], EDM duty factor (Df) and TWR performance of PSOwas  the robustness of the
better than SA. model.
. Ton, Toff, Df, Rs, and .. The performance of
2020, Singh et al. gas discharge MRR and SR Could be an efficient and the proposed PSO

should be mensurated.
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Table 1. Cont.

Year, Authors,

Shortcomings or

Techniques Process Parameters Performance Findings Limitation
The number of
2013, Tzeng and MRR, Ra, The GA apPrgach had samples needs to be
Ton, Ip, and Vg better prediction than . .
Chen [57], EDM and TWR increased to improve
the RSM method.
robustness.
Power Other important
2018, Mahanta I Df. Toff. and V consumed To be an effective tool performance is not
GA etal. [58], EDM b, L ’ & with minimum effort. involved, such as
and SR
MRR.
. Ip, Ton, TOff' The GA approach could
2020, Rouniyar concentration of . .
- MRR, and be applied to solve this ~ Performance needs to
and Shandilya [69], powder (Cp), and .
P TWR process parameters be improved.
EDM magnetic field A
. . optimization problem.
intensity
2011, Mukherjee 1;2;;1 (;;n;?fBoé lt;;:tllssr;s Few process
ABC and Chakraborty Ip and Ton MRR, and SR . parameters to be
than ACO algorithm o
[59], EDM optimized.
or GA.
The minimal Ra of Few machinin
2017, Zainal et al. Ton and Toff, Ip, and 2.03 um could be &
GSO Ra performances to be
[60], EDM servo voltage (Sv) searched by the .
considered.
proposed method.
2011, Shen et al The number of iterations 0 tmlili;io(?rllercltel:gs to
CSA ’ ’ Ton, Toff, Ip, and Sv MRR, and Ra of the IBCS algorithm P
[61], EDM . . . perform for MRR
was eight iterations.
and Ra.
MRR, SR, The accuracy and
2020, Kumar et al. Ve, Ip, Rs, and cycle TWR, overcut The optimization consistency Qf the
DEA . and performance could be derived optimal
[62], EDM time . . .
circularity acceptable. solutions needs to be
error improved.
B(:[htis;;gzi_i?gziéve The experimental data
GP 2020, Ghadai et al. In. Ton and Toff MRR, and rrr)lulti—ob'ective is too small to affect
[63], EDM b, TWR itmon) the accuracy of the
optimization were
. . model.
investigated.
2020, Jafarian et al T}c’lgggzﬁfii)grjvzesss The processing
EP ! ’ Vg, Ton, Ip, and Toff MRR and Ra X performance involved
[64], EDM successfully achieved ‘s relatively small
using the GP algorithm. y ’
Ip. Ton. Ve and Three-objective
GWO 2022, Danish et al. }I: ! dro>2 ag,a tite MRR, Ra, With less than 10% optimization should
[70], HPM-EDM y yap and RLT inaccuracy. be performed for MRR,
amount
Ra, and RLT.

3.3. Multi-Objective Optimization

Dang et al. [71] employed the PSO method to conduct the restricted multi-objective

(MRR, SR, and tool wear rate (TWR)) optimization of process parameters, which was
regarded as the intelligent optimization of the EDM machining process. The results demon-
strated that effective process parameter selection could assist the EDM operator in reducing
cutting time, as well as expenses. Moghaddam and Kolahan [72] utilized the PSO algorithm
to optimize several response characteristics (MRR, SR, and TWR). The proposed approach
accurately simulated the actual EDM process with less than 1% inaccuracy, according to
the results. Zhang et al. [73] adopted the proposed PSO algorithm, combining quantum
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behavior and Gaussian local attractor, to provide the best processing parameters for the
green MF-EDM while machining SiCp/Al, as depicted in Figure 2. The points in Figure 2
are 15 selected optimized results, which contains minimal and maximum MRR, EWR, and
aerosol emissions values, as well as some compromised points. Compared with the average
experimental data, the average optimal solution for SiCp/Al, TWR (EWR), and aerosol
emissions decreased by around 7.8% and 12.5% respectively, while the MRR increased by
around 6.05%. Garg and Lam [74] used the GP technique to model the multiple-response
features. The multi-response features, namely one manufacturing aspect (TWR) and two
environmental aspects (dielectric consumption and heat energy consumption), were con-
sidered in their investigation, and the efficacy of the suggested GP models was validated
using experimental data.

