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Abstract: The main drawback of friction stir welding (FSW) dissimilar metals is the formation of
intermetallic compounds (IMCs), which are brittle and affect the strength of the joint. The formation
of these compounds is inevitable due to their low enthalpy of formation; however, their emergence is
an indication of metallurgical bonding between dissimilar metals. This means that the determining
factors of intermetallics should be optimal to ensure the formation of the joint and, at the same time,
the performance of the joint. It is known that various parameters such as welding parameters, joint
configuration, and tool geometry have an influence on the formation of these compounds. However,
the influence of the base metal is not adequately addressed in the literature. The current review
paper focuses on intermetallic formation during the friction stir welding of aluminum/steel (Al/St)
alloys to explore how the types of alloys affect the thicknesses and morphologies of the intermetallics.
Different structural steels and stainless steels were considered to see how they affect intermetallic
formation when welded to different types of aluminum alloys. The thicknesses of the IMCs in the
FSW of different aluminum/steel alloys were taken from the literature and averaged to provide
insight into the contribution of the elements to IMC formation. Thermodynamic and kinetic analyses
were used to explain this effect. Finally, the mechanism of intermetallic formation is explained to
provide a useful guide for selecting dissimilar metals for welding using friction stir welding.

Keywords: friction stir welding; dissimilar weld; intermetallic compounds; nucleation and growth;
aluminum-steel; formation mechanism; thermodynamics

1. Introduction

Demand for structural alloys (load-bearing alloys) in various sectors such as energy,
transport, and construction is leading to production growth of up to 200% for metallic
materials [1]. Novel engineering materials can improve energy efficiency through mass
reduction and improved mechanical properties. Metallic materials have different proper-
ties (mechanical, physical, and chemical) and can be processed and recycled in different
ways. Aluminum (Al) and steel (St) are by far the most used structural metallic materi-
als. Historically, steel has been used to a huge extent in trains, cars, and ships. Due to
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the high ratio of weight to strength in commercial carbon steels, dual-phase (DP) steels
and transformation-induced plasticity (TRIP) steels, both named advanced high-strength
steels (AHSSs), have been developed, which possess high tensile strengths from 550 to
1000 MPa. This has helped to lower the thickness of the sheets used in vehicles and, at
the same time, to increase crash safety. There are still efforts to develop newer versions of
steels, such as third-generation AHSSs, which possess tensile strengths over 1500 MPa [2].
Despite this development in steel, a tendency to replace it with lighter materials such as
aluminum and magnesium exists as this causes a huge reduction in weight [3]. In the
transportation industry, the combined properties of low weight, high toughness, and high
strength can be achieved by using aluminum-steel multi-material components [4]. As an
example, Mercedes joins different types of aluminum and steel grades in S-Class vehicles
to reduce their weights [5]. In addition to structural steels, stainless steels are also joined
to aluminum. Aluminum-stainless steel joining has applications in ultra-high vacuum
pressure equipment or cooling systems that need to be corrosion-resistant and not permit
fluid flow [6]. Researchers have proposed various methods for joining dissimilar metals and
materials. Among them, the use of adhesives for joining metals [7,8], as well as dissimilar
materials (metals with composites [9]), has recently been extensively noticed by researchers.
However, their sensitivity to environmental conditions (temperature and humidity) limits
the use of adhesive bonds in load-bearing structures [10]. In this situation, welding is
considered the main option for joining (similar and dissimilar) metals [11]. The welding
of dissimilar materials, and, likewise, soldering, is sensitive to interfacial reactions [12,13].
In this regard, (Intermetallic Compounds) IMCs need to be controlled in effective ways
to enhance joint strength [14]. The introduction of third elements or compounds to the
interface has been shown to be very effective for doing so [15].

The most commonly used method for joining aluminum to steel is friction stir welding
(FSW) [4,16]. It is a solid-state process in which metallurgical bonding is produced at
temperatures below the melting point. The formation of IMCs during the FSW of dissimilar
metals is inevitable, as the conditions during FSW favor the nucleation and growth of IMCs,
both thermodynamically and kinetically. These conditions include the severe mixing of
materials and local changes in chemical composition, high temperature, and the intimate
contact surface between the two materials. The importance of studying the kinetics of
IMC formation during FSW is due to their influence on the mechanical properties of the
joint. IMCs are brittle and prone to catastrophic failure. IMCs can be found in the form
of dispersed particles in the matrix and/or as a continuous layer at the interface between
welded faying surfaces. The former is less detrimental than the latter because a soft matrix
can accommodate the strain and stress triaxiality [17]. It has been reported that in the FSW
of dissimilar metals, dispersed IMCs tend to form within the metal with a higher melting
temperature [18,19]. Dispersed IMCs do not deteriorate the mechanical properties of a
joint as long as they are finely dispersed. However, a continuous IMC layer at the interface
rather deteriorates the joint strength due to the triaxial stress generated during loading [20].
This triaxiality increases with the thickness of the IMC layer, which means that in addition
to morphology, thickness also plays an important role in the failure of a joint. The type
of IMC is also crucial for the mechanical properties of a joint. There are several types of
IMCs in a binary system, which can be studied using phase diagrams. In the Al-Fe system,
FeAl3 and Fe2Al5 possess the highest hardness and brittleness compared with other Al-Fe
IMCs [21]. Fe-rich IMCs such as FeAl and Fe3Al possess higher fracture resistance and are
formed at temperatures greater than 1273 K [22]. Therefore, knowing the parameters that
favor the formation of more ductile IMCs helps improve joint efficiency.

In this review paper, the effective parameters for the formation and growth of IMCs
during the FSW of aluminum/steel alloys are reported. The focus is on the effects of
the alloy types of aluminum and steel. In other words, the contributions of the alloying
elements of steel or aluminum to the formation, thickness, and morphology of IMCs are
discussed. This topic has not yet been addressed well in the literature, but it can give
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insights into the designing of joints between dissimilar materials made using FSW. Finally,
the contribution of IMCs to fracture behavior is also discussed.

