
Citation: Akopyan, T.K.; Belov, N.A.;

Letyagin, N.V.; Cherkasov, S.O.;

Nguen, X.D. Description of the New

Eutectic Al-Ca-Cu System in the

Aluminum Corner. Metals 2023, 13,

802. https://doi.org/10.3390/

met13040802

Academic Editors: Petra Maier and

Normen Fuchs

Received: 28 February 2023

Revised: 8 April 2023

Accepted: 16 April 2023

Published: 19 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

metals

Article

Description of the New Eutectic Al-Ca-Cu System in the
Aluminum Corner
Torgom K. Akopyan 1,2,* , Nikolay A. Belov 1, Nikolay V. Letyagin 1, Stanislav O. Cherkasov 1

and Xuan D. Nguen 1

1 Department of Metal Forming, National University of Science and Technology MISiS, 4 Leninsky pr.,
Moscow 119049, Russia; nikolay-belov@yandex.ru (N.A.B.); n.v.letyagin@gmail.com (N.V.L.);
ch3rkasov@gmail.com (S.O.C.); xuandiep0307@gmail.com (X.D.N.)

2 Sector of Scientific Activity, Moscow Polytechnic University, 38, Bolshaya Semyonovskaya str.,
Moscow 107023, Russia

* Correspondence: nemiroffandtor@yandex.ru

Abstract: The structure of the new ternary eutectic Al-Ca-Cu system considered as a replacement for
the ternary eutectic system Al-Ce-Cu widely used for additive manufacturing has been studied using
experimental techniques. The liquidus projection of the Al-Ca-Cu system in the aluminum corner has
been suggested based on experiential studies of the microstructure and phase composition of model
alloys. The suggested structure of the diagram has two quasi-binary sections: (Al)-Al27Ca3Cu7 and
(Al)-Al8CaCu4 and three invariant eutectic transformations: L→(Al) + (Al,Cu)4Ca + Al27Ca3Cu7 (at
5.6 wt.% Ca, 4.5 wt.% Cu, 595 ◦C), L→(Al) + Al27Ca3Cu7 + Al8CaCu4 (at 2.2 wt.% Ca, 13.5 wt.% Cu,
594 ◦C) and L→(Al) + Al8CaCu4 + Al2Cu (at 0.5 wt.% Ca, 34 wt.% Cu, 544 ◦C). The limit solubility
of copper in aluminum solid solution (Al) at 530 ◦C reaches ~5.1 wt.% in the ternary phase field
(Al) + Al8CaCu4 + Al2Cu and drops to ~2.4 wt.% in the (Al) + Al8CaCu4 + Al27Ca3Cu7 ternary phase
field. For the example of the model ternary hypoeutectic alloys with a predominant content of
the eutectic (Al,Cu)4Ca phase, it has been shown that the system is promising for designing new
eutectic-type alloys with a natural composite structure.

