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Abstract: The emergence of various electronic devices and equipment such as electric vehicles and
drones requires higher energy density energy storage devices. Lithium–sulfur batteries (LSBs) are
considered the most promising new-generation energy storage system owing to its high theoretical
specific capacity and energy density. However, the severe shuttle behaviors of soluble lithium
polysulfides (LiPSs) and the slow redox kinetics lead to low sulfur utilization and poor cycling stability,
which seriously hinder the commercial application of LSBs. Therefore, various catalytic materials have
been employed to solve these troublesome problems. High entropy materials (HEMs), as advanced
materials, can provide unique surface and electronic structures that expose plentiful catalytic active
sites, which opens new ideas for the regulation of LiPS redox kinetics. Notwithstanding the many
instructive reviews on LSBs, this work aims to offer a complete and shrewd summary of the current
progress in HEM-based LSBs, including an in-depth interpretation of the design principles and
mechanistic electrocatalysis functions, as well as pragmatic perspectives.
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1. Introduction

The widespread use of traditional fossil fuels and various emerging electronic devices
and equipment such as electric vehicles and drones make finding higher energy density
energy storage devices to replace traditional energy systems urgent [1–4]. Lithium–sulfur
batteries (LSBs) have garnered much attention due to its high theoretical energy density,
2600 Wh kg−1, and theoretical specific capacity, 1675 mAh g−1 [5]. In addition, natural
reserves of active material sulfur are inexpensive and environmentally friendly [6]. The
above advantages have also attracted extensive attention and research on LSBs by domestic
and foreign researchers [7]. However, the insulating property of sulfur, the sluggish redox
kinetics of Li2S2/Li2S, the shuttle effect of soluble lithium polysulfides (LiPSs), and the
huge volume change during lithiation/delithiation are not conducive to achieving high
utilization of active S and a long cycle lifespan in LSBs [8–11].

In order to tackle the above critical obstacles, researchers have extensively investi-
gated the performance improvement of LSBs mainly from four aspects: sulfur cathodes,
electrolytes, separators, and Li anodes [12–15]. Figure 1 depicts the reaction mechanism
of the interconversion of S8 and LiPSs during charging and discharging, explaining the
reasons for the slow reaction kinetics and the mechanism of catalytic LiPS conversion.
Physical confinement and chemical adsorption strategies are common strategies for inhibit-
ing the diffusion of LiPSs [16]. However, high sulfur loading cannot be achieved due to
the limited adsorption sites. Accelerating redox reactions is another effective method to
restrain the migration of LiPSs [17]. Recently, catalysis has been proposed for accelerating
the conversion of soluble LiPSs to solid products and reducing their accumulation on
electrolytes [18]. Undoubtedly, once sulfur host materials with strong adsorption and fast
catalytic conversion of LiPSs are synthesized, the inhibition of the shuttle problem and an
improvement in the redox kinetics of LiPSs can be achieved simultaneously. Therefore, it is
imperative to explore new catalytic hosts for achieving high-energy-density LSBs.
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Figure 1. An overview of the main components of LSBs, the key pathways for limiting LiPSs, and the
material changes during charging and discharging.

In view of LiPSs being negatively charged polar substances, as a Lewis base, they
can provide Lewis acids with excess electron pairs to form coordination bonds. Metal
atoms with abundant polar sites can be strongly bonded to LiPSs through Lewis acid–
base interactions, polar–polar interactions, and sulfur-chain catenation, thus anchoring
and trapping them to the host surface and reducing the loss of active substances [19,20].
However, single-compound catalysts cannot balance the adsorption and desorption of
LiPSs, resulting in poor catalytic activity [21]. Therefore, catalysts with multiple anchoring
and catalytical active centers are needed to provide a proper adsorption capacity for LiPSs
and to accelerate its conversion. In addition, the research on conventional catalysts has
mainly focused on binary/ternary metal nanoalloys. On the one hand, the modulation of its
electronic structure and the improvement in its catalytic performance are constrained [22].
On the other hand, the composition changes during the catalytic process due to the low
atomic diffusion potential [23]. Therefore, the current binary/tertiary alloys can no longer
meet the requirements of advanced catalysis [24].

Based on this, high-entropy materials (HEMs), consisting of a good mixture of five or
more major component atoms/molecules, have also attracted a lot of attention as potential
candidates as multicomponent catalysts that achieve strong synergistic effects [25]. In
this review, we focus on the major development of HEMs as host materials, explaining
its design principles, structure and properties, and electrochemical performances. Finally,
some future perspectives and directions are pointed out based on the literature, which
focus on further progress in LSBs.