selected points with large MRR values

grid mesh of Pareto optimal set
.\..! . = 3
selected compromised points

1- L .
9 o n 4
-\aﬁ // o ™
g 0.8+ - "
C I} '.I
L06~ |
$ )
2 Fo12
E I
w 04+ \u,_ i
3 /10
g selected points w |I1h small EWR i) ] F 8

0 - and aerosol emission values™—— ~ f s

s T L
15 mI = . W x;_’
5 74 MRR (mm>/min)
EWR (mg/min) g

Figure 2. Optimal Pareto for MF-EDM while green machining SiCp/Al, reproduced from [73],
permission with Elsevier, 2020.

During the green machining of Al 6061 and SKD 11, Ming et al. [75] recommended
utilizing the GSO algorithm to optimize parameters to reduce exhaust emissions and energy
consumption. The Pareto frontiers of the multi-objective optimization for Al 6061 and
SKD 11 are illustrated in Figure 3, which demonstrate the Pareto frontier of MRR and
exhaust emissions characteristics (EEC). The intended EEC in Figure 3a,b was less than
180 ug/m? for integrating cutting productivity with environmental friendliness while
milling Al 6061. Similarly, the intended EEC for SKD 11 did not exceed 160 pg/m?3.
As a result, as shown in Figure 3, the left sides below these criteria are colored green.
This suggests that the optimized outcomes in the green zone were less harmful to the
environment. The targeted energy efficiency per volume (EEV) in Figure 3c,d was less
than 0.51 KJ/mm? for integrating machining output with environmental friendliness while
cutting Al 6061. Moreover, for SKD 11, the targeted EEV does not exceed 5.5 KJ/ mm?.
Similarly, the desired outcomes in the green region were energy efficient. Hence, the
optimized combination of cutting process parameters for multi-objective optimization
could meet the prediction accuracy.
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Figure 3. Optimal Pareto for EDM while green machining Al6061 and SKD 11: (a) Pareto frontier of
MRR and EEC for Al 6061, (b) Pareto frontier of MRR and EEC for SKD 11, (c) Pareto frontier of Ra
and EEV for Al 6061, (d) Pareto frontier of Ra and EEV for SKD 11 reproduced from [75], permission
with Elsevier, 2021.

3.4. Summary

From the existing optimization of EDM process parameters, most of the research
is still focused on single-objective optimization, and the number of research papers on
multi-objective optimization is relatively small. This may be related to the characteristics of
the swarm intelligence algorithm, which is not suitable for multi-objective optimization.
Moreover, in actual production, the demand for single targets may be more urgent under
specific circumstances. In addition, since most of the studies are traditional sinker-EDMs,
the amount of hybrid sinker-EDMs is also relatively small. Therefore, there have not been
many swarm intelligence algorithms involved. Furthermore, it is found that the PSO
and GA are the most widely used in the optimization, and the number of studies is also
significantly more than other swarm intelligence algorithms. One of the most important
reasons for this may be that the PSO and GA algorithms are easy to implement, and
their robustness is relatively good, which can meet the needs of engineering applications.
Optimization algorithms provide the results of EDM improvements, and the optimized
processing parameters can significantly guide the EDM process in an economical and
environmentally friendly manner and meet sustainable manufacturing needs.