Keywords: phase diagram; Al-Ca-Cu system; microstructure; intermetallics

1. Introduction

Al-Cu-based alloys are widely used in load-bearing applications at room and relatively
high temperatures (up to 225 ◦C) due to their good strength-to-weight ratio and toughness
after artificial aging [1–3]. However, the wide solidification range typical of these alloys
leads to various casting defects such as hot-tearing, shrinkage, and microporosity [4]. In
contrast, eutectic Al-Re based alloys (Re = rare earths) have excellent resistance to hot-
tearing [5], and thus high casting manufacturability. Earlier studies revealed [6–8] that the
addition of Re in Al-Cu based alloys allows one to increase the resistance to hot-tearing,
thus improving the castability due to the formation of a eutectic structure. Moreover,
Al-Cu-Re based alloys have a good combination of mechanical properties at room and
elevated temperatures [8,9] and exhibit high processability for additive manufacturing
(AM) techniques [10], such as selective laser melting. Indeed, the high cooling rates used
for AM provide for the formation of nano-sized eutectic or quasi-eutectic structures (in
hypereutectic alloys [11]) which in turn provide for the effective strengthening by the
Orowan mechanism [12,13], for which dislocations bypass the intermetallic particles by
looping around them. For example, new Al-9Cu-6Ce and Al-9Cu-6Ce-1Zr (wt.%) alloys
obtained by laser powder bed fusion AM have an ultra-fine eutectic structure consisting
of an aluminum matrix and a eutectic intermetallic phase identified as Al8Cu3Ce [14,15].
The structure formed provides for a high strength at room and elevated temperatures of up
to 400 ◦C.
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However, despite the described advantages of the Al-Cu-Ce alloys, their fundamental
drawback is the necessity of adding high concentrations of the relatively expensive rare
earth Ce. We believe that a calcium (Ca) additive can serve as an adequate replacement for
rare earth metals. Indeed, calcium is a widespread, environmentally-friendly alkaline earth
metal. Ca forms a eutectic-type system with aluminum and exhibits a very low solubility
in Al (<0.01 at.%) [16], even after the sever plastic deformation [17] of the Al-Ca based
alloy. According to numerous studies, as-cast [18–20] and wrought [17,21,22] Al-Ca-based
alloys have a fine eutectic structure and a good combination of mechanical properties and
manufacturability. The ternary Al-Ca-Cu system is also of interest, but it has been poorly
studied [23,24]. It is well-known that information on the structure of phase diagrams
is required for the informed design of new alloys. According to an earlier study [25],
four intermetallic compounds, i.e., (Al,Cu)4Ca, Al27Ca3Cu7, Al8CaCu4 and Al2Cu, can
be in equilibrium with (Al) in the Al-Ca-Cu ternary system. The chemical composition
and crystallographic structure of these compounds have recently been reported [25]. The
presence of this many compounds in equilibrium with aluminum determines the very
complex structure of this ternary diagram, and it is hardly possible to completely describe it
in a single study. For comparison, the Al-Cu-Ce ternary system, where two phases (Al11Re3
and Al8ReCu4 [8,26]) are considered to be in equilibrium with aluminum, has been studied
for the last decade, but nevertheless there is still controversy regarding its structure.

Thus, the aim of this work is to provide a first insight into the new system and to
reveal the main features inherent in the structure of its phase diagram, and also to deliver
sufficient information on the phase equilibria and transformations that determine the
structure of the Al-Ca-Cu alloys upon solidification and high temperature annealing.

2. Materials and Methods

Several model alloys of the Al-Ca-Cu system (Table 1 and Figure 1) were chosen and
prepared for studies. The alloys were prepared from 99.99% aluminum in a resistance
furnace (GRAFICARBO) with a graphite crucible. Aluminum was placed in the crucible,
and after its melting, copper in the form of pure metal (99.9 wt.% Cu) and calcium in the
form of the binary Al-15%Ca master alloy were introduced into the melt. After the melting
of the main components, the melt was held for 5–10 min to obtaining a homogeneous
composition, and the metal was then cast into a 10 × 20 × 180 mm graphite mold. The
cooling rate in the mold was about 10 K/s. For achieving a close-to-equilibrium state at
least at the beginning of the solidification, some alloys were remelted and slowly solidified
in the furnace chamber at a cooling rate of about 0.02 K/s.

Table 1. Actual chemical composition of the experimental alloys.

№ Designation
Actual Concentrations, wt.%

Al Ca Cu

1 Al1.0Cu8.0Ca balance 8.8 1.6
2 Al2.2Cu6.7Ca balance 6.6 2.5
3 Al3.4Cu5.6Ca balance 5.6 3.6
4 Al5.6Cu3.5Ca balance 3.9 6.6
5 Al9.0Cu3.5Ca balance 3.5 9.0
6 Al10Cu0.5Ca balance 0.35 9.0
7 Al10Cu1.5Ca balance 1.2 9.0
8 Al14Cu2.5Ca balance 2.5 14.0
9 Al14Cu6.0Ca balance 6.5 13.0
10 Al18Cu6.0Ca balance 6.0 15.0
11 Al30Cu1.0Ca balance 1.0 27.0
12 Al36Cu1.0Ca balance 1.5 35.0
13 Al9.0Cu0.5Ca balance 0.4 8.2
14 Al9.0Cu1.5Ca balance 0.8 8.5
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Table 1. Cont.