2. High-Entropy Materials
2.1. The Concept of High Entropy

“Entropy” is a thermodynamic parameter that indicates the degree of disorder in
a system. The higher the degree of disorder in the system, the higher the entropy. The
concept of “high entropy” originally came from high-entropy alloys (HEAs). Yeh et al. [26]
and Cantor et al. [27] proposed the concept of “HEAs” in 2004. HEAs, unlike conventional
alloys, are usually composed of five or more elements in equal or nearly equal atomic ratios,
with 5–35% of each element [28]. HEAs have attracted much interest in the development
and application of electro/thermal catalytic clean energy conversion due to their unique
microstructure, excellent thermal stability, and catalytic activity for various reactions.
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The entropy of a configuration increases with the number of elements, which is known
as the high-entropy effect, and it can greatly enhance the stability of the material [29]. As
shown in Figure 2, the high-entropy effect is manifested in four main ways [30]: (1) In
the thermodynamic high-entropy effect, N-element alloy systems can form up to N + 1
phases. However, HEAs tend to form single-phase solid solutions rather than split phases
or various intermetallic compounds. (2) In the lattice distortion effect of the structure, for
HEA, the individual atoms are randomly distributed in the crystal dot matrix; the radii and
chemical bonds of different atoms differ greatly; and the environment around each atom as
well as the occupancies are different, which makes the lattice interior have greater lattice
distortion and defects than conventional alloys [31]. (3) In the hysteresis diffusion effect of
kinetics, precipitates below the tens of nanometer scale are often observed in the interior
of HEA, which is not easily found in conventional alloys, indicating that the diffusion
and phase transformation rates are very slow in HEA, and they are not susceptible to
structural changes such as grain coarsening or recrystallization at high temperatures. (4) In
the “cocktail” effect on properties, the basic properties of different components and their
interactions make the HEMs present more complex properties.

Metals 2023, 13, x FOR PEER REVIEW 3 of 22 
 

 

and Cantor et al. [27] proposed the concept of “HEAs” in 2004. HEAs, unlike conventional 

alloys, are usually composed of five or more elements in equal or nearly equal atomic 

ratios, with 5–35% of each element [28]. HEAs have attracted much interest in the devel-

opment and application of electro/thermal catalytic clean energy conversion due to their 

unique microstructure, excellent thermal stability, and catalytic activity for various reac-

tions. 

The entropy of a configuration increases with the number of elements, which is 

known as the high-entropy effect, and it can greatly enhance the stability of the material 

[29]. As shown in Figure 2, the high-entropy effect is manifested in four main ways [30]: 

(1) In the thermodynamic high-entropy effect, N-element alloy systems can form up to N 

+ 1 phases. However, HEAs tend to form single-phase solid solutions rather than split 

phases or various intermetallic compounds. (2) In the lattice distortion effect of the struc-

ture, for HEA, the individual atoms are randomly distributed in the crystal dot matrix; 

the radii and chemical bonds of different atoms differ greatly; and the environment 

around each atom as well as the occupancies are different, which makes the lattice interior 

have greater lattice distortion and defects than conventional alloys [31]. (3) In the hyste-

resis diffusion effect of kinetics, precipitates below the tens of nanometer scale are often 

observed in the interior of HEA, which is not easily found in conventional alloys, indicat-

ing that the diffusion and phase transformation rates are very slow in HEA, and they are 

not susceptible to structural changes such as grain coarsening or recrystallization at high 

temperatures. (4) In the “cocktail” effect on properties, the basic properties of different 

components and their interactions make the HEMs present more complex properties. 

 

Figure 2. Four effects of high-entropy materials. 

Following HEAs, inspired by breakthroughs in metal clusters, the concept of an HEM 

design has been extended to high-entropy oxides (HEOs), high-entropy ceramics (HECs), 

high-entropy polymers (HEPs), and high-entropy composites (HECOMPs) [32]. Similar to 

HEAs, all HEMs are long-range ordered in terms of structure but disordered on composi-

tion. High-entropy oxides (HEOs), as a new concept, have been introduced to develop 

advanced materials with unique properties, which are not possible with conventional ma-

terials relying on only one or a few major elements. HEOs are multi-component oxides 

with a single solid solution structure composed of five or more oxides in equal or nearly 

equal amounts of matter, including transition metal-based HEOs (TM-HEOs), rare-earth-

based HEOs (RE-HEOs), and hybrid-based HEOs (TM-RE-HEOs) [33]. HEOs represent 

multi-element metal systems that can crystallize in a single phase, and different systems 

can have different crystal structures, which can also be classified rock salt, fluorite, chal-

cocite, spinel, and other oxides [34]. 

Figure 2. Four effects of high-entropy materials.

Following HEAs, inspired by breakthroughs in metal clusters, the concept of an HEM
design has been extended to high-entropy oxides (HEOs), high-entropy ceramics (HECs),
high-entropy polymers (HEPs), and high-entropy composites (HECOMPs) [32]. Similar to
HEAs, all HEMs are long-range ordered in terms of structure but disordered on composition.
High-entropy oxides (HEOs), as a new concept, have been introduced to develop advanced
materials with unique properties, which are not possible with conventional materials
relying on only one or a few major elements. HEOs are multi-component oxides with a
single solid solution structure composed of five or more oxides in equal or nearly equal
amounts of matter, including transition metal-based HEOs (TM-HEOs), rare-earth-based
HEOs (RE-HEOs), and hybrid-based HEOs (TM-RE-HEOs) [33]. HEOs represent multi-
element metal systems that can crystallize in a single phase, and different systems can have
different crystal structures, which can also be classified rock salt, fluorite, chalcocite, spinel,
and other oxides [34].

