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Abstract: Designing magnesium sheet alloys for room temperature (RT) forming is a challenge due to
the limited deformation modes offered by the hexagonal close-packed crystal structure of magnesium.
To overcome this challenge for lightweight applications, critical understanding of alloying-processing–
microstructure relationship in magnesium alloys is needed. In this work, machine learning (ML)
algorithms have been used to fundamentally understand the alloying-processing–microstructure
correlations for RT formability in magnesium alloys. Three databases built from 135 data collected
from the literature were trained using 10 commonly used machine learning models. The accuracy
of the model is obviously improved with the increase in the number of features. The ML results
were analyzed using advanced SHapley Additive exPlanations (SHAP) technique, and the formability
descriptors are ranked as follows: (1) microstructure: texture intensity > grain size; (2) annealing
processing: time > temperature; and (3) alloying elements: Ca > Zn > Al > Mn > Gd > Ce > Y > Ag >
Zr > Si > Sc > Li > Cu > Nd. Overall, the texture intensity, annealing time and alloying Ca are the most
important factors which can be used as a guide for high-formability sheet magnesium alloy design.

Keywords: magnesium alloys; room temperature formability; machine learning; SHAP evaluation;
alloy design

1. Introduction

Lightweight magnesium (Mg) and its alloys with low density and high specific
strength are increasingly used for industrial applications [1,2] in automotive, aerospace,
and electronic sectors. Compared to aluminum (Al) alloys [3,4] and steels [5], however, ap-
plications of commercial wrought Mg alloys are hampered due to their limited formability
at room and low temperatures, caused by insufficient plastic deformation and mobility of
non-basal dislocations. Over the last two decades, attempts have been made to investigate
the fundamental plastic deformation mechanisms and improve the cold stretch formability
via tailoring the addition of alloying elements [6–8] and thermomechanical processing
(TMP) [9,10] of Mg sheet alloys. Additions of zinc (Zn), calcium (Ca), and manganese
(Mn) of Mg alloys [11–14] and trace additions of rare-earth elements such as yttrium (Y),
neodymium (Nd), and cerium (Ce) can significantly improve ductility or formability, which
is attributed to reduce intrinsic stacking fault I1 energy (I1 SFE) [15], lower critical resolved
shear stress (CRSS) of pyramidal 〈c + a〉 slip [16], and weakened strong basal texture [17].
Chino et al. [18] studied the relationship between Zn content and tensile formability of
rolled Mg-xZn-0.2Ce alloy. It is found that the addition of dilute Zn with more than
0.5 wt.% effectively weakens the basal texture and makes it split towards transverse
direction(TD) which improves the deformability of the alloy. When the Zn content is
1.5 wt.%, the Erichsen value of the alloy reaches 9.0, which is equivalent to that of com-
mercial aluminum alloy. Cai et al. [19] studied the effects of Y, Ce and Gd on the texture
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and tensile formability of Mg-1.5Zn alloy. It is found that the addition of Y, Ce and Gd can
effectively weaken and improve the basal texture of magnesium alloy, which is helpful to
improve the tensile formability. In addition, the Erichsen value of Mg-1.5Zn-0.2Sc alloy
designed by Bian et al. [20] reached 8.6. The Erichsen value of Mg-1.5Zn-0.2Y alloy studied
by Yasumasa Chino et al. [6] reached 9.1. A large number of research results show that rare
earth elements play a significant role in improving the formability of magnesium alloys, but
it is worth noting that the addition of Ca elements to magnesium alloys can also produce
similar results as rare earth elements. Chino et al. [21,22] have studied the effect of small
amount of Ca on the tensile formability of Mg alloy sheet at room temperature. It was
found that the Erichsen values of Mg-1.5Zn-0.1Ca alloy and Mg-3Zn-0.1Ca alloy were 14.1%
and 98% higher than those of Mg-1.5Zn (3.4) alloy and Mg-3Zn (4.1) alloy, respectively.
Based on the analysis of its microstructure, it is considered that the improvement of the
formability of the alloy is due to the decrease in the basal texture strength and the expansion
to the direction of TD after adding Ca element. Thermomechanical processing (TMP) such
as homogenization, rolling and annealing is also important in tailoring Mg microstructure
for final mechanical properties. Homogenization, maximizing the alloying effect, has been
studied via CALPHAD modeling and experimental characterization for its influence on
the mechanical properties and formability of Mg-Zn-Al-Ca-Ce-Mn alloy and showed that
better homogenization could attribute to better formability, due to its weak and split basal
texture and fine grain structure [23]. High temperature rolling, as one alternative way,
has also been demonstrated to improve the stretch formability of Mg alloy at room/low
temperature. Such improvement could be ascribed to the enhancement of activity of pyra-
midal <c + a> slips and the weakened basal texture [24–29]. Bian et al. [9] studied the
effect of different rolling conditions on the formability of Mg-1.2Al-0.3Ca-0.4Mn-0.3Zn
alloy and attributed the better formability to the weak basal texture and fine grain structure
formed during rolling. Huang et al. [27] studied the effect of finishing temperature on the
microstructure, texture, mechanical properties and tensile formability of magnesium alloy.
When the rolling temperature increases from 723 K to 798 K, the Erichsen value increases
significantly from 4.5 to 8.6 due to the weakening of texture. Fukuoka et al. [30] studied
the effect of rolling temperature on the formability and texture of Mg-Al-Sn (AT31) alloy
sheet at room temperature. It is found that higher rolling temperature will bring better
room temperature formability. In addition, the reason why the texture of AT31 alloy is
smaller than that of AZ31 alloy rolled under the same conditions is that there are more
randomly oriented grains recrystallized on the grain boundary during the final annealing
heat treatment.

