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Abstract: Strontium, the main component of radioactive nuclear wastewater, is characterized by a
high fission yield and an extended half-life. It is easily absorbed by the human body, thus greatly
threatening the environment and the human body. In this study, a mesoporous composite phase
sodium superionic conductor (NVP@NMP) was synthesized by the droplet template method, and the
rapid capture of Sr2+ from wastewater was achieved by constructing a nano-heterogeneous interface
to increase the ion diffusion rate. NVP@NMP showed efficient and rapid removal of strontium
ions in adsorption kinetics, isothermal adsorption, solution pH, and interfering ions concentration
tests, especially using the equilibrium time of 2 min for strontium absorption by NVP@NMP and a
maximum theoretical adsorption capacity of 361.36 mg/g. The adsorption process was spontaneous,
endothermic, and feasible. At higher concentrations of other competing ions (Na, K, Ca, Mg, and
Cs), the adsorbent exhibited higher selectivity towards Sr2+.TEM, XPS, and XRD analyses revealed
that ion exchange was the main mechanism for the NVP@NMP ultrafast adsorption of Sr2+. In
this research, we investigated the feasibility of ultrafast strontium capture by sodium superionic
conductor structured phosphates and explained the ultrafast strontium adsorption mechanism of
NASICON materials through XPS.

Keywords: NASICON; ultrafast adsorption; strontium; ion exchange; wastewater

1. Introduction

With the increasing demand for energy in modern society, nuclear energy become one
of the most important non-renewable energy sources worldwide [1–5]. The isotope 90Sr is
the product of 235U nuclear fission, and it is considered one of the most dangerous radionu-
clides owing to its long half-life, high fission yield, and high solubility in solution [6–8].
In addition, 90Sr can be easily absorbed by the human body and remains in bones [9,10],
which can eventually lead to bone cancer and leukemia [11–13]. Thus, the study of the
efficient removal of 90Sr in a water solution environment system is crucial. To date, a
variety of technologies, including adsorption [14], filtration [15], membrane separation [16],
ion exchange resin [17,18], and chemical precipitation [19]methods, have been used to
capture 90Sr from contaminated nuclear wastewater. Among these purification methods,
adsorption has attracted considerable scholarly attention owing to its low cost, simple
operation, less susceptibility to secondary contamination, superior adsorption capacity,
and selectivity for systems with low concentrations of the target ions [20,21]. Commercially
available conventional adsorbents, such as zeolites [22], resins [23], activated carbon [24],
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and minerals [25], have been used to remove 90Sr. However, these adsorbents exhibit low
selectivity and long equilibrium adsorption times when adsorbing 90Sr from wastewater,
thus making them unsuitable for removing 90Sr from wastewater. Therefore, the devel-
opment of new techniques and materials for the fast and effective removal of 90Sr from
wastewater is vital and urgent.

Recently, sodium superionic conductor (NASICON)-structured phosphates have been
widely studied because of their fast Na+ diffusion rate and good structural stability [26,27].
The composition of NASICON material can be denoted as NaxMy(XO4)3, where M is the
transition metals (such as V, Fe, Mn, etc.), and X is S, P, Si, As. The unit structure composed
of angle sharing MO6 octahedra and PO4 tetrahedra form a 3D framework with migra-
tion channels for easy release of Na+ [28,29]. NaMnPO4 (NMP), as a typical NASICON
structural material, has two different phases: maricite and olivine [30]. Compared with the
olivine phase, the maricite phase (M-NMP) is thermodynamically stable. However, the lack
of diffusion channels in the crystal structure of M-NMP decreases the release efficiency of
sodium ions. Rapid adsorption of 90Sr can be effectively achieved by improving the ion
release efficiency of M-NMP. NMP materials are currently being modified by reducing their
particle size [31]and ion doping [32].

Herein, a NASICON material (NVP@NMP) with large contact area, good structural sta-
bility and ultra-fast adsorption kinetics was constructed by the droplet templating method.
The adsorption capacity of NVP@NMP for strontium ions in solution was investigated for
the first time by a series of batch experiments. Compared with other adsorbents, our de-
signed and synthesized hierarchical porous NMP@NMP exhibited high adsorption capacity
(361.36 mg/g) and remarkable adsorption kinetics (2 min) owing to its excellent crystal
structural and component properties when it was used as an adsorbent for radionuclides
in water. The adsorption mechanism of NVP@NMP was investigated by XRD, XPS and
quantitative experiments.