In the past five years, high-entropy ceramic materials have sprung up gradually.
Compared with HEAs, the emergence of high-entropy ceramics (HECs) provides more
opportunities for the optimization of material properties and overcomes bottlenecks in
material applications. HECs have good high-temperature strength, excellent creep resis-
tance, good thermal/environmental stability, and low thermal conductivity [35]. Compared
with traditional ceramic materials, HECs exhibit superior corrosion resistance, oxidation
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resistance, thermal stability, and high hardness and have great potential for applications in
the fields of defense and military, aerospace, and new energy.

HEAs and other HEMs have potential development abilities and broad application
prospects, resulting from their unique design strategies and unique properties. As shown in
Figure 3, for example, the NH3 decomposition reaction [36], the hydrogen evolution reaction
(HER) [37], lithium–sulfur batteries (LSBs), the oxygen reduction reaction (ORR) [38], the
methane oxidation reaction (MOR) [39], the formic acid oxidation reaction (FAOR) [40],
the CO oxidation reaction [41], the methanol oxidation reaction [42], electromagnetic wave
shielding materials [43], functional coating and antibacterial materials, hydrogen storage
materials, anti-radiation materials, thermoelectric materials, etc., which are expected to be
widely used in various new fields.
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Figure 3. Six catalytic reactions of HEA-NPs. The six catalytic applications include the NH3 decom-
position reaction [36], the hydrogen evolution reaction (HER) [37], lithium–sulfur batteries (LSBs),
the oxygen reduction reaction (ORR) [38], the methane oxidation reaction (MOR) [39], and the formic
acid oxidation reaction (FAOR) [40].

2.2. Preparation of High-Entropy Materials

The method of synthesis of the material plays an important role in its development.
Selecting a suitable synthetic route requires consideration of several aspects, such as phase
stability, element distribution, morphology characteristics, desired properties, and appli-
cations. Several other parameters should be considered in the selection of the synthetic
process, such as time, temperature, and complexity of the process [44]. Although large bulk
and thin films are important for mechanical and coating applications, there is a general
trend toward synthesizing high-entropy nanomaterials, including nanoparticles, nanofibers,
nanotubes, nanosheets, etc. These nanomaterials exhibit better physical and chemical prop-
erties in some specific applications due to their core effects such as small size effect, surface
effect, quantum size effect, quantum tunneling effect, and dielectric confinement effect.
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Nano-HEAs are promising for a wide range of applications in multiphase catalysis [45,46].
Compared with conventional low-entropy nanomaterials, the strain effect induced by their
lattice distortion has a promoting catalytic activity effect, which can lead to more stable
crystal structures in arms of thermodynamics (∆Gmix = ∆Hmix − T∆Smix) and kinetics
(vacancy mechanism for diffusion). Therefore, the design of HEA nanomaterials with
specific structures provides a new research direction for the construction of efficient and
stable electrocatalytic materials.

The preparation of HEMs with special morphology and controllable structure accounts
for an ultimate pursuit in practical implementation. For LSBs, the synthesis of HEMs has
an important impact on both their ability to confine LiPSs and superior catalytic activity.
Therefore, it is worth concluding the current preparation routes for targeted HEMs. The
typical methods for HEMs synthesis are discussed in the following (Figure 4):
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Figure 4. Common synthesis methods for high-entropy materials: wet-chemistry synthesis, sput-
tering deposition [47], carbothermal shock [48], ball-milling [49], microwave-assisted synthesis [50],
electrospinning technology [51], pulse discharge method [52], and spray pyrolysis [53].

2.2.1. Wet-Chemistry Synthesis

Currently, traditional wet chemical synthesis methods including hydrothermal and
solvothermal methods are based on the crystallization process of substances [54]. Both
methods need to be carried out in a reactor. In the hydrothermal method, the reactants are
dissolved in water, while it should be dissolved in an organic solvent in the solvothermal
method. The morphology and particle size of the product can be influenced by temperature,
pH, and reactant concentration. This is an inexpensive way to prepare high-purity, high-
quality nanoparticles at low temperatures. For HEMs, the application of this method does
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not have the problems of complex reaction equipment, complicated preparation processes,
high reaction temperatures, and large particle sizes compared with other methods [55,56].

Jiang et al. [57] synthesized a high-entropy metal hydroxymethoxy-based material
FeCoNiMgCr(OH)(OCH3) (denoted as FeCoNiMgCr-HM) using a one-step solvothermal
method to investigate the application of HEM for electrochemical water splitting. As shown
in Figure 5a, the electrochemically activated FeCoNiMgCr-HM exhibited excellent catalytic
properties due to the synergistic effect of the five metal cations and methoxy-induced
surface reconstruction. Wu et al. [58] first synthesized six platinum-group-metal HEA
nanoparticles (PGM-HEA) using simple wet chemistry. The HEA NPs are promising cata-
lysts for complex reactions due to their various active sites and high stability. The various
elements are uniformly distributed as seen in the corresponding EDS plots (Figure 5b).
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Figure 5. (a) Synthesis of high-entropy hydroxy-methoxy compounds with layered structures by
one-step solvothermal method and TEM images [57]. (b) HAADF-STEM image of the as-prepared
PGMHEA and the corresponding EDX maps [58]. (c) Schematic diagram of formation mechanism of
PtIrPdRhRu HEA nanoparticles under solvothermal conditions [59].