It is clear from the above that alloying and thermomechanical processing could affect
the microstructure of Mg alloys such as texture and grain size. Thus, it is important to
understand the contributions of various descriptors to the formability of Mg alloys at room
and low temperatures. These descriptors can be categorized into alloy descriptors (alloy
elements and concentration), TMP descriptors (temperature and time), and microstruc-
tural descriptors (texture and grain size). The descriptors (alloying-processing-structure)
related to RT formability in multicomponent alloy systems have been mostly studied via
CALPHAD (CALculation of Phase Diagrams) modeling [31–38], as a part of Integrated
Computational Materials Engineering (ICME) framework [39]. However, the relation-
ship between the descriptors and RT formability of Mg alloys is not fully understood for
high-formability magnesium sheet alloy design.

As a data-driven technique, machine learning (ML) algorithms can effectively explore
complex relationships between data features [40]. Large-scale R & D activities in the field of
materials have accumulated a large amount of data, which lays a foundation for the wide
application of machine learning methods in material research. In recent years, machine
learning methods have shown good prospects, for example, in alloy phase classification
and phase structure prediction, material microscopic image analysis, and material service
behavior prediction. It is worth noting that machine learning is used to establish a “black
box” hidden structure–activity relationship between material influencing factors (such
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as composition and technology) and target quantities (such as properties, microstructure,
and phase composition). It can realize the prediction of material composition, structure,
process, and properties and the auxiliary design of new materials. Liu et al. [41] established
an alternative model between hardness and input characteristics (composition and aging
conditions). The composition and heat treatment process of Mg-Al-Sn-Zn-Ca-Mn alloy were
optimized by active learning method, which effectively guided the development of high
hardness cast magnesium alloy. In order to improve the strength and plasticity of as-cast
ZE62 magnesium alloy, Chen et al. [42] optimized the two-step aging process parameters by
using machine learning aided design strategy, and realized the multi-objective optimization
of alloy design. Mi et al. [43] established the relationship between synthesis processing and
target performance via optimizing the input of the artificial neural network in a reverse
machine learning design model (RMLDM) with a particle swarm optimization algorithm.
Wang et al. [44] successfully designed low SFE rare earth-free Mg alloys based on the
correlation analysis between the atomic features (volume, first ionization energy, bulk
modulus) in a ML algorithm and the SFE values calculated by density functional theory
(DFT). Qiao et al. [45] have especially revealed the relationship between hardness and
element descriptors in multicomponent alloys (MACs) through machine learning and
first-principles calculations.