4. Wire-EDM
4.1. Brief Introduction for Wire-EDM

According to wire speed, wire-EDM (WEDM) can be divided into two categories:
high speed wire-EDM (HS-WEDM) and low speed wire-WEDM (LS-WEDM) [76-78]. The
wire feed speed of the HS-WEDM ranges from 6 to 12 m/s, and it is commonly employed
in low/medium quality mold manufacture and special component processing, and the
equipment of the process is depicted in Figure 4a [77]. The HS-WEDM tool electrode is a
molybdenum wire, which is fed in a cyclic manner and can be reused. Unfortunately, the
electrode wire jitter is high due to the difficulty in applying consistent tension control to
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the electrode wire, and the wire is easily broken during processing. Furthermore, because
the electric wire is reciprocally employed, it will result in electrode wire loss, decreased
processing accuracy, and surface quality deterioration. The LS-WEDM electrode wire
employs copper wire as the tool electrode and normally travels in a single direction at less
than 0.2 m/s, the equipment of the process is depicted in Figure 4b. A pulse voltage of
60-300 V is delivered between the copper wire and the treated material, such as copper,
steel, or a superhard alloy, while maintaining a spacing of 550 um. The gap is filled by
deionized water (like distilled water) and other insulating media, resulting in a spark
discharge between the electrode and the treated material, which consume and corrode
each other [78]. The discharge phenomena are uniform due to digital program control,
monitoring and control, and servo mechanism execution, allowing the treated item to be
processed, and producing a product with the requisite size and shape precision [79,80].
The HS-WEDM affects the machining accuracy as the electrode wire is recycled, and as the
electrode wire continuously wears out. Generally, the accuracy of products machined by
the HS-WEDM is £0.015~0.02 mm. The LS-WEDM electrode wire is not recycled, which
greatly improves the machining accuracy, and the machining accuracy of the machine can
reach £0.002 mm.
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Figure 4. Equipment of the process of WEDM; (a) HS-WEDM, (b) LS-WEDM.
4.2. Single-Objective Optimization

In single-objective optimization, the optimization of one desired response at a time is
carried out. Sharma et al. [81] adopted the PSO method, integrating evaluation based on
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distance from the average solution (EDAS), to optimize the wire-EDM parameters when
cutting biomedical materials. Figure 5 depicts the process flow of the PSO method for
optimizing the wire-EDM parameters. The best configuration for reducing the surface
imperfections when milling titanium alloy on LS-WEDM was suggested as Ton: 8 us; Toff:
13 ps; Vs: 45 V; and wire tense: 8 N. Moreover, the forthcoming solution at the optimal
parametric values had the following values: an Ra of 3.163 pm, an Rz of 22.99 pum, a wire
loss of 0.0182 g, and a dimensional accuracy of 95% [81]. To find the best parameter settings
for the LS-WEDM process, Tzeng et al. [82] suggested a hybrid approach combining the
GA, a back-propagation neural network (BPNN), and the RSM. The outcomes showed that
the GA approach’s suggested algorithm provided superior prediction and confirmation
results compared to the RSM technique. This means that the GA optimization techniques
have a lot of promise for challenging applications in industry. Furthermore, the similar
integrating method was also used in the process of the HS-WEDM by our team [83]. For
fabricating microchannels in industrial applications, Singh et al. [84] used the GA approach
to accomplish the multi-response optimization of the LS-WEDM process parameters for
the fabrication of a brass microchannel. They found that the single-response optimiza-
tion through the GA approach for a maximum MRR = 7.10 mm?/min and a minimum
Ra = 3.36 um could be obtained. The validation outcomes demonstrated the effectiveness
of the proposed optimization models. Kuruvilla and Ravindra [85] applied the Taguchi and
GA methods to determine the influence of process parameters on the oil-hardened non-
shrinkage steel (OHNS) material with a thickness of 40 mm by LS-WEDM. The variation of
the performance parameters with machining parameters was mathematically modeled us-
ing the Regression analysis method. The results showed that, in the processing parameters,
it was better to use a smaller pulse closing time to achieve a good performance overall.
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Figure 5. Process flow of the PSO method for optimizing the wire-EDM parameters, reproduced from [81].

Rao and Pawar [86] modeled and optimized the process parameters of LS-WEDM
using the RSM and ABC methods. Through the proposed methods, a maximum MRR of
7.10 mm?3/min and a minimum Ra of 3.36 pm were obtained. This demonstrated that the