Broge and coworkers [59] used the solvothermal method to synthesize PtIrPdRhRu
HEAs. Homogeneous materials were obtained within a relatively narrow temperature
window of about 200 ◦C, which is well below the reduction temperature of some metals in
the solvothermal reaction of a single precursor (Figure 5c).

2.2.2. Mechanical Ball-Milling

The solid-state reaction method is a traditional method of preparing HEMs and
is based on controlling the interdiffusion of the initial precursor powders to produce
HEMs [60,61]. The most commonly used solid-phase reaction method is mechanical
alloying, also known as mechanical ball-milling, which is commonly used to prepare metal
powders. Metal powders are deformed, cold-welded, and broken in a ball mill to finally
make elements to achieve atomic-level alloying. This complex and tedious physical process
is mechanical alloying. The principle is shown in Figure 6a, where the sample is placed in a
bowl together with the grinding balls and then violently rotated or vibrated. The collision
of the ball with the bowl and the powder leads to a solid-state reaction [62]. The main
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advantage of mechanized alloying is that a more uniform nanoscale tissue distribution can
be obtained.
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Figure 6. (a) Schematic diagram of mechanical alloying principle. (b) Representative compositional
mapping result obtained from a nanoparticle [63]. (c) Two-step synthetic strategy and XRD patterns
of HEMNs pyrolyzed at 600, 700, 800 (HEMN-1), and 900 ◦C [64].

M.Y. Rekha et al. reported the synthesis of multi-component NiFeCrCoCu HEA
nanoparticle-graphene composites using mechanical ball-milling and ultrasound-assisted
exfoliation methods [63]. As shown in Figure 6b, the five transition metals are uniformly
distributed. Jin et al. [64] prepared a new class of high-entropy metal nitrides (HEMNs)
via a two-step mechanochemical synthesis. As shown in Figure 6c, the five transition
metal chlorides were mixed with urea in a ball-milling process to produce highly dis-
persed precursors, which were subsequently pyrolyzed under N2 conditions. The use
of five metal elements significantly increased the conformational entropy. In addition,
Hari Prasad et al. [65] prepared FeNiCoCrAlMn HEA containing dispersed alumina using
mechanized synthesis. The results show that the dispersion of alumina had no effect on the
organization of the alloy. Both alloys have FCC and BCC biphasic structures and contain a
small number of Mn3Co7 phases.

2.2.3. Sputtering Deposition

Sputtering includes reactive radio frequency (RF) magnetron sputtering, direct cur-
rent (DC) sputtering, and multi-metal co-sputtering, which can be used to prepare hard,
corrosion-resistant, high-entropy nitride, carbide, and oxide films. Sputtering deposition
is a widely used technique for depositing nanoparticles or thin films on substrate mate-
rials [66]. As shown in Figure 7a, the principle of the technique is to change the metallic
surface state of the target, using the interaction of equal ions in the gas under the action of
electric and alternating magnetic fields. The accelerated high-energy particles bombard
the target surface, and after energy exchange, the atoms on the target surface escape from
the original lattice, transfer to the substrate surface, and form a film [67]. Due to the high
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ability of atoms deposition, the formed film has a uniform and dense organization and
a high bond with the substrate. In addition, composition control is easily ensured in the
preparation of alloy films. However, the sputtering deposition speed is not quick, and the
presence of radiation and bombardment of the plasma on the substrate can not only cause
substrate heating but also may form internal defects.
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film [68]. (c) XRD patterns of the TiVZrCrAl coatings at different deposition temperatures, SAED
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Talluri et al. [68] performed thin film deposition using eutectic HEA (AlCoCrFeNi2.1)
as a target material using the radio frequency magnetron sputtering technique. The cross-
sectional field emission scanning electron microscopy (FE-SEM) images of the generated
films are shown in Figure 7b. The results show that the thickness of the film is about
95 nm, which is already in the range of nanocrystals. He et al. [69] used the magnetron
sputtering method to prepare high-hardness TiVZrCrAl HEA coatings and investigated
their organization, and mechanical and corrosion properties. As shown in Figure 7c,
Selected area electron diffraction (SAED) maps at 300 ◦C showed one stronger diffraction
ring and three weaker diffraction rings. The wider and weaker diffraction rings indicate
that the coating is less crystalline and close to an amorphous structure, which is consistent
with the XRD analysis results.

Tobias et al. [70] synthesized CrMnFeCoNi nanoparticles using magnetron sputtering,
exhibiting a high entropic effect promoting the formation of a single solid solution. As
shown in Figure 7d, they bombarded the elemental target with Ar plasma and sputtered the
metal atoms in the target into the ionic liquid instead of the matrix. These metal atoms are
subsequently nucleated and grown in the ionic liquid to generate the corresponding HEA
NPs. The specific synthesis method based on combined co-sputtering from the elemental
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target to the ionic liquid achieves precise tuning of the elemental composition of the multi-
components alloy NPs. It was found that the material is comparable to Pt in terms of ORR
activity. In addition, the size of NPs can be adjusted by choosing a suitable ionic liquid as a
stabilizer and suspension medium [71].