Machine learning can also help material scientists to deeply understand the mechanism
characteristics of materials and understand the scientific nature of material problems from
different scales and different dimensions. Gui et al. [46] successfully predicted the twin
nucleation behavior of Mg alloys and disclosed the important contribution of the data
features on twin nucleation of Mg alloys via ML and electron backscatter diffraction
(EBSD) techniques. Messina et al. [47] used atomic simulation combined with machine
learning technology to study the segregation of Alelements at grain boundaries, showing
the potential of machine learning technology in the calculation of physical properties
of grain boundaries. Jung et al. [48] use machine learning technology combined with
a small number of full-field simulation results to construct accurate structure–property
relationships in a wide range of microstructure, and achieve the use of less full-field
simulation to identify microstructure with optimal characteristics.

In addition, the application of machine learning in the manufacturing processes also
attracts attention. Ortego et al. [49] proposed a network hyperparameter optimization
method based on evolutionary algorithm, and on this basis proposed a deep learning
model for pattern classification. It shows excellent accuracy and practicability in the test
scenarios involving the installation process of shutter fasteners in the aviation industry.
Mirandola et al. [50] used ML algorithm to predict the energy consumption of radial axial
ring rolling process. Palmieri et al. [51] used the machine learning model to optimize the
forming process parameters, and put forward a method to control the blank holder force in
the deep drawing process in real time. Wang et al. [52] studied the intelligent recognition
model of hot rolled strip surface defects based on convolution neural network (CNN).
Using defect image database, a defect recognition model based on CNN is established.
The results show that high recognition accuracy can be obtained in a short time by this
model. Wu et al. [53] proposed a prediction model based on multidimensional support
vector regression, and combined a feature selection method involving the correlation
representation of maximum information coefficients and complex network clustering to
reduce the input dimension. The mechanical properties of steel are predicted according
to the conditions of four main processes (smelting, continuous casting, hot rolling, and
cold rolling). This method has the lowest computational complexity on the premise of high
prediction accuracy.

The predictive capability of ML models strongly depends on the amount and quality of
the dataset. It should be particularly addressed on the improvement of the MLs’ predictive
effectiveness with the limited amount of datasets in the design of Mg sheet alloy. In this
paper, we focus on (1) improving ML models’ predictive capability with the limited amount
of dataset via cross-sectionally expanding the formability descriptors (alloying element,
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concentration, processing temperature, time, grain size, and texture intensity) of each
dataset in various MLs; (2) investigating the influence of various descriptors and ML algo-
rithms on the formability of Mg sheet alloy; and (3) disclosing their important contribution
to improving the stretch formability of Mg sheet alloy at room/low temperature.

2. Methods

Firstly, relevant data were collected from references and data cleaning was performed,
and finally a raw dataset including alloying descriptors (metal element, nominal composi-
tion), processing descriptors (annealing temperature and time), microstructural descriptors
(texture and grain size), and Erichsen values of the Mg alloys including Mg-Zn and Mg-Al
base alloys with a total of 135 entries were constructed and shown in Table 1 and supplemen-
tary material (Figure S1) for more detail. It should be noted that the effect of precipitation
will not be considered in datasets of this work due to the high-temperature annealing heat
treatment. In addition, the rolling process of magnesium alloy sheet will also not be con-
sidered in the datasets due to lack of enough and uniform data for describing the complex
deformation processing. Thus, the contribution of minor amounts of second phases and
various rolling processing will be studied in the near future via coupling with the experi-
mental design. To represent the variation in cross-sectional characteristics, three datasets
were created as Dataset 1, Dataset 2 and Dataset 3 on the basis of the original dataset.

Table 1. Definitions and range of the formability descriptors in dataset.

Descriptor Definition Range

Compositions (wt%)

Al 0–9.07
Zn 0–6.2
Ca 0–2.1
Mn 0–1.3
Y 0–4.2
Zr 0–0.5
Sr 0–2
Ag 0–11
Ce 0–0.2
Li 0–3
Gd 0–2.74
Sc 0–1.5
Cu 0–0.31
Nd 0–2.3
Si 0–0.22

Annealing Process Temperature (K) 473–753
Time (h) 0.25–8

Microstructure Grain size (um) 5–63
Texture (mrd) 2–18.4

Stretch formability Index Erichsen (mm) 1.7–10.7

Dataset 1: (Input) alloying descriptors→ (Output) Erichsen Index;
Dataset 2: (Input) alloying descriptors + processing descriptors→ (Output) Erichsen Index;
Dataset 3: (Input) alloying descriptors + processing descriptors + microstructural

descriptors→ (Output) Erichsen Index.
Secondly, 10 algorithmic models are implemented using the scikit-learn library, in-

cluding Kernel ridge regression (KRR), Gaussian process regression (GPR), extreme tree
regression (ETR), random forest regression (RFR), support vector machine regression (SVR),
gradient boosting regression (GBR), Bagging_SVR, Bagging_KNR, XGBoost, and CatBoost.