№ Designation
Actual Concentrations, wt.%

Al Ca Cu

15 Al14Cu1.0Ca balance 1.1 13.2
16 Al14Cu7.0Ca balance 8.3 14.2
17 Al3Ca0.5Cu balance 2.7 0.5
18 Al3Ca1Cu balance 3.0 1.0
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Figure 1. Composition of the chosen experimental alloys marked on the liquidus projection of the
Al-Ca-Cu system calculated using Themo-Calc software.

The Al10Cu0.5Ca and Al10Cu1.5Ca alloys were subjected to homogenization anneal-
ing at 530 ◦C for 10 h. Al3Ca0.5Cu and Al3Ca1Cu ingots without preliminary annealing
were subjected to hot rolling (at 300 ◦C) to 2 mm sheet samples with an 80% reduction. The
ingots were heat treated in muffle electric furnaces with a temperature control accuracy
of ~3 K.

The microstructure was examined by means of scanning electron microscopy (SEM,
TESCAN VEGA 3) and electron microprobe analysis (EMPA, OXFORD AZtec). The samples
were polished for the studies. The metallographic samples were ground with SiC abrasive
paper and polished with 1 µm diamond suspension. A solution of 1% hydrogen fluoride
(HF) water was used for etching.

X-ray diffraction (XRD) data were collected using CoKα radiation and treated with
a software package [27]. The specimens for the X-ray diffraction study were polished
specimens cut from part of the ingots.

The solidification pattern of some alloys was studied by means of experimental cooling
curves recorded using an AKTAKOM–2006 registering unit (Lutron Electronic Enterprise
Co., Ltd., Taipei City, Taiwan) and chromel–alumel thermocouples.

The Vickers hardness (Hv) was measured using a DUROLINE MH-6 setup (METKON
Instruments) with a load of 1 kg and a dwell time of 10 s. Room-temperature tensile tests of
as-processed wire specimens were conducted on a Zwick Z250 universal testing machine
(the loading rate was 10 mm/min). The flat proportional samples without grippers and
with a size of 110 × 10 × 2 mm were used for the tensile tests.
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In order to facilitate the preliminary analysis of the ternary system, a thermodynamic
calculation of the liquidus projection of the Al-Ca-Cu system (Figure 1) was carried out us-
ing the Themo-Calc software and the TTAL5 database [28]. It can be seen that the calculation
suggests the existence of two intermetallic compounds: Al4Ca and Al2Cu, in equilibrium
with aluminum and one invariant eutectic phase transformation L→(Al) + Al4Ca + Al2Cu
in this corner.

3. Results and Discussion
3.1. Liquidus Projection

Experimental plotting of the liquidus projection in the system requires that the primary
crystallization areas of the phases be identified. According to earlier data [25] and the
experimental results of this study, three intermetallic Ca-containing phases, i.e., (Al,Cu)4Ca,
Al27Ca3Cu7 and Al8CaCu4, can be in equilibrium with the aluminum solid solution (Al). In
order to reveal the primary crystallization areas for each of the phases, the structure of some
alloys pertaining to the respective areas was studied in detail. The primary crystallization
areas were identified by the type of primary crystals observed in the structure.