2.2.4. Carbothermal Shock Method

Carbonthermal shock (CTS) provides a new way to synthesize high-entropy nanoparti-
cles with narrow particle size distribution and uniform dispersion. CTS is a novel ultrafast,
high-temperature process (>2000 K) for the production of uniform, monodisperse HEA-NPs
on conductive materials [72]. The high temperature causes rapid thermal decomposition of
the metal salt precursors to form small droplets of multi-metallic solutions. Subsequently,
these droplets rapidly cool and crystallize into homogeneous alloy nanoparticles inde-
pendent of agglomeration, elemental segregation, or phase segregation. However, the
size of the substrate conductive material is limited to a large extent, which restricts the
mass production [73]. This CTS method opens up a wide scope for the synthesis of alloys
and nanocrystals.

The basic principles of the CTS method have been described by Hu et al. [74] and
Lu et al. [75] (Figure 8a,b). The high temperature, combined with the catalytic activity of
the liquid metal, drives the rapid “fission” and “fusion” events of the particles, resulting
in a homogeneous mixing of multiple elements [76]. The cooling rate can be adjusted by
changing the input parameters, which greatly affects the structure of the formed nanopar-
ticles. Compared with the conventional method, CTS could be a feasible way to form
highly dispersed nanoparticles and can easily obtain nanostructured catalysts with poly-
metallic compositions. It exhibits higher structural and chemical stability compared with
conventionally synthesized nanocatalysts.
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formation simulation of MEA-NPs. (The hybrid Monte Carlo and molecular dynamics (MC-MD)
approach. MD-MC simulation approach for the formation of an Ru-5 MEA-NP at 1500 K. The
high temperature promotes uniform mixing, while the high entropy stabilizes the structure [36]).
(d) STEM-based elemental maps of the HEA-Co25Mo45 nanoparticles at low (upper panel) and high
(lower panel) resolutions [48].

Xie et al. [48] synthesized CoMoFeNiCu HEA NPs via rapid heating and cooling of
metal precursors on oxygenated carbon carriers using the carbothermal shock method.
Moreover, the mixed-phase limitation of the bimetallic CoMo alloy was broken by adjusting
the ratio of Co/Mo elements in the HEA NPs. The obtained knowledge was combined
with the reaction kinetics and simulated atomic structures of HEA catalysts to further
explore the catalytic enhancement mechanism of HEA catalysts for efficient decomposition
of ammonia. Recently, Deng [77] used nickel foil as a carrier for fast Joule heating for
the ultrafast synthesis of high-entropy oxides. The method exhibits an extremely short
synthesis time and wide generalizability in the synthesis of HEOs.

2.2.5. Electrospinning Technology

Electrospinning is a simple and scalable method for preparing nanofibers with con-
trolled morphology and composition, which has played a vital role in the field of construct-
ing one-dimensional nanostructured materials with the potential to synthesize fiber-like
HEM [78]. The schematic diagram of electrospinning is presented in Figure 9A, where a
precursor solution containing five metal salts is added to the needle of an electrospinning
machine, and the droplets at the tip of the needle change from a sphere to a cone (i.e., a
“Taylor cone”) under the action of an electric field, and the fiber filaments are obtained by
extending from the tip of the “Taylor cone”. On the other side, a rotating roller receives
it evenly.
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Figure 9. (A) Schematic diagram of electrospinning, SEM image of precursor of
(Y0.2Yb0.2Sm0.2Eu0.2Er0.2)2O3 nanofibers and after 500 ◦C calcination, and EDS images [78].
(B) Typical nanofibers and composition spectra of HE-RE2Zr2O7 nanofibers sintered without in-
sulation at 1000 ◦C [79]. (C) XPS spectra of FeCoNiIrRu/CNFs [80].

To demonstrate the feasibility of the low-temperature synthesis of high-entropy
ceramic nanofibers (HECNFs) by electrospinning, Xing [78] synthesized high-entropy
(Y0.2Yb0.2Sm0.2Eu0.2Er)O0.223 nanofibers via a new electrospinning method and low-temperature
solid-solution treatment. Li [79] proposed a method for the facile preparation of high-
entropy ceramic nanofibers (La0.2 Nd0.2Sm0.2Dy0.2Yb)0.22ZrO27(HE-RE2ZrO27) via an elec-
trospinning and annealing process and systematically investigated its microstructure and
thermal stability. Figure 9B shows the typical nanofibers and their compositional energy
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spectra of HE-RE2ZrO27 nanofibers when sintered without insulation at 1000 ◦C. It can
be seen that HE-RE2ZrO27 nanofibers are internally composed of fine nanoparticles and
various rare-earth elements are uniformly distributed in the fibers, and this structure makes
them promising for applications in the field of thermal insulation. Zhu et al. [80] in situ
synthesized FeCoNiIrRu HEA nanocrystals in carbon nanofibers (CNFs) using a combina-
tion of electrospinning and graphitization and investigated the chemical composition and
electronic states of FeCoNiIrRu/CNFs via x-ray photoelectron spectroscopy (Figure 9C).