Metals 2023, 13, 839

12 of 26

ABC method, an advanced algorithm of swarm intelligence, could solve the engineering
problems. In order to optimize the multiple performance of the dry LS-WEDM process
of Al-SiC metal matrix composite, Fard et al. [87] proposed an intelligent model that
integrated the ABC algorithm. In this model, the impact of the discharge current, pulse-on
time, pulse-off time, wire tension, gap voltage, and wire feed on cutting velocity and Ra
was examined. The results showed that brass wire and oxygen gas ensured superior cutting
velocity. Additionally, it was discovered that the ABC algorithm could predict the ideal set
of process parameters with accuracy. Rao and Venkaiah [88] proposed a modified CSA to
optimize the LS-WEDM process when machining Inconel-690 to significantly enhance the
performance of the cuckoo search. In comparison to the GA, PSO, and the standard cuckoo
search, the proposed method was determined to be accurate and quick. The industry will
also benefit from the machining data produced by this endeavor. Similar results could also
be confirmed in our previous study in another engineering field [38]. Saravanan et al. [89]
investigated the parameters (pulse-on time, pulse-off time, cutting speed, discharge current,
wire tension, wire feed, servo voltage, and servo feed) optimization of LS-WEDM through
CSA. The optimum machining performance for different conditions could be obtained in
no more than 100 iterations, as depicted in Figure 6. Figure 6a represents the variation of
the obtained objective function values, where it is observed that the molybdenum wire
outperforms the other two wires, namely plain brass and galvanized, during the iterative
process. Figure 6b shows that the optimum value of the input parameter cutting speed is
75%, and the speed of molybdenum wire is relatively higher than that of galvanized and
ordinary brass wire.

21+

2 204
x Plain Brass
= 194 X
o = Zinc coated
E 18 Molybdenum coated
=
T 174
=3
c 164
kel
Q 15
2
© 14-/_/
=
8 134
o
O 124
1 T T T T T T T T T 1
0 10 20 30 40 50 60 70 80 90 100
Iterations
(a)
76+
_ 754 T ——— V
£
£ -
€
E 744
> |
Q )
o
Q
D 73—
o
£
= Plain Brass wire
© 72 Zinc coated wire
-Molybdenum coated wire
71 T T T T T T T T T 1

o
=)
N
S
w
S
IS
S
o

S
o
S

~

S

80 90 100
Iteration

(b)

Figure 6. Optimum machining performance for different conditions, reproduced from [89], with
permission from Elsevier, 2020; (a) MRR, (b) cutting speed.
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Kulkarni et al. [90] analyzed the machinability and optimized the LS-WEDM of NiTi-
NOL memory alloy using the modified DEA method. The results confirmed that the
convergence curve of the modified DEA was much better than that of the conventional
DEA, and the convergence speed was twice as fast as before, thus saving calculation time.
Nayak et al. [91] established a genetic programming (GP) model to study six process param-
eters to optimize angle error and minimize surface roughness. The results demonstrated
that GP was a cost-effective and time-saving method compared with typical prediction
methods. Xu et al. [92] optimized the process parameters, as depicted in Figure 7, of wire
cutting nickel-titanium shape memory alloy (NiTi-SMA) with the help of the BA algorithm
and multiple regression (MLR)/BPNN to obtain the maximum processing speed and ideal
kerf width. The experimental results showed that the prediction error of the proposed
optimization method could be within 4-2%, which was valuable for engineering application.
As listed below, the comparison of various swarm intelligence techniques for parameters
optimization in the wire-EDM process is depicted in Table 2.

5 60pm

Oum

Y (um)

(¢) Optimal settings for MLR-BA prediction  (d)Optimal settings for BPNN-BA prediction

Figure 7. Optimal settings results of 3D CLSM images of the sample surface: (a) low discharge
energy, (b) high discharge energy, (c) optimal settings for MLR-BA prediction, (d) optimal settings for
BPNN-BA prediction, reproduced from [92], with permission from Elsevier, 2022.

Table 2. Comparison of various swarm intelligence techniques for parameters optimization in the
wire-EDM process.
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Table 2. Cont.
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applications. robustness.
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2020, Kulkarni MRR, SR, of modified DEA was optimization of MRR,
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BA 2022, Xu et al. [92], Ip, Wp, Wt, Wf, and CVand kerf  The prediction error was optimization of CV
LS-WEDM discharge frequency width within +2%. and kerf width should

be performed.