To maximize the usefulness of the models, each dataset was normalized using the
Standard Scaler module when applied to some of the models. During the modeling process,
the data were randomly divided into training and test sets in a 4:1 ratio, and hyperparameter
search was performed for each model using grid search with 10-fold cross-validation. In
other words, the training dataset was randomly divided into 10 folds and the models are
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trained on any 9 folds to obtain training accuracy and validated on the remaining 1 fold
to obtain cross-validation accuracy. The validation process was then repeated 10 times
until each fold was validated exactly once and the 10 training/cross-validation accuracies
were averaged to produce a single estimated accuracy. The accuracy of the training and
cross-validation results was evaluated by the coefficient of determination (R2) as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

∑n
i=1(yi − yi)

(1)

where ŷ is the model-predicted value for each solute i, yi is the original value and yi is the
mean value of yi. The value of R2 ranges from 0 to 1, with 1 indicating a perfect model.
It is noted that the value of R2 of training results represents the ability of a model to fit
known data, while that of cross-validation results indicates the ability to predict unknown
data, that is, model generality. Overfitting occurs in a model if the former approaches 1
and is much higher than the latter. To intuitively understand the error of a model in terms
of Index Erichsen value, the performances of models were additionally assessed using
root-mean-square error (RMSE):

RMSE =

√
1
n∑n

i=1(yi − ŷi)
2 (2)

The smaller the RMSE is, the better the model performance is. Note that RMSE can
only be compared between models using the same dataset. Finally, the change in prediction
accuracy is shown via comparing between different models with the same dataset and via
comparing various datasets with the same model. To further elucidate the relationship
between features and Erichsen values, SHapley Additive exPlanations (SHAP) analysis was
introduced to interpret the models and rank the feature importance. The SHAP method
is a new unified approach to interpret model predictions proposed by Lundberg and
Lee in 2017 [54].

3. Results and Discussion

The basic flow in this work is shown in Figure 1, which consists of three main steps,
i.e., establishment of datasets, construction of ML models and analysis of important contri-
bution of formability descriptors via ML models with SHAP algorithm. The input dataset
for ML algorithms generally consists of alloying composition for materials design, which
usually requires a large amount of compositional datasets for improving accuracy of ML
models. In this work, the accuracy of 10 ML models based on the limited amount of compo-
sitional dataset was evaluated via cross-sectionally expanding the formability descriptors
including processing descriptors (annealing temperature and time) and microstructural
descriptors (texture and grain size) into each compositional dataset, which can be catego-
rized into Dataset 1, Dataset 2 and Dataset 3 shown in Figure 1. The critical contributions of
formability descriptors could be calculated via the trained ML model and SHAP methods
to identify the important factors on improving the stretch formability of Mg sheet alloy at
room temperature, which can be used for design of Mg sheet alloy with high RT formability.