2. Materials and Methods
2.1. Material and Reagents

Vanadic oxide (V2O5), oxalic acid dihydrate (H2C2O4·2H2O), sodium carbonate
(Na2CO3), phosphoric acid(H3PO4), manganese chloride tetrahydrate (Mn(CH3COO)2·4H2O),
and polyvinyl pyrrolidone (PVP) were purchased from Aladdin. Strontium nitrate, cesium
nitrate, sodium nitrate, magnesium nitrate hexahydrate, potassium nitrate, and calcium nitrate
anhydrous were purchased from Damao Chemical Reagent Factory. Ethanol was purchased
from Sinopharm Chemical Reagent Co. (Shanghai, China). A certain concentration of strontium
adsorbed solution was obtained by dissolving strontium nitrate in deionized water, and the Sr2+

standard solutions for atomic absorption spectrophotometer (AAS) analysis. All reagents were
used without further purification.

2.2. Synthesis of Na3V2PO4@NaMnPO4 (NVP@NMP)

In detail, 0.05 mmol of V2O5 and 0.2 mmol of H2C2O4·2H2O were added to 25 mL
of deionized water at 80 ◦C and stirred for one hour. After the solution was naturally
cooled to room temperature, 1.5 mmol of H3PO4, 0.75 mmol of Na2CO3, 0.9 mmol of
Mn(CH3COO)2·4H2O, and 50 mg of PVP were added. The EtOH were added into the
mixed solution in ten fractions. The resultant solution was aged at 100 ◦C for 24 h in an
oven. Afterward, NVP@NMP (1V: 9Mn) was obtained from the precursor by preheating
the membrane at 350 ◦C for 5 h, followed by annealing at 700 ◦C for 8 h in a nitrogen
atmosphere at a heating rate of 5 ◦C/min. NVP@NMP was synthesized by varying V: Mn
molar ratios. The preparation method of NVP and NMP was the same as that of V-doped
NVP/NMP without Mn(CH3COO)2·4H2O or V2O5 addition.

2.3. Characterization

The composition and physical features of different V: Mn molar ratios NVMP compos-
ites were research using different techniques. The crystal information of NVP/NMP were
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obtained by X-ray powder diffraction (Bruker, D8 Discover diffractometer, Germany) using
Cu Kα radiation (40 kV, 40 mA, λ = 1.54 Å) at 2θ = 10–80◦ and a speed of 5◦/min. The
morphological features of adsorbents were examined using scanning electron microscopy
(Sigma 300, Carl Zeiss AG, Jena, Germany), and energy dispersive spectroscopy (EDS) was
used to characterize morphology and element contents in the samples before and after
adsorption. The zeta potential (NanoBrook Omni, Brookhaven, New York, NY, USA) of the
adsorbent samples were measured at 25 ◦C, and the samples to be tested were dispersed
in aqueous solutions of different pH values at a concentration of 0.2 mg/mL. The concen-
tration of metal ions in the solution was measured using AAS (AA-7000, Shimazu, Japan).
Transmission electron microscopy (TEM, FEI TECNAI G2 F30, FEI, USA) was used to study
the microstructure composition of adsorbent. The surface chemical composition of the ad-
sorbent was studied by X-ray photoelectron spectroscopy (XPS, ESCALAB 250XI+, Thermo
Fisher Scientific, Waltham, MA, USA). The pore size distribution and adsorption characteris-
tics of adsorbents were determined using nitrogen adsorption/desorption isotherm and a
BET-surface area analyzer (Micromeritics, TriStar II 3020, Norcross, GA, USA).