2.2.6. Spray Pyrolysis

In the spray pyrolysis method, liquid droplet aerosols produced by solution atom-
ization are carried by a carrier gas into a high-temperature reaction furnace. When the
water evaporates, the droplets precipitate out of the solid phase due to supersaturation
and are transformed into hybridized spherical particles composed of various metal salt
elements. Alternatively, the solution is sprayed into a high-temperature atmosphere and
dried, followed by a heat treatment to form a powder. The size of the particles formed is
highly dependent on the spraying process parameters. The spray method requires high tem-
perature and vacuum conditions and has high requirements in terms of its equipment and
operation, but it is easy to produce powders with small particle sizes and good dispersion.

Here, Qiao et al. [81] reported the synthesis of high-entropy phosphate (HEPi) cata-
lysts (CoFeNiMnMoPi) in the form of highly homogeneous spherical particles. As shown
in Figure 10a, the metal salt precursors were dissolved in ethanol solution and tri-n-
octylphosphine oxide (TOPO) was added. Aerosol droplets were formed by spraying, and
the oxide was converted into phosphate in situ during high temperature and rapid heating.
Jennifer et al. [82] analyzed the formation mechanism of HEA nanocrystalline-based macro-
and mesoporous materials and the role of templating agents by using different templating
agents to synthesize HEA via spray pyrolysis. The level of chemical and structural com-
plexity achievable by spray pyrolysis was significantly improved by fabricating HEA-based
particles with controlled porosity.
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Figure 10. (a) Schematic illustration of the HEPi particle formation process [81]. (b) Schematic
of the evolution of aerosol droplets during the high-temperature treatment [73]. (c) Scheme of
the fabrication process of porous HEA-based particles by aerosol synthesis followed by thermal
annealing [82]. (d) HAADF-STEM image and HAADF-EDS elemental maps of an individual octonary
CrMnFeCoNiPdRuIr hollow HEA nanoparticle. Scale bar: 100 nm [83].
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2.2.7. Microwave-Assisted Synthesis

Conventional methods for synthesizing HEMs require high temperatures, at ~1000 ◦C.
The relatively slow ramp-up rate greatly limits the preparation of HEMs on a large scale.
Microwave heating is an effective method for inducing thermal energy and has been used
for the synthesis of organic [84] and high-quality carbon materials [85], as well as carbon-
loaded nanomaterials [86,87]. This microwave heating method has several advantages:
(1) fast heating and cooling rates; (2) high, achievable temperatures; and (3) applicability to
carbon materials of various sizes. In view of these advantages, this microwave radiation-
induced heating method has great potential to be applied in a wide range of production
applications of nanomaterials.

Hu et al. [88] reported a facile, efficient, and scalable microwave heating method
for the synthesis of HEA-NPs on carbon-based substrates of different sizes (Figure 11A).
They synthesized PtPdFeCoNi HEA-NPs with an average particle size of about 12 nm.
Otherwise, there was uniform distribution of various elements owing to decomposition
and liquid metal solidification being almost simultaneous without diffusion and phase
segregation. In addition to two-dimensional carbon materials such as graphene oxide, this
microwave synthesis method can be applied to other carbon-based materials, including
one-dimensional materials (e.g., CNFs) and three-dimensional materials (e.g., c-wood),
which also have dimensional effects on the particle size of the generated HEA-NPs.
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Figure 11. (A) Schematic illustration of the formation of HEA-NPs on rGO by microwave heating,
HAADF-STEM image, and STEM-EDS elemental mapping of a PtPdFeCoNi HEA-NPs [88]. (B) SEM
image and EDS elemental mapping of (CoCuMgNiZn)O powder [89]. (C) Schematic diagram of
microwave-assisted synthesis [90].

Colombo et al. [89] proposed a novel and simple method for the synthesis of HEO
materials through microwave radiation. It is worth noting that the five elements are evenly
distributed (Figure 11B). Mehdi [90] synthesized HEO (Mg, Cu, Ni, Co, Zn)O nanoparticles
through microwave irradiation. In Figure 11C, the preparation process and principles of
the material are clearly demonstrated. This method greatly reduces the time and cost of
synthesizing HEMs. Microwave-assisted synthesis is also safer than flame pyrolysis [47]
and has higher product reproducibility [90].

2.2.8. Pulse Discharge Method

Due to the transient high current density, pulsed electrolysis can increase the cathodic
overpotential at the same current density (compared with direct current (DC)). Lu et al. [91]
developed a pulsed current electrodeposition method to grow a FeCoNiMnW HEA(H-
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FeCoNiMnW) on the surface of carbon paper. As shown in Figure 12a–c, the morphological
characterization shows that the material is spherical and has a uniform distribution of
various elements, which can be used as an efficient and stable bifunctional electrocatalyst
for HER and OER in acidic media.
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deposited on carbon paper. (c) TEM/EDX element mapping of H-FeCoNiMnW [91].