It is critical for the maximum likelihood model to establish the mapping relationship
between data descriptors. More accurate descriptor relationship will lead to less error in
the machine learning predictions. Figure 2 shows the heat map of Pearson’s correlation
coefficients between the descriptors, the linear correlation between most of descriptors is
very weak, and their correlation coefficient does not exceed 0.4. In other words, there are
no significant redundant features in the database used in this work. In this work, Erichsen
values (I.E.) were set as the target descriptor. It can be seen that there is no obviously linear
relationship between I.E. and these descriptors, which suggests that the Erichsen value
of Mg alloys is determined by various factors rather than a simple monotonic or linear
relationship. The main reasons for this phenomenon are the complex interactions among
the alloying elements, process parameters and microstructure, which would affect the
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plastic deformation mechanisms and thus stretch formability of Mg sheet alloy. Therefore,
it is difficult to generalize with a simple linear relationship between target descriptor
(I.E.) and other input descriptors as shown in Figure 2. Thus, a nonlinear algorithm is
recommended for more accurate machine learning models in this work.
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After training the 10 algorithmic models and performing hyperparameter optimization,
the accuracy of the test set of 10 ML models on each dataset was calculated in Figure 3a,
in which the accuracy of the training set was between 0.8 and 0.95. To highlight the gap
between different ML algorithms on each dataset, the R2 of test set of CatBoost model with
the best prediction is used as the benchmark 1 to demonstrate the relative accuracy of other
ML models on various datasets and the results are summarized in Figure 3a. All ML models
showed an increasing accuracy via expanding the Dataset 1 to Dataset 2 with the annealing
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process descriptors, in which the accuracy is increased by 287.5% for ETR model and 157%
for CatBoost model. When the dataset is further expanded from Dataset 2 to Dataset 3 by
adding microstructural descriptors, the accuracy of all ML models is further improved, with
267.7% accuracy enhancement for ETR model, 227.5% for Bagging_KNR model, 207.3% for
GPR model, and more than 100% for the remaining models such as RFR, GBR, and XGBoost.
Overall, the accuracy of all ML models based on the limited compositional dataset shows a
significant improvement via cross-sectionally expanding the formability descriptors such
as processing and microstructural descriptors in datasets. Figure 3b shows the influence of
adding various amount of formability descriptors on the accuracy of CatBoost model. The
resulting calculation shows that the root–mean–square error (RMSE) of the CatBoost model
is decreased with the addition of formability descriptors, suggesting that the accuracy
of CatBoost model is increased. Therefore, it can be concluded that the cross-sectional
expansion of descriptors could effectively improve the accuracy of the ML models with a
small dataset.

Metals 2023, 13, x FOR PEER REVIEW 8 of 14 
 

 

 
Figure 3. (a) Test set accuracy of different ML models on three datasets, (b) Variation of CatBoost 
model accuracy with the accumulation of descriptors. 

To reveal the effect of formability descriptors on ML model accuracy, the SHAP val-
ues of each descriptor was calculated based on the CatBoost model in the SHAP library. 
As shown in Figure 4a, a positive/negative SHAP value of a feature (formability de-
scriptor) means that the feature (formability descriptor) raises/lowers the value of Erich-
sen Index. For each feature, the data points on the horizon line have more coverage and 
its impact on the predicted result is greater, suggesting this feature is more important on 
the ML model. In Figure 4a, the calculating result suggests that the texture intensity, grain 
size and the content of Al has an inverse relationship with the SHAP value; however, the 
annealing time, the content of Ca and Zn are proportional to the SHAP value. In Figure 
4b, the average of the absolute SHAP values of a feature can be considered as one factor 
evaluating its importance on the value of Erichsen index. It can be found that the texture 
intensity is the most important descriptor. In other words, texture acts as an important 
role affecting formability of magnesium sheet alloys, which has been verified in the most 
of experimental research. As also shown in Figure 4a, the texture intensity is smaller and 
the SHAP value is larger, which suggesting that the value of Erichsen Index is higher for 
better formability. 

 

Figure 3. (a) Test set accuracy of different ML models on three datasets, (b) Variation of CatBoost
model accuracy with the accumulation of descriptors.

To reveal the effect of formability descriptors on ML model accuracy, the SHAP values
of each descriptor was calculated based on the CatBoost model in the SHAP library. As
shown in Figure 4a, a positive/negative SHAP value of a feature (formability descriptor)
means that the feature (formability descriptor) raises/lowers the value of Erichsen Index.
For each feature, the data points on the horizon line have more coverage and its impact on
the predicted result is greater, suggesting this feature is more important on the ML model.
In Figure 4a, the calculating result suggests that the texture intensity, grain size and the
content of Al has an inverse relationship with the SHAP value; however, the annealing time,
the content of Ca and Zn are proportional to the SHAP value. In Figure 4b, the average
of the absolute SHAP values of a feature can be considered as one factor evaluating its
importance on the value of Erichsen index. It can be found that the texture intensity is
the most important descriptor. In other words, texture acts as an important role affecting
formability of magnesium sheet alloys, which has been verified in the most of experimental
research. As also shown in Figure 4a, the texture intensity is smaller and the SHAP value is
larger, which suggesting that the value of Erichsen Index is higher for better formability.