2. FSW Process

In the FSW of Al to St, the pin of a rotating tool penetrates the Al workpiece with a
slight offset, as shown, schematically, in Figure 1. This figure shows the butt configuration,
although this process is also performed in the overlap configuration. The tools are usually
made of hard materials such as tungsten carbide (WC) to avoid the wear of the tool in
contact with the steel. The tool offset should be as small as possible to avoid the overheating
of the weld zone, which can promote the growth of IMCs at the interface. If there is no tool
offset, no metallurgical bond will form between the two materials. However, a new joint
geometry was developed by Zhang et al. [23] by which the need to have tool offset was
eliminated, providing the possibility to use an FSW tool made of H13 steel (Figure 2). In
this method, an optimum distance of ∆ is required to establish a bond between Al and St.
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Figure 2. Schematic of a new joint geometry that eliminates the need for tool offset into St during
FSW of Al to St. (a) General view, and (b) cross section view. Reprinted from [23] with permission
from Elsevier, 2023.

Figure 3 shows Scanning Electron Microscopy (SEM) images of the interface of an
Al-St compound prepared using FSW in the butt configuration. These images were taken at
the transverse cross-section of the weld between Al/St, schematically shown in Figure 2b.
The images were taken with chemical element contrast in the backscatter mode of SEM.
Therefore, the dark side corresponds to aluminum and the white side corresponds to steel.
The grey region corresponds to the IMCs, which consist of both aluminum and iron. IMCs
form at an interface with an almost continuous shape with some irregularities. Butt welds
are often tested in a tensile test, which leads to normal stress at the interface.
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(a) low and (b) high magnifications. The red line shows the border wherein the sample was studied.
Reprinted from [11] with permission from Elsevier, 2023.

IMCs play an important role in the mechanical properties of Al-St joints in both the butt
and lap configurations, with their role being more significant in butt joints. Understanding
the mechanism of IMC formation can help to design and perform the FSW process to
achieve optimal joint properties. Although the mechanism of IMC formation is known in
diffusion couples or immersion aluminizing, it is less clear how IMCs form and grow in
the FSW process due to the enormous amount of simultaneous plastic deformation and
heating that promotes the diffusion of the elements. A good description of IMC formation
during FSW is provided by Tanaka et al. [24]. They hypothesize that IMC growth occurs in
two stages, with the first stage around the pin and the second below the shoulder behind
the probe (Figure 4). Heat generation in the second stage is higher, and much of the growth
occurs in the second stage below the shoulder. The second step is similar to the bonding
or welding of two materials via the diffusion of elements because there is a metallurgical
evolution after the forging action of the tool. The first step is more complicated since there
is strong plastic deformation.
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The FSW of Al to St in the overlap configuration is performed according to the scheme
shown in Figure 5. In the overlap configuration, the softer material, Al, is on top. Herein,
the tool offset is the distance with which the pin penetrates the bottom layer.

Metals 2023, 13, x FOR PEER REVIEW 5 of 27 
 

 

The FSW of Al to St in the overlap configuration is performed according to the 

scheme shown in Figure 5. In the overlap configuration, the softer material, Al, is on top. 

Herein, the tool offset is the distance with which the pin penetrates the bottom layer. 

 

Figure 5. Schematic of FSW of Al to St in lap configuration. Reprinted from [26]. 

Figure 6 shows macro-photographs and SEM images of the interfaces of lap joints 

between Al and St made using FSW. The detachment of St and its pull-in into the Al matrix 

leads to a kind of mechanical interlocking, which plays an important role in the strength 

of the lap joints. The IMCs are scattered in the joint area and are present as a continuous 

layer only in some places. This type of joint is accompanied by voids. The joint is mainly 

stressed in shear, unlike other joints where the joint is stressed in tension. 

 

Figure 6. (a) The crown of the Al/St joint made using FSW in lap configuration. (b,c) The macro-

graphs of the cross-sections of lap joints between Al and St. Reprinted from [27]. 

The objective of this review article is to find out how IMCs are formed during the 

FSW of Al to St. The different types of IMCs that form during FSW, as well as their thick-

nesses, are examined. The contributions of the various base materials to these aspects of 

IMCs are also discussed. In this way, the influences of alloying elements on IMCs are ex-

plored. Finally, the role of IMCs in the fracture behavior and strength of Al/St joints pro-

duced using FSW is discussed. This requires a good understanding of the FSW process 

and the thermodynamics and kinetics of IMC formation. There are reviews on the FSW of 

aluminum to steel. Hussein et al. [28] provide a comprehensive overview of the FSW pro-

cess for aluminum–steel, focusing on the process parameters and their influence on joint 

quality, as well as the nature and morphology of the IMCs. Mehta [29] investigated dif-

ferent friction-based welding processes for aluminum–steel with respect to the processes, 

microstructures, and mechanical properties. Rizlan et al. [30] reviewed the formation pro-

cess of Al/St blanks produced using FSW. IMCs were discussed, but no correlation 

Figure 5. Schematic of FSW of Al to St in lap configuration. Reprinted from [26].

Figure 6 shows macro-photographs and SEM images of the interfaces of lap joints
between Al and St made using FSW. The detachment of St and its pull-in into the Al matrix
leads to a kind of mechanical interlocking, which plays an important role in the strength
of the lap joints. The IMCs are scattered in the joint area and are present as a continuous
layer only in some places. This type of joint is accompanied by voids. The joint is mainly
stressed in shear, unlike other joints where the joint is stressed in tension.
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The objective of this review article is to find out how IMCs are formed during the FSW
of Al to St. The different types of IMCs that form during FSW, as well as their thicknesses,
are examined. The contributions of the various base materials to these aspects of IMCs
are also discussed. In this way, the influences of alloying elements on IMCs are explored.
Finally, the role of IMCs in the fracture behavior and strength of Al/St joints produced
using FSW is discussed. This requires a good understanding of the FSW process and the
thermodynamics and kinetics of IMC formation. There are reviews on the FSW of aluminum
to steel. Hussein et al. [28] provide a comprehensive overview of the FSW process for
aluminum-steel, focusing on the process parameters and their influence on joint quality, as
well as the nature and morphology of the IMCs. Mehta [29] investigated different friction-
based welding processes for aluminum-steel with respect to the processes, microstructures,
and mechanical properties. Rizlan et al. [30] reviewed the formation process of Al/St blanks
produced using FSW. IMCs were discussed, but no correlation between IMC formation,
the process, and formability was established. Safeen et al. [31] investigated the formation
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of IMCs and defects during the FSW of Al to St with an emphasis on the effects of FSW
parameters on IMC formation. A critical overview of the thermodynamic and kinetic
aspects of IMC formation during FSW is missing. In this work, data were collected from
several publications on the FSW of various aluminum alloys to steels. For a comprehensive
and critical analysis, other solid-state joining processes related to aluminum and steel were
also considered and compared with FSW. Therefore, the objective was to conduct a critical
overview of the thermodynamic and kinetic aspects of IMC formation during FSW based
on data collected from several publications.