3. Application in Lithium–Sulfur Batteries

At present, the development of LSBs urgently needs to be driven by advanced catalytic
materials. The surface of HEA is highly heterogeneous due to the mixture of multiple
metals, which provides diverse sites for LiPSs to be adsorbed on and reacted with. The
activation of multisite HEA electrocatalysts helps to improve the atomic utilization of each
metal in polysulfide adsorption [92]. In addition, HEA nanocrystals exhibit highly exposed
active surfaces and excellent dynamic structural stability [93]. Multipoint HEA nanocrystal
electrocatalysts have become a rising star in recent years due to their flexible elemental
composition and customizable electronic structure, providing opportunities for efficient
synergistic catalytic polysulfide conversion. This work compares the electrochemical
performance of several HEMs applied to LSBs in terms of rate performance (Figure 13a).
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Figure 13. (a) The rate performance of several HEMs used in LSBs. (b) The charging–discharging
voltage plateaus of the cathode and the corresponding products in LSBs [94]. (c) Schematic diagram
of high-entropy catalysts to reduce the polarization of LSBs.
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The reaction process in LSBs involves a series of multi-electron and multi-phase
transitions [95]. S8 active cathode involves a 16-electron transfer reaction (S8 + 16 Li+ +
16e− 
 8 Li2S), enabling LSBs to achieve a high theoretical capacity of 1675 mAh g−1.
In general, LSBs exhibit two discharge voltage plateaus in the capacity–voltage diagram
(Figure 13b). During the discharge process, S8 will first be reduced to a series of intermediate
products of long-chain LiPSs (Li2Sx, 4 ≤ x ≤ 8), forming the first upper voltage plateau
(~2.3 V). In a continuous lithiation process, soluble long-chain LiPSs are converted to solid-
phase short-chain LiPS species Li2S2. Then, Li2S2 is converted to Li2S, providing the second
discharge voltage plateau at ~2.1 V. The opposite reactions occur during the charging
process. Typically, three types of polarization occur within the cell: activation polarization,
concentration polarization, and ohmic polarization. The activation polarization and the
concentration polarization can be reduced by changing the composition and structure of
the electrode or electrolyte, while ohmic polarization is usually considered an inherent
property. As shown in Figure 13c, to reduce polarization and energy loss, catalysts such
as HEA can be used to increase the activity of LiPSs around the anode (reducing the
concentration polarization) and to accelerate the subsequent redox reaction (reducing the
activation polarization) [28].

Xu et al. [28] investigated a nano-HEA composed of five elements, Fe, Co, Ni, Mn, and
Zn, as a catalyst for the redox process of LiPSs. As shown in Figure 14a, the metal organic
framework-74 (MOF-74) precursor was subjected to rapid CTS reduction to obtain single-
phase HEA-NPs, about 7 nm, uniformly distributed on the porous carbon matrix. The test
results showed that the capacity retention of LSBs assembled with a nano-HEA modified
separator was 83.3% (500 cycles at 2 C rate). Due to the strong affinity of nano-HEA with
LiPSs, the activity of adsorbed LiPSs around the electrodes was more than 17 times higher
than that of the control sample (without the addition of nano-HEA), which significantly
reduced the concentration polarization (Figure 14b).
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Figure 14. (a) Preparation schematic diagram, morphological characterization, and (b) electrochemi-
cal performance of assembled LSBs [28]. (c) Schematic illustration of the preparation of HEA–NC
and acceleration for the conversion between LiPSs and Li2S2/Li2S on HEA–NC catalytic host and
rate capability [96].

Wang et al. [96] synthesized Fe0.24Co0.26Ni0.10Cu0.15Mn0.25 HEA as core catalytic hosts
to activate the electrochemical performance of S cathode in LSBs. To further exploit the
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advantages of HEA in catalysis, Fe0.24Co0.26Ni0.10Cu0.15Mn0.25 high-entropy nanocrystals
distributed on nitrogen-doped carbon (NC) with good electrical conductivity and affinity
for LiPSs were prepared (Figure 14c). As expected, the prepared S/HEA-NC cathode was
used to assemble LSBs with excellent rate performance.

Zheng et al. [97] prepared a typical cubic rock salt HEO containing Ni, Mg, Cu, Zu,
and Co elements for LSB application via the mechanical ball-milling method combined with
a 1000 ◦C heat treatment (Figure 15A). The high dispersion of metal species in HEMO-1
favors the exposure of active sites, which undoubtedly facilitates the limitation of LiPSs
during charge and discharge. Both platforms of HEMO-1 cells are prolonged compared
with KB/S cells, indicating the promotion of LiPS conversion. The irregular shape of the
prepared HEO volume and the low surface activity may not be conducive to loading sulfur
efficiently. In view of these issues, the future development of HEO materials with regular
nanostructures is necessary.
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Figure 15. (A) Schematic illustration of cell configuration using HEMO-1 as chemical anchor of
polysulfide in cathode for enhancing performance of LSBs. Geometry configuration of Li2S6 binding
to HEMO-1. (The oxygen, nickel, magnesium, zinc, copper, cobalt, lithium, and sulfur atoms are
marked with red, white, orange, green, blue, purple, luminous yellow, and light green, respectively;
2.276 Å and 1.842 Å are simulative bond distances of S-Ni and Li-O, respectively) [97]. (B) XRD
pattern, SEM images, Potentiostatic discharge profile at 2.05 V, and potentiostatic charge profile at
2.4 V [98]. (C) Schematic diagram of microwave-assisted hydrothermal synthesis and electrochemical
performance [89].