4.3. Multi-Objective Optimization

Multi-objective optimization is the process of optimizing two or more conflicting
objectives. In machining operations, there are often situations where the desired re-
sponses are inherently conflicting. An improvement in one response can worsen another.
Ranjan et al. [93] performed the multi-objective optimization of an abrasive powder, in-
cluding SiC and Al,O3, mixed WEDM (APM-EDM) of Inconel 718 using the PSO method.
Using a hybrid artificial neural network (ANN) linked GA technique, Vaidyaa et al. [94]
sought to maximize the multi-objective optimization of LS-WEDM on AlSi10Mg. In their
investigation, the following optimal process parameters were established: vs. of 42V, Ip of
12 A, and Ton of 12 us result in a maximum micro-hardness of 478 VHN and a minimum
SR of 4.3 pm. Zhang et al. [95] used BPNN combined with the GA (BPNN-GA) and the
non-dominated sorting genetic algorithm-II (NSGA-II) to optimize the process parameters
on surface integrity, such as white layer thickness (WLT), surface crack density (SCD), and
SR, in the LS-WEDM process of the tungsten tool YG15. The best optimum solutions for
WEDM machining, which balanced the performance of SR, SCD, and WL, as well as the
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Pareto-optimal front of three-objective optimization, were discovered by their proposed
methods. Similarly, the gray relational analysis technique (GRA) and the backpropagation
neural network-genetic algorithm (BPNN-GA) were used by Soepangkat et al. [96] to
accomplish multi-objective optimization in the LS-WEDM process of SKD 61 tool steel.
Setting Ton, Toff, and vs. to 3 ms, 10 ms, and 38 V, respectively, would yield the lowest RLT,
SR, and SCD.

When performing multi-objective optimization for LS-WEDM on Ti6 Al4V alloy, Jain
and Parashar [97] compared a priori and a posteriori approaches. A multi-objective ABC
with GRA was selected as an a priori approach, and a multi-objective grasshopper op-
timization algorithm (MO-GOA) was selected as an a posteriori approach. According
to the amount of calculating time, it was discovered that the a priori approach to multi-
objective optimization was superior to the a posteriori approach. Similarly, the Pareto
front was found by extending the modified CSA to simultaneously optimize the MRR,
SR, and kerf [88]. Majumder et al. [98] studied the multi-objective optimization of the
LS-WEDM process when cutting RAFM steel manufactured in India. They compared the
performance of giving optimal results of the FA, the PSO, and the DEA, and found that the
FA was better than the others (DEA and PSO). Kondayya et al. [99] described an approach
of an evolutionary strategy for the optimization of a L5-WEDM process. The result of
Pareto optimal solutions, as depicted in Figure 8, confirmed that the all-encompassing
evolutionary strategy was a solution for the process optimization. In the beginning, it
was possible to machine components with the best surface quality, but with the lowest
MRR. Finally, the highest material removal rate could be achieved, but with the worst
surface quality.
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Figure 8. Pareto front of LS-WEDM for the selection of optimum values.

4.4. Summary

One of the most researched areas in machining is process modeling and optimization,
as this can reduce production costs and improve product quality. However, experimental
optimization of any machining process is expensive and time consuming due to the com-
plexity, coupling, and nonlinear nature of the input and output variables of the process.
There are various optimization methods for process parameter optimization. Based on the
existing research literature, most of the process parameter optimizations of wire-EDM have
been aimed at LS-WEDM, with very few involving HS-WEDM. This is because the machin-
ing performance of HS-WEDM equipment is poor, and its processing dimensional accuracy
and surface quality are not as good as LS-WEDM. As a result, its application scope is also
limited, and the number of relevant research results is very scarce. Most of the machining
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performances studied in the literature have mainly involved the MRR and the SR, while
others such as kerf width, TWR, and angular error are relatively few. Similarly, it has been
found that PSO and GA are the most widely applied in the optimization of wire-EDM
process parameters, and the number of research articles is also significantly higher than that
of other swarm intelligence algorithms, such as the ABC, GP, or BA methods. Furthermore,
itis concluded that the attention of researchers has focused on single-objective optimization,
and the involved methods of wire-EDM are traditional wire-EDM.