3. Properties of Al-Fe IMCs

In the binary phase diagram of Al and Fe (Figure 7), corresponding to pure Al and pure
Fe, different Al-Fe IMCs exist. Although other alloying elements are present in commercial
Al alloys and various steel grades, this diagram serves as a guide for predicting the IMCs
formed during the FSW of these materials. The IMCs that are present are divided into
those that are iron-rich (Fe3Al and FeAl) and Al-rich (FeAl2, Fe2Al5, and FeAl3). The
characteristics of IMCs that determine the mechanical properties of the compounds are
their natures (structure and chemical composition, thickness, morphology, and grain size).
Table 1 shows some physical and mechanical properties of these compounds such as
their lattice structures, melting points, densities, moduli of elasticity, tensile strengths,
compressive strengths, elongation, and hardness.
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Table 1. Physical and mechanical properties of Fe-Al IMCs.

IMC Lattice
Structure

Melting Point
(◦C)

Density
(g·cm−3)

Young’s
Modulus

(GPa)

Tensile
Strength

(MPa)

Compression
Strength

(MPa)

Elongation
(%) Hardness

Fe3Al Cubic [33] 1510 [34] 6.72 [35] 140 [35]
276 [33] 455 [35] 2

26(HRC) [35]
300–400 HV [17]

330 HV [36]

FeAl Cubic [21] 1250 [37] 5.65 [37] 500 [38] 600–700 [36] 21 600–800 HV [22]
470 [36]

FeAl2 1164 [39] 4.15 [40] 1000 HV [41]

Fe2Al5 Orthorhombic 1171 [39] 7.9 [40] 267 [33] 220 [36]
800–1200 HV [22]

1050 HV [42]
1013 [36]

FeAl3 Monoclinic 280 [33] 210 [36] 892 HV [36]
Fe4Al13 1150 [43] 3.896 [44]

As can be observed, the hardness values of FeAl and Fe3Al are lower than those of
Fe2Al5 and FeAl3. In general, IMCs as a single phase are brittle and have poor mechanical
properties, but a suitable design of the alloys can take advantage of these compounds [45].
When joining dissimilar metals, IMCs are considered a weak location in the literature unless
their thickness is controlled below a critical value [46,47]. The simplest way to reduce the
thickness of IMCs is to control the heat flow during welding. Various strategies have
been used for this purpose, such as the use of a cooling block under the workpieces [48]
and underwater friction stir welding [49,50]. In addition to thermal regulation, the joint
configuration and process parameters also have a great influence on the formation of IMCs.
The formation of IMCs at the interface is a good indication that a metallurgical joint has
been made between two dissimilar materials resulting from diffusion. In friction welding,
the thickness of the IMC layer between aluminum and stainless steel is less than that for
Al–interstitial free (IF) steel [51]. Oxide layers between the joining surfaces of Al/steel
hinder the growth of IMC formation, but the strength of the joint is lower concerning the
state in which the IMCs form [51]. This is a strong confirmation that though IMCs are weak
points, their presence is critical for joints. In other words, the formation of IMCs is crucial
for the strength of a joint, but their growth weakens the joint. Furthermore, the oxide layers
need to be removed from the faying surfaces to establish metallurgical bonding via the
formation of IMCs.

Most of the research in the field of FSW dissimilar metals has been devoted to con-
trolling the thickness of the IMC layer to improve joint strength. This goal was achieved
by controlling the FSW parameters [46], using an assisting process such as ultrasonic [52],
adding additional materials as powders in the joint area [53], and cooling the workpieces by
carrying out the process in coolant media [54]. Figure 8 shows the effects of the underwater
FSW process on IMC thickness control.

Regarding the types of IMCs, there is a consensus that Fe-rich IMCs (such as FeAl)
have a less detrimental effect on the joint strength of Al/St joints [56]. Even when the
thickness of Fe-rich IMCs is high, no detrimental effect of these compounds on joint strength
is observed [57]. One reason for this is that Fe3Al has a metallic bond, unlike FeAl3 and
Fe2Al5, which have a covalent bond [33]. The lower hardness values in Table 1 confirm this.
It is also reported that the tool offset has an influence on the type and thickness of Al-Fe
IMCs. An optimal tool offset is required to control the IMC thickness as well as the defects
that may form during the process [58].

In addition to thickness, the structure and elements of Al-Fe IMCs can also affect the
strength of the joint. There are few studies that address this issue, such as the study com-
paring IMCs formed during the FSW of carbon steel and stainless steel to Al (AA1050) [59].
Thermodynamic analysis of the formation and growth of Al-Fe IMCs is required to identify
the effects of the elements on the structure and formation of these IMCs.
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4. The Thermodynamic and Kinetics of IMC Formation and Growth

It is reported that the diffusion of Al into iron occurs only when the temperature is
above the melting point of Al. At temperatures below the melting point of Al, iron diffuses
into Al more than Al does into Fe [60]. In the FSW of dissimilar metals, the diffusion of
atoms begins immediately after intimate contact between the two metals behind the pin [60].
The temperature does not reach the melting point of aluminum; therefore, only aluminum-
rich phases such as Fe2Al5 and Fe4Al13 are formed in solid-state welding processes [60].
For the formation of IMCs at any location, two conditions should be met: first, the chemical
composition at that location should be close to that of the corresponding IMC. Second,
the Gibbs free energy for the formation of that IMC should be lowest at that temperature.
These criteria should be modified because the composition in the transition zone changes
gradually, and the first condition is not satisfied for all IMCs at the same time. The Gibbs
free energy of formation (∆G0

T) at any temperature T is obtained with

∆G0
T = ∆H0

T − T∆S0
T (1)