HEO nanofibers (Mg0.2Mn0.2Co0.2Ni0.2Zn0.2)Fe2O4 were prepared by electrospinning
method using a mixture of polyacrylonitrile (PAN) and metal salts by Tian et al. [98]. They
applied the HEO nanofibers as catalytic hosts for sulfur in LSBs to promote the conversion
of soluble LiPSs. The porous one-dimensional nanostructures synergistically interacted
with multiple metal cations in a single spinel structure, which not only provided an ideal
pathway to promote Li+ diffusion but also provided abundant active sites for chemically
anchored LiPS and catalytic LiPS conversion. The larger capacity contribution of Li2S
precipitation compared with NiFe2O4(NFO) indicates that (Ni1/3Co1/3Mn1/3)Fe2O4 is
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more effective in promoting Li2S nucleation, as well as Li2S dissolution (Figure 15B). The
results show that the S/HEO composites can achieve fast kinetics and good cycling stability.

Colombo et al. [89] designed and synthesized HEO materials ((CoCuMgNiZn)O) via
microwave radiation (Figure 15C). Overall, the electrochemical stability of the material
and the uniformity and consistency of the composition during charge and discharge
ensure efficient and stable operation of the LSBs with a coulombic efficiency of 98.7%
over 500 cycles of 0.2 C. Therefore, these low-cost and simple HEO/S cathode preparation
techniques can build better and cheaper LSBs and open up new avenues for the application
of HEMs in energy conversion and storage devices.

In conclusion, we summarize the application of HEMs for LSBs. Like other modified
materials, HEMs are mainly applied to sulfur cathode and separator modification. Like
many other electrocatalytic reactions, the conversion of LiPSs in LSBs involves a series
of complex multielectron and multiphase conversion processes. The synergistic effect of
multiple atoms and sulfur–metal (S-M) chemical interactions between LiPS and HEM hosts
significantly affects the electrocatalytic activity of HEMs.

4. Conclusions and Perspectives

LSBs are currently only in the basic research stage and have not been commercialized,
which is mainly affected by the insulation of sulfur/lithium sulfide (S/Li2S), the fatal
shuttle effect of LiPSs, and volume expansion effect [99]. The tunable atomic species of
HEMs and the highly heterogeneous of atomic surfaces provides diverse active sites to
adsorb and react with LiPSs. The use of HEM electrocatalysts is deemed to be an effective
key to inhibiting the shuttle effect and accelerating sulfur reaction kinetics. The well-
defined design principle and extensive catalytic mechanism explorations with respect
to HEMs have provided valuable guidelines on the construction of high-efficiency and
long-lifespan LSBs. Nevertheless, there are still many spaces for persistent explorations in
HEM promoters.

(a) The HEMs with high electrocatalytic activity need to be further evolved. A large
number of research results have been achieved in the preparation process and tissue proper-
ties of HEMs with different compositions, while the compositions of HEMs are complex and
variable. The structure–properties relationship of HEMs is still not perfect. Conventional
preparation methods require harsh conditions and high temperatures to overcome the reac-
tion energy barrier, making it hard to precisely control the structure of catalytic materials
or to produce nanomaterials with large sizes unsuitable for catalysis. Currently, finding a
low-temperature method to precisely prepare high-entropy nanomaterials with controllable
structure and composition is a difficult problem in the field of HEMs. A breakthrough in
the difficulty of preparing HEMs will contribute to carrying out the next step of catalytic
performance research. It is expected that HEMs will shine in the field of electrochemical
energy storage, represented by LSBs.

(b) The electrocatalytic mechanism of HEMs needs to be deeply revealed. A clear
electrocatalytic mechanism understanding is beneficial to constructing HEMs with high
electrocatalytic activity. The synergistic interaction (e.g., metallic bond, d-p orbital hy-
bridization, electron spin states, Jahn–Teller effect, and Mott–Schottky heterostructures)
largely influences the surface state and the distribution of active sites in HEMs [100]. In
addition, metal–sulfur bonding also seriously affects the adsorption of HEMs with poly-
sulfides. It is significant to find out the different bonding mechanisms, which helps to
understand the catalytic mechanism of HEMs applied to LSBs and to design specific HEMs.

(c) Advanced in situ characterization techniques need to be extensively developed [101].
The shuttle problem is one of the most important reactions in LSBs. However, the essential
catalysts to overcome its sluggish reaction kinetics always undergo a complex dynamic
evolution in the actual catalytic process, and the concomitant intermediates and catalytic
products also continuously convert and reconstruct. This makes accurately capturing them
difficult, making the elucidation of catalytic mechanisms difficult. Thus, it is necessary to
use extensive in situ characterization techniques such as XRD, X-ray absorption (XAS), and
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Raman spectroscopies to promote real-time reactions during the charging and discharging
of LSBs [102].

In total, the use of HEM promoters indeed serves as an effective strategy to optimize
the electrochemical reaction approach and to design high-energy density and long-lifespan
LSBs. However, a multitude of challenges with regard to advanced Li–S system con-
struction is still expected to be addressed, with persistent efforts from both experimental
and theoretical explorations. Real applications of LSBs are expected to be further pro-
moted by active HEM electrocatalysts. Actual application atmospheres, pertaining to
high sulfur loading, lean electrolyte usage, and flexibility, cause relatively intricate sulfur
reaction processes, leading to the inferior electrochemical performances of LSBs. High-
performance LSB systems in future commercial applications might be realized by applying
active HEM electrocatalysts.
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