Hypereutectic alloys were chosen for identifying the primary crystallization area of
the phases. In the Al1.0Cu8.0Ca alloy, the primary crystals observed have a typical acicular
structure, and according to spectral analysis for rapidly and slowly cooled alloys (Table 2),
these crystals are the (Al,Cu)4Ca phase. According to [25], the (Al,Cu)4Ca phase is a solid
solution based on the Al4Ca phase with dissolved Cu atoms substituting Al. The primary
crystals form against the fine eutectic background in the rapidly cooled alloy (Figure 2a).
Slow cooling leads to the coarsening of the eutectic which, however, still remains relatively
fine (Figure 2b). The Al2.2Cu6.7Ca alloy containing less Ca and more Cu also has a
hypereutectic structure with less elongated and generally finer primary crystals (Figure 2c)
which can also be clearly identified as the (Al,Cu)4Ca [25] phase (Table 2). The eutectic
looks uniform but much coarser. In the Al14Cu6.0Ca alloy with an excess of copper, a
small fraction of another type of coarse crystals bright in appearance and having a compact
spherical shape are observed along with the primary (Al,Cu)4Ca phase crystals (Figure 2e).
According to the EMPA data (Table 2), the solubility of copper in the (Al,Cu)4Ca phase is
the highest compared to that observed for the above-mentioned alloys. EMPA also revealed
the chemical composition of the second type of crystals observed. Their phase is described
by the formula Al27Ca3Cu7 [25]. After the slow solidification of the Al14Cu6.0Ca alloy
(Figure 2f), only (Al,Cu)4Ca phase primary crystals are observed (marked by arrow). The
latter fact suggests that the Al14Cu6.0Ca alloy pertains to the (Al,Cu)4Ca phase primary
field but is close to the (Al,Cu)4Ca/Al27Ca3Cu7 boundary.

Table 2. Chemical composition of the phases detected in the alloys obtained at various cooling rates
(Vs) upon solidification.

Alloy Vs, K/s
Chemical Composition, at.% Phase

IdentificationAl Ca Cu

Al1.0Cu8.0Ca
10 balance 19.6 2.0 (Al,Cu)4Ca

0.02 balance 19.3 2.1 (Al,Cu)4Ca

Al2.2Cu6.7Ca
10 balance 19.3 3.3 (Al,Cu)4Ca

0.02 balance 19.0 3.8 (Al,Cu)4Ca

Al14Cu6.0Ca
10

balance 19.0 8.0 (Al,Cu)4Ca
balance 8.0 19.0 Al27Ca3Cu7

0.02
balance 19.0 8.0 (Al,Cu)4Ca
balance 8.0 19.0 Al27Ca3Cu7

Al18Cu6.0Ca
10

balance 19.2 8.3 (Al,Cu)4Ca
balance 7.9 18.9 Al27Ca3Cu7

0.02 balance 8.0 20.0 Al27Ca3Cu7
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Table 2. Cont.

Alloy Vs, K/s
Chemical Composition, at.% Phase

IdentificationAl Ca Cu

Al14Cu2.5Ca
10 balance 8.0 20.0 Al27Ca3Cu7

0.02 balance 8.0 20.0 Al27Ca3Cu7
Al30Cu1.0Ca 10 balance 6.6 30.1 Al8CaCu4

Al36Cu1.0Ca
10 balance 6.0 30.5 Al8CaCu4

0.02 balance 7.8 33 Al8CaCu4

Al3.4Cu5.6Ca 0.02 balance 19.3 6.5 (Al,Cu)4Ca

Al5.6Cu3.5Ca 0.02
balance - 2.0 (Al)
balance 19.1 7.6 (Al,Cu)4Ca
balance 7.8 17.6 Al27Ca3Cu7

Al9.0Cu3.5Ca 0.02
balance - 1.8 (Al)
balance 19.7 8.1 (Al,Cu)4Ca
balance 7.4 18.2 Al27Ca3Cu7