Figure 5a shows the variation of SHAP value with texture intensity. The calculation
shows that the texture intensity has an inverse relationship with SHAP value, also plotted in
Figure 4a. It should be particularly noted that the SHAP value is significantly increased to
be positive when the texture intensity is decreased to 6 mrd, which suggests that the value
of Erichsen index (I.E.) is possibly higher with the texture intensity less than 6 mrd. The
experimental Erichsen index and texture intensity used in the datasets were summarized in
Figure 5b with the corresponding SHAP values. In Figure 5b, the high values of Erichsen
index are indeed concentrated in the range of texture intensity less than 6 mrd, which is
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consistent with the calculated results in Figure 5a, and a large number of studies [18–23]
have shown that the change in texture will have a significant impact on formability.
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Except for texture intensity, the following three important descriptors on the forma-
bility of Mg sheet alloy in Figure 4b are predicted as annealing time, grain size and Ca
alloying, which are related to the annealing process, microstructure, and alloying additions.
Annealing time can affect the recrystallization behavior of magnesium alloy during an-
nealing, and has a great influence on grain size and texture [55]. There is a certain degree
of negative correlation between grain size and formability, indicating that the smaller the
grain size is, the better the formability is. This is consistent with the general belief that
grain refinement can improve the stress distribution of materials during deformation and
improve the ability of synergistic plastic deformation [56,57]. The positive effect of Ca
content on formability has also been shown in Figure 4b and is known to be an alternative
of rare earth elements for weakening texture. Overall, the improvement of formability of
Mg sheet alloy could be attributed to lower texture intensity, longer annealing time, smaller
grain size, more additions of Ca and Zn as well as less addition of Al.

The results show that there is a strong correlation between texture strength and
formability on small data sets, but limited by the amount of data, it may not be able to
describe this relationship very accurately. On the technical side, our findings provide
a solution to the problem of “how to improve the accuracy of models built with small
datasets”. In terms of the understanding of the material itself, we successfully extract the
key attributes for the target performance from the data by analyzing the importance of
material attributes (input features) in the model. These works can speed up the progress of
establishing an accurate model and show the hidden relationships in material properties
from the point of view of data, which provides a new method for in-depth understanding
of the internal relations of material properties. The next work will focus on improving the
amount of data in the database to establish a more accurate data-driven model to better
reflect this relationship and lay the foundation for further performance prediction and
component-aided design.

4. Conclusions

The accuracy of ML models based on a limited amount of compositional dataset
(Dataset 1) could be significantly improved via cross-sectionally expanding the formability
descriptors. The SHAP analysis of the trained ML model suggests the following important
contributions of each formability descriptor. (1) Microstructure: texture intensity > grain
size; (2) annealing processing: time > temperature; and (3) alloying elements: Ca > Zn > Al
> Mn > Gd > Ce > Y > Ag > Zr > Si > Sc > Li > Cu > Nd.

Compared to the accuracy of ML models with small amount of compositional dataset,
the accuracy is improved more than 100% for all 10 ML models and more than 200% for
6 of 10 ML models with the cross-sectionally expanding formability descriptors such as
processing descriptors (annealing temperature and time) and microstructural descriptors
(texture and grain size).

1. Through SHAP analysis, it is found that the most important factor affecting the
Erichsen value in this work is texture intensity, followed by annealing time, grain size,
and Ca content in the categories of microstructure, annealing process, and alloying
element, respectively, which is consistent with the previous experimental research.

2. When the texture intensity is less than 6 mrd, the value of Erichsen index is significantly
increased. When the texture intensity is more than 6 mrd, the SHAP value decreases
rapidly. The value of Erichsen index also shows a similar trend with SHAP value.

3. The room-temperature formability of Mg sheet alloy could be improved through
lower texture intensity, longer annealing time, smaller grain size, more additions of
Ca and Zn as well as less addition of Al.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/met13040704/s1, Figure S1: Data distribution of the database.
References [58–88] are cited in the supplementary materials.
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