∆H0
T is the enthalpy of formation, and ∆S0

T is the entropy of formation. It has been
shown that ∆H0

T is independent of temperature (∆H0
T = ∆H0

298), and the effect of entropy
on the free energy during solid-state interactions is negligible at all temperatures (

∣∣T∆S0
T

∣∣�∣∣∆H0
T

∣∣) [61]. Therefore,
∆G0

T = ∆H0
298 (2)

The value of enthalpy is given per mole of the product. If the initial atoms are not
present in stoichiometric quantity (as is the case on the contact surfaces of the welded
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dissimilar metals), the value of enthalpy becomes lower. In this way, the value of enthalpy
is determined via the limiting element and is obtained with

∆H′ = ∆H × effective concentration of limiting element
compound concentration of limiting element

(3)

The values of enthalpy for different kinds of Al-Fe IMCs are as follows [61]:

∆H(Fe4Al13) = −38, 733.42 + 16.05T − 0.94× 1028× T−9 (4)

∆H(Fe2Al5) = −40, 141.13 + 15.04T − 0.88× 1028× T−9 (5)

∆H(FeAl2) = −39, 687.25 + 13.75T − 0.82× 1028× T−9 (6)

The values of enthalpy as a function of composition and temperature are shown in
Figure 9. The temperature range was chosen between 600 and 900 K, which is the typical
temperature for the FSW of Al to St. As can be seen, the enthalpy values are not temperature
dependent, so the temperature during welding is not crucial for the type of IMCs. The
lowest energy corresponds to FeAl2, but as mentioned earlier, this is not the first phase to
appear at the interface.
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The first phase that appears is the one with the lowest effective free energy of formation
at the composition of the lowest eutectic in the binary phase diagram [62]. This can be
explained by the dependence of the diffusion rate on the local composition. It is known
that the diffusion rate depends on the local melting temperature [62]. The lower the local
melting temperature, the higher the diffusion rate at this point [62]. According to the Al-Fe
phase diagram shown in Figure 7, the composition with the lowest eutectic temperature (i.e.,
the lowest melting temperature) occurs at 0.02 atomic % iron. When the local composition
approaches the composition with the lower melting temperature, the diffusion rate is high,
and, therefore, the composition is more likely to change in this range. For the composition
near the lowest eutectic point, the diffusion rate is high, so the local composition reaches
this point faster. In fact, the IMCs closest to the lowest eutectic point are formed first. In
other words, the Gibbs free energy of the IMCs at the composition of the lowest eutectic
would be the criterion for predicting the phase that occurs first. Figure 9 shows that Fe4Al13
has the lowest energy and therefore occurs first.

The first phase that forms is Fe4Al13, but it disappears after some time of heat treatment
at 773 K. This is because the diffusion of iron causes the composition to approach that of
Fe2Al5 [42]. In this state of composition, Fe2Al5 has the lowest energy and is therefore
more stable. At temperatures below 1173 K, the IMC phase formed between Al and Fe is
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Fe2Al5 [22]. Other IMCs such as FeAl and Fe3Al form at temperatures above 1273 K. This is
expected based on the above explanations since Al-rich regions accumulate Fe faster than
Fe-rich regions accumulate Al. FeAl3 can form simultaneously with Fe2Al5, but this phase
disappears at the expense of Fe2Al5 formation.

After the nucleation of IMCs, the growth process begins, which occurs via diffusion
across interfaces and within phases. Diffusion across the interface depends on two factors:
first, on the difference in the chemical potential of the elements on both sides of the interface,
and second, on the structure of the interface, which determines the mobility of the atoms
across the interface. The phase boundary moves when the IMCs grow. If the flux of atoms
is the same in both directions, there is no movement of the boundary. However, since
the diffusion rates of the two elements are not equal, the initial interface moves in both
directions. The rate of the movement of the interface (ϕ) between the two phases δ and γ
is obtained using [63]

ϕ =
jδi − jγ

i
cδ

i − cγ
i

(7)

where jδ
i and jγ

i denote the inter-diffusion fluxes of component i, and cδ
i and cγ

i denote
the concentration of component i at the interface of δ and γ. The velocity of the interface
movement can be controlled via the volume diffusion inside the phases and/or the interface
diffusion. The IMC phases have an incoherent interface in order to minimize the strain
energy at the interface [64]. This causes a high mobility of atoms across the interface, and,
therefore, the diffusion rate at the interface is high. This causes both phases at the two sides
of the interface (cδ

i and cγ
i ) to have a composition close to the equilibrium state between

the two phases, and, therefore, the value of cδ
i − cγ

i is the maximum. In this condition, the
interdiffusion currents of the components are determined via the diffusion of the individual
elements within the phases and not by the diffusion across the interface of the phases.

The rate constant of growth of each IMC is independent of the adjacent phases [65].
For example, if Fe2Al5 is formed between Al and Fe or between Fe4A113 and Fe, the same
rate constant applies to both cases. In other words, this constant depends on the growing
phase and is not sensitive to the adjacent phases. This is due to the higher diffusion
rate of elements at the interface, which leads to the diffusion within the phases being the
determining factor. For example, it is reported that the diffusion rate of Fe and Al atoms
at the interface between Fe3Al and steel is greater than the diffusion within the IMCs and
steel [35]. The growth of all Al-Fe IMCs is controlled by the diffusion of Fe atoms into
Al-richer IMCs [22]. This means that in Equation (1), the speed of the interface movement is
dependent on the difference in the fluxes of atoms at the interface, which is itself controlled
by the diffusion rate within the IMCs. The thickness of IMCs (∆x) is obtained using [66]

∆x2 = 2 kt (8)

where k is a constant that is dependent on temperature, and t is time. k is obtained using [66]

k = k0 exp
(
− Ea

RT

)
(9)

where k0 is a constant, and Ea is the activation enthalpy. When the growth of an IMC
layer follows a parabolic pattern, it is controlled by the volume diffusion of the constituent
elements in each phase. The rate constant of growth is dependent on the interdiffusion
constant D., which itself is dependent on the diffusion constants of every element and is
obtained via

D. = XAl DFe + XFeDAl (10)

where XAl and XFe are the concentrations of Al and Fe atoms, and DFe and DAl are the
diffusion constants of Fe and Al. The interdiffusion coefficient in Fe2Al5 is larger than those
of other Al-Fe IMCs in the temperature range of 823–913 K [67]. The equations for the
growth of some of the Al-Fe IMCs are provided in Table 2. As is observed, the constant
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of the growth rate for Fe2Al5 is higher than that for Fe4Al13. (Please note the parametric
formula used for the prediction of growth and its slight difference from Equation (8), which
yields a different k value.)