The Al14Cu2.5Ca and Al18Cu6.0Ca alloys were analyzed in order to clarify the bound-
aries of the primary crystallization area of the Al27Ca3Cu7 compound. For the Al18Cu6.0Ca
alloy, two types of coarse primary crystals are also observed (Figure 3a). The bright faceted
crystals in Figure 3a are identified as the Al27Ca3Cu7 phase, whose chemical composition
perfectly matches that of the crystals in the Al14Cu6.0Ca alloy considered above. The
second type of crystals, which are grey and elongated, are the (Al,Cu)4Ca phase. The XRD
data for this alloy (Figure 4) confirmed its phase composition consisting of both of the extra
phases. However, after slow solidification (Figure 3b), only Al27Ca3Cu7 phase primary
crystals are observed. The latter fact confirms that the alloy pertains to the primary crystal-
lization area of the Al27Ca3Cu7 phase, but is close to the (Al,Cu)4Ca/Al27Ca3Cu7 boundary.
After accelerated cooling, the Al14Cu2.5Ca alloy has a near-eutectic structure (Figure 3c)
with lone Al27Ca3Cu7 phase primary crystals. The presence of those crystals in the structure
was also confirmed by XRD analysis (Figure 4). Along the Al27Ca3Cu7 phase crystals, the
patterns typical of the Al8CaCu4 phase [25] were also observed. After slow solidification,
the alloy has a hypoeutectic structure (Figure 3d) with a high eutectic fraction. These
facts demonstrate that the alloy is located at the boundary between two (Al)/Al27Ca3Cu7
primary crystallization areas and concurrently near a ternary eutectic point.

The Al30Cu1.0Ca and Al36Cu1.0Ca alloys were analyzed in order to clarify the pri-
mary crystallization area boundaries of another ternary Al8CaCu4 compound that is in
equilibrium with the aluminum in this system. The microstructure of both alloys contains
bright primary crystals (Figure 5a,b) which, according to the spectral analysis (Table 2), has
an excess of copper as compared to the Ca-containing phases considered above. The chemi-
cal composition of these crystals obtained after slow solidification is somewhat different
from that obtained after accelerated solidification. The latter fact can be coupled with the
relatively fine structure of the crystals obtained after solidification, which prevents accurate
measurements. Thus, according to the data for the slowly solidified alloy, the observed
primary crystals correspond perfectly well to the Al8CaCu4 phase [25]. One can also note
that the slow solidification of the Al36Cu1.0Ca alloy (Figure 5c) also revealed the presence
of lone Al8CaCu4 phase primary crystals against the background of the eutectic. The latter
fact confirms that the alloy is located near the eutectic point.
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the observed primary crystals correspond perfectly well to the Al8CaCu4 phase [25]. One 
can also note that the slow solidification of the Al36Cu1.0Ca alloy (Figure 5c) also revealed 

Figure 3. SEM microstructure of the alloys: (a,b) Al18Cu6.0Ca, (c,d) Al14Cu2.5Ca, for cooling rates
of (a,c) 10 K/s, and (b,d) 0.02 K/s. BSE.

Finally, the structure of the hypoeutectic alloys with primary aluminum solid solu-
tion (Al) crystals was studied. One can see that the Al3.4Cu5.6Ca, Al5.6Cu3.5Ca and
Al9.0Cu3.5Ca alloys have a fine hypoeutectic structure (Figure 6). The alloys were also
obtained at slow solidification, which coarsens the structural components. The latter fact
makes it possible to carry out spectral analysis to determine the chemical composition of
crystals. The data (Table 2) suggest that the eutectic in the alloys consists of the (Al,Cu)4Ca
and Al27Ca3Cu7 phases. An XRD analysis of the Al5.6Cu3.5Ca alloy (Figure 4) confirmed
the presence of these extra phases. Due to the relatively fine structure of the crystals, the
measured composition of the Al27Ca3Cu7 crystals is somewhat different from the one
accepted in [25], but it can still be identified.
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The aforementioned experimental data allow for hypothesizing regarding the bound-
aries of the primary crystallization areas of the phases considered. It is worthy of note
that the analysis did not reveal any traces of peritectic transformations. The structure
of the eutectic type diagram is therefore suggested to have two quasi-binary sections:
(Al)-Al27Ca3Cu7 and (Al)-Al8CaCu4 (Figure 7). Indeed, the arrangement of the alloys on
the diagram in accordance with the type of primary crystals observed in the structure
suggests the existence of three invariant eutectic and two quasi-binary eutectic phase trans-
formations (Table 3). In comparison with another eutectic Al-Ce-Cu system containing
one quasi-binary section (Al)-Al8CeCu4 and two invariant eutectic transformations (at
~12% Cu, 7% Ce, E1; ~32% Cu, 0.5% Ce, E2) in the aluminum corner, the new Al-Ca-Cu sys-
tem is preferable for the design of aluminum matrix composites with an excess of eutectic.
Indeed, the E1 point in the new Al-Ca-Cu system is located at the copper content typical of
industrial alloys, whereas a much higher copper concentration is needed for the Al-Ce-Cu
system (~12% Cu for the E1 eutectic point). Moreover, taking into account the very similar
content of the third component (7% Ce and 6% Ca) at the E1 point in the systems, the use
of cheaper and lighter calcium instead of cerium is preferable. One should note that the
estimated position of E3 in Al-Ca-Cu is very close to that of the respective E2 points in the
Al-Ce-Cu system. It can therefore be concluded that the position of E3 is calculated with
an acceptable accuracy. In comparison with another copper containing ternary system in
which the third component has a very limited solubility in aluminum, i.e., Al-Cu-Fe [29],
the position of this point is also quite close (~32.5% Cu, 0.3% Fe) to the respective point in
the new system.
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Table 3. Coordinates of invariant phase transformations.