5. Micro-EDM
5.1. Brief Introduction for Micro-EDM

With the increasing miniaturization and precision of products worldwide, micro-
fabrication and small-hole EDM, one of the non-contact microfabrication methods, has
become an important part of micromechanics and is widely used in the manufacturing
industry because of its superfine and high-precision machining characteristics. Although
micro-EDM and sinker-EDM are based on the same physical principle of spark erosion,
there are still obvious differences. This is because, during its processing, the discharge
energy is reduced to the order of 1076~10~7 ] to minimize the amount of material removal
per unit time and realize the micro-level EDM process. This means that, compared with
sinker-EDM, micro-EDM has more difficulties in terms of power control, manufacturing
methods of micro-tools, real-time processing monitoring, and other aspects [100-103].
Micro-EDM technology can be categorized into five different types: micro sinker-EDM, mi-
cro wire-EDM, micro drilling-EDM, micro milling-EDM, and micro wire electro-discharge
grinding [102,104]. Figure 9 demonstrates the principle of the process of micro drilling-EDM
and micro milling-EDM.
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Figure 9. Principle of the process of micro-EDM; (a) micro drilling-EDM, (b) micro milling-EDM.

5.2. Parameters Optimization

With the use of the PSO optimization technique, Chen et al. [105] suggested a hybrid
optimization strategy that increased MRR by a maximum of 49.1% and decreased Ra by
a maximum of 37.8% in the micro-WEDM process while machining 65 vol.% SiCp/Al
composite. Moreover, the Pareto optimum solution sets, as depicted in Figure 10, had
great accuracy and dependability. Similarly, Quarto et al. [106] completed a micro-EDM
optimization with the PSO approach. The results showed that the suggested optimization
approach may adapt to the automated environment in both scenarios of externally imposed
material or processing performance. For optimizing the multi-objective performance of the
circularity at the entrance, the hole overcut, and the circularity at the exit of drilled micro
holes, a hybrid approach of the PSO integrating gray relational analysis was used in the pro-
cess of micro hole drilling in Mg alloy [107]. Regarding the prediction of micro-hole quality
(radial over-cutting, recast layer thickness, and MRR) on Inconel 718 superalloy treated
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by micro-EDM, Rao [108] suggested a prediction model based on the bionic intelligent
hybrid algorithm. The prediction approach was based on the combination of the adaptive
neuro-fuzzy inference system (ANFIS) and the PSO/GA algorithms (ANFIS-PSO/ ANFIS-
GA). Comparing the ANFIS-PSO against the ANFIS-GA, ANFIS, and ANN models, it was
discovered that ANFIS-PSO was superior.
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Figure 10. The Pareto optimal solution of MRR and Ra in the micro-WEDM process while machining
65 vol.% SiCp/ Al composite, reproduced from [105], with permission from Elsevier, 2021.

To predict the performance (machining time, MRR, and dimensional deviation) of
micro drilling-EDM, Quarto et al. [109] compared a finite element model (FEM) simulation
and an integrated ANN and PSO technique. In order to meet various industrial objectives,
the combined ANN-PSO approach included a twofold direction functionality. It provided
a way to anticipate process performance while simultaneously optimizing the process
parameters (discharge current, voltage, frequency, tool diameter, workpiece, and tool
materials) in relation to the needed performance levels. Figure 11 depicts the bar chart
of the prediction error between the experimental results and models simulation, while
drilling micro-EDM. The findings demonstrated that the combined ANN-PSO technique
provided performance predictions that were more accurate. The ANN-PSO approach was
also quicker and simpler to use, but it needed a lot of historical data to train the ANN. In
contrast, setting up the FEM was more difficult because it required several physical and
thermal properties of the materials, and single simulation took a long time.
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Figure 11. Bar chart of prediction error between experimental results and models simulation while
drilling micro-EDM with a tool diameter of (a) 150 um, and (b) 300 um, reproduced from [109].

In micro-EDM, processing parameters greatly affect processing efficiency and stability.
Based on Taguchi experiments with support vector machines, Zhang et al. [110] developed
a process model for micro-EDM and suggested a novel multi-objective optimization GA
to optimize process parameters and decrease machining time and TWR. The GA is an
evolutionary algorithm that uses genetic operators to obtain optimal solutions without any
assumptions about the search space. GA works with a population of feasible solutions
and, therefore, it can be used in multi-objective optimization problems to simultaneously
capture several solutions. The suggested multi-objective GA was accurate and efficient in
producing Pareto optimum solutions for parameter settings, according to the experimental
data. The optimal parameter combination could significantly decrease machining time
while maintaining a manageable TWR. Hence, the suggested technology could increase
the stability and efficiency of machining while also being appropriate for the parameter
adjustment of micro-EDM. Dilip et al. [111] carried out the multi-objective optimization of
process parameters on Inconel 718 using weighted objective summation and GA techniques
to enhance the processing quality of drilling cooling holes for turbine blades. According to
the experimental data, the inner wall’s surface roughness could be reduced to 13,587 pm
under the ideal cutting circumstances. Furthermore, the confirmed experiments confirm
that the maximum relative error obtained was less than 10%.