Table 2. The proposed formulation for the growth of different kinds of Al-Fe IMCs.

IMC Parametric Formula Numeric Formula Ref.

Fe4Al13 x = (kt)0.5 k = 1.3× 10−14 at T = 750 K [60]
Fe2Al5 x = (kt)0.5 k = 6.06× 10−12 at T = 750 K [60]
Fe2Al5 x = (kt)0.5 k = 0.2602 at T = 773 K [42]

Fe2Al5
x = (kt)0.5

k = k0 exp
(
− Q

RT

) Q = 281 kJ
mol

k0 = 1.32× 102 m2/s
[67]

5. IMCs during FSW and Other Solid-State Bonding Processes

Table 3 compiles and presents various data on IMCs formed during the friction stir
lap welding of various Al alloys and St grades. The thicknesses of the IMCs, the types of
IMCs, the reported times and peak temperatures during welding, and the methods used to
characterize the IMCs are given for each blank. For comparison, these data are given in
Table 4 for some other solid-state welding methods. Table 5 shows these data for FSW in
the butt configuration.

Table 3. The IMCs reported in Al/Fe lap joints made via friction stir welding.

Material Type Welding Type Peak
Temperature

Time Duration
in Peak

Temperature
IMC Thickness of

IMC
Detection

Tool Ref.

Al5754/DP600 Continuous, FSB 701.8 K 12 s Fe4Al3 1–2 µm [56]

Al1050/low-carbon steel Spot 780 K 1–121 s
1–121 s Fe4Al13/Fe2Al5

1–1.5 µm
1–7 µm [60]

AA6082/carbon steel Continuous 0.46–3.3 µm [68]
AA7075/Q235 Fe4Al13/Fe2Al5 5 µm [69]

AA5052/DP590 Continuous, lap Fe2Al5 FeAl3 4 µm [70]

AA1060/SS304 Continuous, butt 823 K Fe2Al5
Fe4Al13

1 µm [23]

AA5083/zinc-coated steel Continuous, lap 673 K - 4.2–5.4 µm [71]
AA6061/zinc-coated steel Continuous, lap 673 K - 1.6 µm [71]

Al5083/low-carbon steel Continuous + heat
treatment 673 K 45–6–180 min Fe2Al5

FeAl3 1.43–2.6–7.8 µm [72]

Al5083/low-carbon steel Continuous + heat
treatment 623 K 180 min Fe2Al5

FeAl3
2–12 µm [73]

Al6063/zinc-coated steel Continuous - - Fe4Al13
FeAl2

- [74]

AA6022/DP600 Continuous 798 K -
Fe4Al13

(vanished)
Fe2Al5

0.5 µm TEM [61]

AA5083-St12 663 K 15 s (Fe4Al13) 2.3–2.9 µm EDS [75]

AA6061/AISI304 Continuous
573–673

(underwater)
773–900

>100 s - 0.5 µm
1–9.9 µm EDS [76]

AC170PX/ST16 Refill FSSW 800 K 3 s Fe2Al5
FeAl3

0.8–1.5 µm EDS [77]

AA5052/LCS Spot - - - 0–5 µm EDS [78]
1060Al/SUS321 (SS) 703–723 K 4–25 s FeAl3 0.9–3.3 µm EDS [79]

AA5052/DP1200
Fe2Al3
FeAl2
FeAl

4.1–9.4 µm [80]

- 743 K - FeAl3 40–70 nm [81]

AA5083/316L SS - - - Fe2Al5
FeAl3

1 µm EDS [82]

AA5052/A516-70 - - FeAl3 2–6 µm XRD [83]
AA6061/IF steel - - - 3–5 µm EDS [84]

AC4C/carbon steel Fe2Al5
Fe4Al13

5–55 µm EDS [85]

AA6061/IF steel 550–800 K <100 s Fe4Al13 5–7 µm XRD [86]

AA6061/IF steel 650–800 K <50 s Fe4Al13
Fe3Al 4–6 µm TEM/DP [87]

AA5754/DP1000(Zn-
coated)

Fe2Al5
Fe4Al13

- XRD [88]
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Table 4. The IMCs reported in Al/Fe dissimilar joints made with other processes.

Material Type Process Temperature Time Duration IMC Thickness of
IMC

Detection
Method Ref.

Al/IF steel Roll bonding 36 s Fe2Al5 5–6 µm [42]
Carbon steel/Al Roll bonding 723–873 K 400–3600 s Fe2Al5, FeAl3 5–15 µm [89]

SS/Al Roll bonding 873 K 0–3600 s Fe2Al5, FeAl3 <1 µm [89]

Al7075/St304 Thixotropic-core
compound forging

1073–1373 K
(initial

temperature of
steel)

Fe2Al5, FeAl3 1.2–11.4 µm [90]

Al5083/Fe A36 Diffusion bonding 823 K 3600 s Fe3Al
Fe5Al8

30 µm [91]

AA6082/DC06 steel Explosive welding Fe4Al13 EBSD [92]

Al1050/IF steel Friction welding 1000 (preheat
away) 36 s FeAl3 5–6 µm EDS [51]

Al1050/AISI 304 steel 1000 (preheat
away) 20–36 s FeAl3 2.5–3.5 µm EDS [51]

Table 5. The IMCs reported in Al/Fe butt joints made using friction stir welding.

Material Type Weld Peak
Temperature Time Duration IMC Thickness of IMC Detection

Method Ref.