Phase Transformation
Point on the

Diagram
Chemical Composition, wt.%

T, ◦C
Al Ca Cu

L→(Al)+ (Al,Cu)4Ca+Al27Ca3Cu7 E1 balance 5.6 4.5 595
L→(Al)+ Al27Ca3Cu7+Al8CaCu4 E2 balance 2.2 13.5 594

L→(Al)+ Al8CaCu4+Al2Cu E3 balance 0.5 34 544
L→(Al)+ Al27Ca3Cu7 eX balance 2.8 11.3 596
L→(Al)+ Al8CaCu4 eY balance 1.8 14.7 596
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To assess the temperature of the invariant phase transformations, some alloys from the
corresponding phase fields were subjected to thermal analysis in order to plot their cooling
and heating curves (Figure 8). The temperature of invariant transformation is visualized as
a platform at a constant temperature. The Al9Cu3.5Ca and Al14Cu7Ca alloys were chosen
since they pertain to the (Al) + (Al,Cu)4Ca + Al27Ca3Cu7 ternary phase field, and their so-
lidification must end at the temperature of the E1 eutectic transformation. Thermal analysis
showed (Figure 8a) that the L→(Al) + (Al,Cu)4Ca + Al27Ca3Cu7 eutectic transformation tem-
perature is about ~595 ◦C, which is ~22 ◦C lower than that of the L→(Al) + (Al,Cu)4Ca eu-
tectic transformation in the binary system [16]. The next two Al9Cu1.5Ca and Al14Cu2.5Ca
alloys pertain to the other ternary phase field, (Al) + Al27Ca3Cu7 + Al8CaCu4, and their
solidification must end at the temperature of the E2 eutectic transformation. An analysis
revealed that the latter temperature is also close to 594–595 ◦C. One should note that since
the positions of the eutectic points eX and eY in the quasi-binary sections are quite close
to the invariant eutectic point E2, the difference in the temperatures should also be neg-
ligible. Thus, the temperatures of the eX and eY transformations can be assumed to be a
few degrees higher than that of E2. Additional precision studies are required for a more
accurate determination of these temperatures. One should note that the thermal curves
of the Al14Cu2.5Ca alloy contain one more very narrow platform at ~544 ◦C (marked by
arrow in Figure 8b). This transformation is a prime consequence of the elevated solubility of
copper in aluminum (to be discussed below) leading to the (L→(Al) + Al8CaCu4 + Al2Cu)
ternary eutectic transformation, which is non-equilibrium for this phase field. On the
contrary, equilibrium solidification of the last two Al9Cu0.5Ca and Al14Cu1Ca alloys must
end via this ternary transformation, the temperature of which is about 544 ◦C (Figure 8c).
This temperature is close to that of the L→(Al) + Al2Cu eutectic transformation in the
binary system (548 ◦C) and the ternary eutectics at the respective points in the Al-Ce-Cu
(545 ◦C) and Al-Ce-Fe (542 ◦C) systems.