5.3. Summary

Compared to sinker-EDM and wire-EDM, the number of publications on process
parameter optimization for micro-EDM is significantly lower. The reason is that compared
to sinker-EDM and wire-EDM, micro-EDM is not widely used, especially in industrial
applications. Most of the existing literature on micro-EDM remains at the laboratory
stage, mainly focusing on the research of processing mechanisms. Indeed, micro-ED
is a branch of EDM, and the machining mechanism of electrical discharge machining,
like other special machining, is very complex [112-114]. The existing research has not
fully understood its working mechanism [3,115-117]. In addition, the swarm intelligence
algorithms for the process parameter optimization of micro-EDM have mainly focused
on PSO and GA methods. This is primarily because PSO and GA methods are relatively
simple and robust compared to other methods. In micro-EDM, the machining parameters
have a great influence on the machining efficiency and stability. In order to correctly set
the process parameters of micro-EDM, the process is generally modeled and several new
multi-objective optimization GA algorithms are proposed. At the same time, properly
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selected process parameters can obtain a good clearance state, ensure the stability of the
process, and result in low electrode wear, thus greatly improving the machining efficiency.

6. Discussion

This review focuses on the progress in the application of the SI technique in the
optimization of EDM process parameters. In this study, the parameter optimizations of
sinker-EDM (SEDM), wire-EDM (WEDM), and micro-EDM (MEDM) with various hybrid
techniques using SI technique are comprehensively reviewed. This section discusses
the three aspects of similarity, individuality, and complementarity of these different SI
techniques and machining methods.

6.1. Similarity

The PSO method, which is frequently employed in the optimization of these three
categories of EDM process parameters, is the primary representative algorithm of swarm
intelligence. The fundamental idea, which looks for the best solution through individual
cooperation, comes from research on the behavior of bird flocks moving in groups. First
designed to graphically represent the ethereal and erratic movements of flocks of birds
in two dimensions, it was later extended to the multidimensional space and used to the
solution of optimization problems. The ACO method, which uses the collective optimiza-
tion capability of biological ant colonies that can find the shortest path from the ant nest to
food by straightforward information flow between individuals, is another example of a
representative algorithm of swarm intelligence.

The similar characteristics of swarm intelligence can be summarized as follows: At
first, because control is decentralized and not centralized, the system is better equipped
to adapt to the network and is less likely to be adversely affected by the failure of one or
more individual. Second, through indirect communication, each member of a group has
the power to influence the environment, spread knowledge, and work together. Third,
because each member of a group has very basic skills or behavioral norms, group intelli-
gence is simpler and easier to use. Lastly, because of their ability to self-organize, groups
exhibit complex actions that are the result of intelligence that develops via the interaction
of individuals [118].

6.2. Individuality

Of course, different swarm intelligence algorithms also have certain differences. The
swarm intelligence optimization algorithm mainly simulates the swarm behavior of insects,
herds of animals, flocks of birds, and schools of fish. Due to the differences between species,
there are certain differences in the implementation methods of different algorithms. For
example, the GA has a strong global search ability but a weak local search ability, often only
obtaining suboptimal solutions rather than optimal solutions. It can achieve over 90% of
the optimal solution with extremely fast speed, but it takes a long time to achieve the true
optimal solution, which means that the local search ability is insufficient [88]. The ACO
parameter settings are complex, and if the parameters are not properly set, it is easy to
deviate from the high-quality solution. Therefore, for different EDM methods, one or more
swarm intelligence algorithms can be selected according to the actual situation to optimize
their process parameters. In addition, it is worth noting that although sinker-EDM, wire-
EDM, and micro-EDM are all branches of electrical discharge machining, their machining
mechanisms are basically similar. However, due to significant differences in processing
objects, control methods, and processing performance, there are still certain differences in
the optimization of process parameters.