Al7075/mild steel - - - 0.1–0.34 µm [93]

AA6061/DH36 - - Fe2Al5
FeAl3

2.5 µm [58]

AA5052/DP590 948 K 2.39 µm [94]
AA7075/St 304L - - – 0 [53]

AA3003/A441 Fe2Al5
FeAl3

4.1 µm [54]

AA7075/Q235 - 2 µm EDS [95]
Pure Al/IF steel - - FeAl3 2.5–25 µm [96]
AA6061/SS304 - - - 0–1 µm - [97]
A6056/St304 904 K - FeAl4 0.25 µm [98]

Al6056/St 304 FeAl4 0.25 µm EDS [99]

Al6061/TRIP 780–800 Fe3Al
FeAl 1 µm EDS

Al5005/St52 853 K >60 s
Fe2Al5
FeAl3
FeAl

0–4 µm EDS [100]

AA5754 and
AA 6082/DC04 steel

673 K (heat
treatment)
813 K (heat
treatment)

5400 s
1200 s

Fe2Al5
FeAl3
FeAl2

0.6–0.7 µm
3.2–5.1 µm EDS [101]

AA5052/mild steel 639–823 K - Fe2Al5
FeAl3

1–4 µm EDS [102]

AA5083/A441 AISI

1015 K (air cooling)
966 K
943 K

883 K (water
cooling)

>30 s - 1–7 µm EDS [103]

AA6061/SAE1006 Air
Underwater FeAl3

0.4 µm
1 µm EDS [52]

Al6061/304 - <1 µm [104]

Pure Al/304
Fe2Al5
FeAl3
FeAl2

<1 µm EDS/XRD [104]

AA5083/A316L 673 K <100 s Fe2Al5 <0.5 µm EDS [105]

AA5083/HSLA-65 - - - 2–4 µm EDS [106]
AA6061/TRIP 780 573–673 K <100 s - <0.8 µm [107]
AA6061/IF steel - - FeAl3 0.2–1.6 µm EDS [108]
Pure Al/304 SS - - FeAl3 <1.8 µm EDS [109]

AA1050/mild steel 730–738 K <4 s Fe2Al5
FeAl3

1.7–6 µm TEM/DP [24]

AA5083/mild steel - - FeAl3
FeAl - EDS [110]

AA5186/mild steel Fe2Al5
FeAl6

5.1 µm EDS
XRD [111]

AA3003/mild steel 773 K Fe2Al5
(Fe,Mn)Al6

4.1–7.8 µm XRD [112]

AA5052/HSLA 773 K FeAl3
FeAl2

0.4–6 µm EDS [113]

AA5083/316L FeAl3 EDS [114]

Pure Al/carbon steel Fe2Al5 TEM/DP [115]

AA1050/low-carbon steel - - FeAl3
Fe4Al13

6–35 µm 6–35 [116]
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As can be observed, different types of IMCs are reported in each paper. To identify
where these differences come from, aluminum alloys were categorized based on their
alloying elements in each series. Steels were divided into three categories: interstitial-free
steels (IF steels), carbon steels, and stainless steels. The highest reported thicknesses of
the IMCs were shown for each combination in Figure 10. The thinnest IMC layers are
found in stainless steel and AA6XXX. In the case of austenitic stainless steel, Ni diffuses
into Al along with Fe and is present in the Al-Fe IMC layer. This retards the diffusion
process and the growth of IMCs [110]. This does not mean that the thickness of IMCs
cannot be controlled for other types of steel. Nevertheless, some precautions are needed to
achieve this goal, such as in underwater FSW. Derazkola et al. [103] reported a decrease in
IMC thickness from 7 µm to 1 µm when using water as a cooling medium in FSW. They
reported a decrease in temperature from 1015 to 883 K, while other authors reported a peak
temperature of 853 K and thicknesses of 1–4 µm, even without a cooling medium [100].
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Figure 10. The thicknesses of IMCs for each combination of aluminum–steel welded using friction
stir welding. The data are extracted from Tables 3 and 5 (the units are in µm).

The average thicknesses of the IMC layers formed during the FSW of Al/St with
various Al and St alloys are presented in Figure 11. As can be seen, stainless steel results in
the lowest thickness among the St alloys. Among the Al alloys, AA6XXX yields the lowest
IMC thickness.

Based on the data in Tables 3 and 5, the formation of Fe2Al5 and FeAl3 is more likely
during the FSW of Al to carbon steel. Some of the literature reports that FeAl3 is not stable
and disappears at the expense of Fe2Al5 [61]. The diffusion rate of Fe atoms into the initially
formed FeAl3 is higher than the diffusion rate of Al atoms. Therefore, the concentration
of Fe increases after a while, and the thermodynamical conditions favor the formation of
Fe2Al5. These IMCs are brittle and have low ductility. Therefore, the joint strength of Al to
carbon steel joints is always low unless the thicknesses of the IMCs are controlled or these
IMCs are dispersed in some way.

According to the literature, the main phase that is present in almost every Al-Fe FSW
joint is Fe2Al5. This phase is also a dominant phase in diffusion couples and other Fe-rich
IMCs formed at a temperature higher than 600 ◦C [117]. The growth kinetics of this phase
is also higher than that of FeAl3 [118]. FeAl2 is only observed in some reports because it
grows slower than the other IMCs and is reported to be barely seen in diffusion pairs [43].
Based on the diagram of formation enthalpy in Figure 9, the essential concentration for
the formation of FeAl2 is about 33 atomic % Fe. The formation of FeAl2 is suppressed
by the growth of Fe2Al5 due to its high growth rate. FeAl2 can form after annealing at
high temperatures and sufficient time, as further diffusion of Fe atoms causes the local
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composition to approach the composition of FeAl2, reducing the Gibbs energy for the
formation of this phase and allowing this phase to be observed at the interface, as shown
in [101].
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Figure 11. The average Al-Fe IMCs’ thicknesses formed during dissimilar FSW of various kinds of Al
and St alloys. These diagrams are based on the data gathered in Tables 3 and 5.