3.2. Isothermal Section at 530 ◦C

For the Al-Ce-Cu system, the solubility of copper in (Al) reaches 5.7 wt.% in the
(Al) + Al8CeCu4 + Al2Cu ternary phase field and 5.7 wt.% in the (Al) + Al8CeCu4 quasi-
binary section; therefore the alloys from these phase fields can be prone to precipitation
hardening. Annealing temperatures in the range of 530–540 ◦C are commonly used for
solid solution treatment before the quenching of the Al-Cu based alloys. Some alloys from
the new system were studied after long-term annealing at 530 ◦C, which is expected to
cause the dissolution of most of the nonequilibrium eutectic Al2Cu phase. An analysis
revealed that the copper solubility in (Al) in the (Al) + Al27Ca3Cu7 + (Al,Cu)4Ca ternary
phase filed is very low and can be accepted as a few tenths of a percent. However, in the
rest of the ternary phase field, the copper solubility in (Al) is high enough. Two alloys
Al10Cu1.5Ca (Figure 9a) and Al10Cu0.5Ca (Figure 9b) were chosen for the study. The
phase composition of the alloys was theoretically assessed based on a simple stoichiometric
balance corresponding to the alloy composition. For the hypoeutectic Al10Cu1.5Ca alloy
from the (Al) + Al27Ca3Cu7 + Al8CaCu4 ternary phase field (Table 4), an EMPA analysis of
the aluminum matrix showed a copper solubility of up to ~2.4 wt.%. For the Al10Cu0.5Ca
alloy pertaining to another ternary phase field (Al) + Al8CaCu4 + Al2Cu (Table 4), the copper
solubility is approximately at the solubility limit, i.e., ~5.1 wt.%, which is close to that for
the binary Al-Cu and ternary Al-Ce-Cu systems at the same temperature. Thus, the alloys
pertaining to the (Al) + Al8CaCu4 quasi-binary section and the (Al) + Al8CaCu4 + Al2Cu
ternary phase field can also be prone to precipitation hardening. However, for a noticeable
precipitation hardening response, the content of copper in the alloy should be about ten
times the calcium content. The latter fact makes the precipitation hardening of the Al-Ca-
Cu ternary alloy less interesting due to the high content of expensive and heavy copper.
However, the transition to more complex systems containing Al-Ca-Cu can help to solve
this issue by rearranging the distribution of copper between the aluminum and eutectic
phases. The obtained isothermal section of the system at 530 ◦C is presented in Figure 10.
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Table 4. The measured chemical composition of the aluminum matrix (Al) after homogenization and
calculated fractions of extra phases.

Alloy
Chemical Composition, wt.% Fractions of Extra Phases, wt.% (vol.%).

Al Cu Ca Al8CaCu4 Al2Cu Al27Ca3Cu7

Al10Cu0.5Ca balance 5.1 ± 0.2 - 6.2 (3.9) 3.3 (2.2) -
Al10Cu1.5Ca balance 2.4 ± 0.2 - 11.0 (7.0) - 6.9 (5.7)
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3.3. Alloy Examples

The prospects of this system for designing new eutectic type alloys with a natural
composite structure are demonstrated for the example of the Al3Ca0.5Cu and Al3Ca1Cu
alloys. Indeed, as one can see from Figure 11, both alloys are hypoeutectic (Figure 11a,c)
and have an ultra-fine eutectic component. Both alloys are near the boundary between
the (Al) + (Al,Cu)4Ca/(Al) + (Al,Cu)4Ca + Al27Ca3Cu7 phase fields with a predominant
eutectic (Al,Cu)4Ca phase. The alloys without preliminary annealing were subjected to hot
rolling at a moderate temperature of 300 ◦C to 2 mm sheets (a total deformation degree of
80%). A microscopic analysis (Figure 11b,d) did not reveal any significant refinement of the
structure upon deformation processing. Indeed, the as-cast eutectic colonies are still well
resolved, but they are elongated in the rolling direction. The slight differences from the
as-cast structure are due to the relatively low degree of deformation.