Single-objective optimization evaluates only one objective and requires only the op-
timal value to be found according to the specific satisfaction function conditions. Multi-
objective optimization has multiple evaluation functions in place and the solutions, using
different evaluation functions, are different. Single-objective optimization problems are
simple to implement and have well-established algorithms for solving them, with the dis-
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advantage that they can only be solved for a single objective. Multi-objective optimization
is more comprehensive and detailed for objective solving. The disadvantages of multi-
objective optimization are that the units are not consistent among objectives of different
nature, which are not easy to compare, and the assignment of weighted values for each
objective is more subjective. The main algorithms for single objective optimization are the
ACO, the PSO, the GA, ABC, the GSO, etc. The main types of multi-objective optimization
are weighted methods, constrained methods, and hybrid methods combining weighted
and constrained methods and multi-objective genetic algorithms. From the existing re-
search on the optimization of EDM process parameters, most of the research is still focused
on single-objective optimization, with relatively few research papers on multi-objective
optimization. This may be related to the characteristics of group intelligence algorithms,
which are not suitable for multi-objective optimization.

6.3. Complementarity

At present, the mathematical and theoretical foundation of swarm intelligence algo-
rithms is relatively weak. For example, there is no exact theoretical basis for the parameter
settings of related algorithms, which significantly depends on specific issues and appli-
cation environments. In order to better solve practical engineering problems, such as the
optimization of EDM process parameters, various types of swarm intelligence algorithms
can be used for optimization, thereby increasing the probability of obtaining a global opti-
mal solution. In addition, the existing comparative research on the optimization of EDM
process parameters is insufficient, and there is a lack of standard test sets for performance
evaluation. This means that there is no absolute credibility or application risk. Therefore,
it is necessary to establish a diverse and unified evaluation platform to facilitate the com-
plementary application of swarm intelligence algorithms and improve the engineering
application’s ability to solve practical problems.

7. Outlooks

Based on the literature review in this study, the future development directions of
parameters optimization of EDM using swarm intelligence are as follows.

(1) As one of the five major intelligent forms focused on the development of the new
generation of artificial intelligence, swarm intelligence has important application
prospects in both civil and military fields. At present, swarm intelligence is still in
its infancy in basic theory and mechanism innovation and key technology applica-
tions, and various algorithms still need to be continuously studied, improved, and
expanded in scope of application. Especially in the field of electrical discharge process
parameter optimization, swarm intelligence still has broad application and develop-
ment space [3,26]. Integrating different swarm intelligence algorithms for optimizing
electrical discharge process parameters and better searching for global optimal solu-
tions may be a future development direction.

(2) The existing optimization of EDM process parameters is mainly oriented towards
machining performance, such as MRR, SR, TWR, machining accuracy, etc. With the
increasing attention paid to sustainable manufacturing, green EDM will become a key
feature in the future. The response of processing output not only involves processing
performance, but also involves environmental impacts, such as toxic gas emissions,
processing noise, green dielectric, and so on [75,116,119,120]. Therefore, there will be
more goals to optimize and the difficulty will further increase.

(3) Swarm Intelligent is a heuristic search algorithm based on the behavior of a population
to find optimization for a given goal, and is centered on the ability of a population of
simple individuals to achieve a more complex function through simple cooperation
between them. There are many existing swarm intelligence algorithms, such as ACO,
ABC, GSO, etc. These algorithms will be improved as they are applied, and it is
believed that future artificial intelligence will also produce more new algorithms that
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the optimization algorithm will apply to the EDM, such as selfish herds optimization,
bald eagle search, etc.

(4) With the fast advancement of technology, machine learning (ML) has found widespread
use in a variety of industries, including industrial testing [121-123], medical diagnos-
tics [124,125], life sciences [126,127], and renewable energy [128-130]. AlphaFold2, for
instance, created a protein structure prediction model using ML, which can predict
the properties of proteins based on gene sequences and achieve 98.5% of the structure
of human proteins [126]. With preliminary artificial intelligence, combining ML tech-
niques with swarm intelligence algorithms to achieve autonomous parameter setting,
the dynamic adjustment of search directions, etc., may become a research focus in
the future.
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