The tool offset can change the IMCs in the FSW joining of aluminum to steel, leading
to the formation of iron-rich IMCs such as Fe3Al [99]. In Al-St joining, some offset of the pin
from the steel is required to facilitate oxide removal and the plastic deformation of the steel.
This misalignment should be limited to avoid severe mixing of the two materials around
the pin and to control the temperature. Figure 12 shows the schematic representation of
the FSW process in the overlap and butt configurations. The offset of the pin in the butt
configuration is shown. The dispersion of iron particles in the aluminum matrix is due to
this offset. These dispersed particles convert from their outer surface to IMCs due to the
process heat. Behind the pin, the aluminum is forged onto the fresh steel surface, and a
metallurgical bond is formed between the aluminum and steel. Therefore, the growth of a
continuous IMC layer is promoted in this area, which is below the shoulder. The growth
continues as long as this area is below the shoulder, and, therefore, the welding speed can
control the thickness of the IMC layer. Tanaka et al. [93] report that the growth of IMCs
starts at the stage when the pin is in contact with the material. However, the IMCs formed
are dispersed into the matrix during the contact of the pin, as is schematically shown in
Figure 12. This means that the growth of the continuous IMC layers at the interface starts
only after the pin. Therefore, the time available for calculating IMC thicknesses is the
duration of which the shoulder is in contact with the surface.

This shows the importance of the welding speed for the thickness of IMCs during
FSW. Moreover, Rafiei et al. [105] reported that in the FSW of AA5083/A316L, the peak
temperature is not affected by the welding speed, but the time spent at this temperature
affects the growth and thickness of the IMCs. Figure 13 shows the schematic of Al-Fe
IMC formation during the FSW of Al to St. This mechanism is the most widely accepted
mechanism via which IMCs are formed.
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The alloying elements of aluminum and steel can also affect the thickness of IMCs at
the interface. The reported thicknesses of IMCs during the FSW of different aluminum–steel
welds are shown in Tables 3 and 5. Among the aluminum alloys, pure aluminum and
AA5XXX have the greatest IMC layer thicknesses when welded to very-low-carbon steel or
carbon steel. On the other hand, AA6XXX forms a thin IMC layer (thinner than 2 µm) when
welded to any steel grade. This is in line with the results presented in Figure 11. One reason
for this is that Si is present as an alloying element in this aluminum. Si, as a substitutional
alloying element in aluminum, retards the growth kinetics of Al-Fe IMCs due to its effect of
reducing the diffusion coefficient [119]. Si is present in AA6XXX in the form of both solid
solutions and Mg2Si precipitates. During the FSW of aluminum, the Mg2Si precipitates
dissolve due to the high welding temperatures, which increases the Si concentration in the
form of solid solutions. This Si in the solid solution occupies the vacancies in the aluminum
and reduces the diffusion rates of other elements such as iron. Even after the formation of
Al-Fe IMCs, this Si is present in IMC layers, occupying the substitution sites and reducing
the growth rate of these IMC layers. In a study by Dangi et al. [117], the presence of a
concentration gradient of Si in the IMC layer of Fe2Al5 is interpreted as a low diffusion
coefficient of Si in this phase. Since Si occupies the vacancies, it retards the diffusion of
iron atoms in the IMC phase. The quasi-binary phase diagram for Fe-71 at% Al-Si is shown
in Figure 14. The composition range of Al and Fe was chosen to be around Fe2Al5. The
temperature composition range during the FSW process is plotted in this figure. As can
be seen, Fe2Al5 has a high solubility of up to 0.4 at% silicon at a temperature of 1000 K.
Considering the Si content in the transition layer, which is in the range of 0.5–2.5 at% [120],
the Fe2Al5 is supersaturated with respect to Si. At the temperature of FSW, precipitation
of Si-containing IMCs such as FeAlSi is unlikely because no report indicates the presence
of this phase. Therefore, this Si is present in Fe2Al5 as a solid solution, and the diffusion
coefficient is strongly affected. The retarding effect of Si on the growth of Al-Fe IMCs has
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been reported in previous studies [119]. Lauria et al. [121] also reported the hindering
behavior of solid solutions on the growth of IMCs. It was reported that the thickness of
Al-Fe IMCs was larger in the welding of AA5083 to steel than in the FSW of AA6061 to
steel [71]. This was attributed to the higher Si content in AA6061, proving the effect of Si on
the growth of IMCs. The same reason applies to the AA7XXX series, in which Cu plays the
same role as Si. Yousaf et al. [122] reported a decrease in IMC thickness due to the presence
of Cu in diffusion pairs.
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It should be noted that the presence of Si in aluminum alloys does not necessarily
guarantee low growth kinetics of the Al-Fe-IMCs. Chen et al. [85] obtained a high thickness
of Al-Fe IMCs between Al-AC4C and mild steel, although the cast aluminum contains
more than 7% Si. This is because this Si is present as a separate phase and is dispersed but
not dissolved during FSW.

In the case of stainless steel, Ni and Cr can diffuse into aluminum together with Fe and
slow down the diffusion rate like Si. Even at high temperatures, when Al is in a thixotropic
state, the growth of IMCs at the stainless-steel interface is limited [90]. Elements such as
Si, V, Cr, Mn, Co, Ni, Cu, and Zn have high solubility in Al-Fe-IMCs [124]. This can affect
the interdiffusion coefficient, which, in turn, can lead to a decrease in the kinetics of the
IMCs. In the FSW of stainless steel to Al, the thickness of the IMC layer was less than in
the FSW of carbon steel to Al, resulting in a higher strength of the stainless steel and Al
joints [59]. This was attributed to the presence of Ni and Cr. The same result was observed
when carbon steel was buttered with stainless steel and then welded with Al [16]. The
solutes in IMCs may also affect the tensile strength of the IMCs. Cr is reported to have no
effect on the hardness of Al-Fe IMCs [125]. Fleischer proposed the following equation to
calculate the increase in tensile strength (∆σ) due to a solid solution [126]:

∆σ = ηMµε1.5C0.5 (11)

where η is a constant, M is the Tailor factor, ε is the misfit parameter, µ is the shear modulus,
and C is the concentration of the solute element. Although this relationship is used for
metals, it can also be used as a reference to describe the strengthening of Al-Fe IMCs via
solute atoms. However, the solute atoms may have other effects, such as on grain size. This
makes it difficult to determine the contribution of the solid solution to the strength.
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6. Al-Fe IMCs and Fracture Behavior

The formation of IMCs during FSW is inevitable, as they are an indicator of a met-
allurgical bond between the two materials. In other words, the presence of IMCs at the
interface guarantees the bond. On the other hand, IMCs represent the weak points in joints.
Low ductility and low tensile strength are the characteristics of Al/St joints produced via
FSW when a fracture propagates through the IMC layer [95]. Al-Fe IMCs are brittle and,
therefore, the joints usually fail at the interface. Due to strain concentration in the joint and
the brittleness of the IMCs, the total elongation of the joints is usually very low. In cases in
which the joint strength is higher than that of the base material due to proper control of the
IMCs, the specimens fail due to the base material during tensile testing, making it difficult
to characterize the joint strength.