The hardness of both alloys after rolling is about the same, ~60 Hv. The obtained
hot rolled sheets were also subjected to uniaxial tensile tests. The data on the mechanical
properties are presented in Figure 12. The obtained level of mechanical properties is
moderate yet acceptable for base model alloys. Indeed, in comparing these alloys with the
closest counterparts containing a similar [30] or a higher [31] amount of calcium but more
expensive rare earth metals (UTS 240–260 MPa, YS 85–205 MPa and δ 5.5–9.0%) [30,31] and
nickel (UTS ~190–303 MPa, YS ~150–220 MPa and δ ~0.5–5%) [31] instead of copper, one
can see similar mechanical properties, while the latter alloys contain additional hardening
additives. One should also note that due to both the eutectic-type structure of the system
and the presence of a high amount of numerous insoluble aluminides, the new system
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and the alloys may be promising for additive manufacturing techniques such as selective
laser melting.
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One should also note that a slight increase in the copper content from 0.5 to 1.0 wt.%
leads to a minor increase in the strength and a much greater increase in the ductility. The
origins of the latter fact are not clear, and more detailed studies are required to determine
the causes underlying this phenomenon. It is possible that this can be associated with an
expectable increase in the fraction of the Al27Ca3Cu7 phase, leading to a modification of
the eutectic or an increase in the solubility of copper in the (Al,Cu)4Ca phase, leading to a
change in the properties of the (Al,Cu)4Ca compound.
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4. Summary

(1) The liquidus projection of the Al-Ca-Cu system in the aluminum corner was sug-
gested based on experiential studies of the microstructure and phase composition
of model alloys. The suggested structure of the diagram has two quasi-binary
sections: (Al)-Al27Ca3Cu7 and (Al)-Al8CaCu4, and three invariant ternary eutectic
transformations: L→(Al) + (Al,Cu)4Ca + Al27Ca3Cu7 (at 5.6 wt.% Ca, 4.5 wt.% Cu,
595 ◦C), L→(Al) + Al27Ca3Cu7 +Al8CaCu4 (at 2.2 wt.% Ca, 13.5 wt.% Cu, 594 ◦C) and
L→(Al) + Al8CaCu4 + Al2Cu (at 0.5 wt.% Ca, 34 wt.% Cu, 544 ◦C). The eutectic point
in the quasi-binary sections is accepted to be as follows: L→(Al) + Al27Ca3Cu7 (at
2.8 wt.% Ca, 11.3 wt.% Cu) and L→(Al) + Al8CaCu4 (at 1.8 wt.% Ca, 14.7 wt.% Cu).

(2) A study of the copper solubility limit in (Al) revealed that the copper solubility
in the (Al) + Al27Ca3Cu7 + (Al,Cu)4Ca ternary phase filed is small and can be ac-
cepted as a few tenths of a percent. In the (Al)+Al27Ca3Cu7+ Al8CaCu4 ternary phase
filed, the copper solubility reaches ~2.4 wt.%, while in the other ternary phase filed,
(Al) + Al8CaCu4 + Al2Cu is close to the solubility limit, i.e., ~5.1 wt.%, which is close
to that for the binary Al-Cu and the ternary Al-Ce-Cu systems. Thus, the alloys per-
taining to the (Al) + Al8CaCu4 quasi-binary section and the (Al) + Al8CaCu4 + Al2Cu
ternary phase field can be prone to precipitation hardening.

(3) The prospects of this system for designing new eutectic type alloys with a natural com-
posite structure were demonstrated for the example of the Al3Ca0.5Cu and Al3Ca1Cu
alloys. The alloys have an ultra-fine eutectic structure based on the (Al,Cu)4Ca eutec-
tic phase. The alloys showed high manufacturability for moderate temperature hot
rolling (300 ◦C). Uniaxial tensile tests carried out for the obtained 2 mm sheet alloys
revealed the following mechanical properties: UTS up to 220 MPa, YS up to 180 MPa,
and relative elongation up to 5.5%, which are acceptable for the model alloys.
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