The most conventional method for evaluating the strength of joints is to use standard
tensile specimens for bulk materials. In these cases, the joint line is located in the center of
the gauge. When the interfacial strength is less than that of the base material, these tests
provide useful information about the joint and the IMCs (Figure 15). However, when the
interfacial strength is high, the conventional tensile specimens are likely to fail due to the
weaker base material (usually aluminum) without providing any information about the
fracture behavior of the joint. Different solutions have been applied to cause a fracture in
the bond line so that the contribution of IMCs to the fracture can be understood. Figure 16
shows a schematic of the tensile specimen used to evaluate the effect of IMCs on the bond
strength between Al and St. Due to the hole in the center of the specimen where the
bond line is located, it is more likely that fracture will occur through the IMC layer, so the
contribution of the IMCs to fracture can be evaluated.
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Figure 15. (a) Fractured tensile specimen of a joint between Al and St. (b) The fracture surface
showing brittle characteristics. Reprinted from [95] with permission from Elsevier.

Micro-scale tensile testing is another method for evaluating the interfacial strength
between Al and St. An example of this, carried out using focused ion beam–scanning
electron microscopy, is shown in Figure 17. Pre-cracks are formed at various locations to
investigate the fracture behavior of the IMCs as well as the interfaces.

The mechanism of failure of Al/St joints was investigated using fractography and
microstructure images. The interface between IMCs and steel is mentioned as the preferred
path of crack propagation (Figure 18) [59]. This was attributed to the low surface energy of
Fe2Al5 (η) and St, which allows easy debonding under normal loading conditions.

The lap joints of Al/St made via FSW are under shear loading during tensile testing.
Due to the presence of defects and voids and also the mode of loading, the joints are
vulnerable to fracture, not because of IMCs, but because of the voids [57]. Moreover,
interlocking plays an important role in joint strength with respect to butt joining where a
metallurgical bond is important [128]. Figure 19 shows the interface of Al/St joined in the
lap configuration using FSW, wherein mechanical interlocking caused by an upward flow
of materials is obvious. There are also reports that no IMC exists at the interface of a lap
joint and that only the mechanical interlocking caused by a wave shape of the interface is
responsible for the joint strength [129].
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Figure 16. Schematic of tensile specimen used to evaluate the effect of IMCs on the joint strength
between Al and St. Reprinted from [11] with permission from Elsevier, 2023.
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Figure 18. (a) The schematic view of the joint interface of Al-St joint. (b) Debonding of steel/η
interface due to normal stress. (c) Plastic deformation and rupture of steel at the triple junction.
(d) The loads applied at the interface. (e) TEM image of the interface. Reprinted from [59] with
permission from Elsevier, 2023.
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Figure 19. Element map of the interface of Al/St joined in lap configuration. Reprinted from [128]
with permission from Elsevier, 2023.

These results indicate that in the overlap configuration, the IMCs have no effect on the
strength of the joint, since in some cases IMCs were not present, or if they were present,
they were not observed or were observed only a little at the fracture surface. In contrast, in
the butt configuration, the IMCs play the main role in the fracture behavior and strength of
the joints.

The contributions of elements to the IMCs during the FSW of dissimilar materials was
explored in the current review paper, with a focus on aluminum–steel joining. However,
it is still necessary to study the effects of different elements such as Cr, Ni, Mo, etc., both



Metals 2023, 13, 768 20 of 25

individually and in combination. Synergetic effects may exist when combining these
elements. In particular, the fatigue strength of dissimilar joints, which is the main drawback
of these joints, can be improved using this technique, eliminating an important obstacle in
the FSW of dissimilar materials.

7. Further Exploration

Although it is known that the fracture probably propagates through the Al-Fe IMCs,
some details about the mechanism of this fracture are still unknown. Usually, more than one
IMC is present at the Al/St interface, and it is not clear through which layer or interfaces the
fracture propagates. To find out, a detailed phase analysis along with accurate fractography
is required. Several studies have been performed to control the thickness of IMCs to
improve the strength of the joints. However, other aspects of IMCs, such as grain size
or chemical composition, have not been studied. The engineering design of IMC layers
needs further investigation so that the grain size of the IMCs can be refined to improve
the fracture toughness of the IMCs. In addition, the chemical composition of IMCs can be
changed to increase their strength via solid solution strengthening. The alloying elements
can also hinder the kinetics of IMC growth so that the thickness of an IMC can be effectively
controlled. The thermodynamics and kinetics of Al-Fe IMCs in the presence of various
elements also need to be explored. This is particularly important for the FSW of different
Al alloys to different alloy steels, such as stainless steels.

8. Summary

1. During the FSW of aluminum to steel, iron-rich IMCs such as Fe2Al5 and FeAl3 are
the present phases at the interface, though the thickness of Fe2Al5 is prevalent. Other
Fe-Al IMCs are rarely seen at the interface, except when the tool offset in steel is high
or heat treatment is applied on the welded specimens.

2. Among the alloying elements in aluminum that can influence the growth rate of Fe-Al
IMCs, Si has the highest effect. In aluminum alloys in which at the temperature of the
FSW, Si is present as a solid solution element, such as in the 6XXX series, the growth
of IMCs is retarded. The reported thickness of the IMCs, in this case, is lower than
4 µm.

3. IF steels and carbon steels form IMCs of a high thickness during FSW to aluminum,
though the thickness range in carbon steels is smaller.

4. The alloying element of stainless steel has a great lowering effect on the thickness
of IMCs during FSW. Ni and Cr retard the diffusion. They may also contribute to
the toughening of the IMCs via solid solution strengthening as well as the grain
refinement of the IMCs.

5. IMCs have a high effect on the fracture mechanism in butt welds of Al/St, but their
contribution to the fracture behavior in the lap configuration is low.
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