2.4. Batch Adsorption Experiments

The adsorption performance of NVP@NMP was evaluated via batch experiments.
The adsorption stock solution of Sr2+ was obtained by dissolving Sr(NO3)2 in deionized
water. Precisely, 1 mol/L of NaOH and HNO3 solution was used to adjust the pH of the
adsorption stock solution (pH value from 2 to 10). The effects of different adsorbent dosages
(0.6–1.4 g/L) on Sr2+ adsorption was determined at the initial Sr2+ concentration (100 ppm).
The adsorption kinetic experiments were controlled with an initial solution concentration of
100 ppm, and contact times were set from 0.17 to 300 min. All adsorption experiments were
performed at pH = 3 and room temperature (298 K) unless otherwise stated. The Effects of
competitive ions on Sr2+ adsorption, the initial concentration of 10 ppm (0.11 mmol/L) at
pH = 3, the concentrations of the remaining competing ions were calculated based on the
ratio. The actual water adsorption, 50 mg of adsorbent was added to the water sample with
an initial concentration of 10 ppm at pH = 3 for 10 min. The water sample were collected by
Beihai Guangxi province.

The equilibrium of the NVP@NMP at the pH = 3.0 of the solution and at different
temperatures (298 K, 308 K, 318 K) were researched.

The equilibrium adsorption amounts of Sr2+ were estimated as follows:

qe = (Co − Ce)·V/m (1)

where the initial concentration of Sr2+ was Co (mg/L), and the initial concentration of the
Sr2+ were 50–500 ppm.

The final concentration of the tested pollutants Ce (mg/L) is at equilibrium, the adsorp-
tion stock solution volume is V (L), and the mass of NVP@NMP adsorbent is m (mg).

The distribution coefficient (Kd) can be expressed as follows:

Kd =
1000V

m
× Co − Ce

Ce
(2)

The adsorption kinetics of NVP/NMP were discussed by pseudo-first-order kinetics,
pseudo-second-order kinetics and intraparticle diffusion models; these models are given by:

qt = qe

(
1− e−k1t

)
(3)

t
qt

=
1

k2q2
e
+

t
qe

(4)

qt = kiqt1/2 + C (5)
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where the adsorption capacities at time t was qt (mg/g), the adsorbate amount at equilib-
rium was qe (mg/g). The adsorption rate constants of pseudo first-and second-order kinetic
models were k1 (min−1) and k2 (g/mg/min), respectively.

The Langmuir and Freundlich equations were used to fit the Sr2+ at different temperatures:

qe =
qmax·b·Ce

(1 + bCe)
(6)

qe = kFC1/n
e (7)

where, are constants of the maximum adsorption volume was qmax (mg/g), the factor of the
Freundlich model were b (mg(1−n)Ln/g) and n.

The equilibrium constant was used to evaluate the shape of the isotherm, and it is
expressed as

RL =
1

1 + b Co
(8)

where b is the Langmuir constant, and Co (mg/L) is the initial concentration of adsorption.
When 0 < RL < 1, the adsorption is favorable if RL = 1 (linear), RL > 1 (unfavorable), and
RL = 0 (irreversible).

The Gibbs free energy (∆Go), standard enthalpy (∆Ho), and entropy (∆So) were calcu-
lated as follows:

∆Go = −RTlnKd (9)

∆Ho = ∆Go + T∆So (10)

lnKd = ∆So/R− ∆Ho/RT (11)

where the gas constant (R) is 8.314 J/mol/K, and the distribution coefficient is Kd.

3. Results and Discussion
3.1. Characterization of NVP@NMP

The main synthesis process of NVP@NMP is shown in Figure S1. The mixture of
NVP@NMP precursor, ethanol, and deionized water under the action of hydrogen bonds
formed droplet templates. PVP enabled the precursor to maintain the stability of the meso-
porous/macropore structure formed on the surface during high-temperature calcination
and reduced the thermodynamically unfavorable contact area between the droplet template
and the NVP@NMP precursor.

The X-ray diffraction patterns of the NVP/NMP are shown in Figure 1a. The char-
acteristic peaks of NMP at 19.52◦, 19.91◦, 23.42◦, 23.74◦, 32.55◦, 32.79◦, 34.38◦, and 35.07◦

were assigned to (020), (011), (120), (111), (220), (211), (031), and (002), respectively, which
confirmed the typical M-NMP (JCPDS No. 84-0852) with the space group of Pmnb and high
crystallinity [33]. With the increasing V element content, the relative crystallinity of the
NVP gradually increased, which appeared at 2θ = 14.30◦, 31.59◦, 32.05◦, 35.74◦, and 48.65◦

assigned to (012), (211), (116), (300), and (226), respectively. When V completely replaced
Mn, a new phase was formed through crystal transformation, and the peaks at 2θ = 14.297◦,
31.589◦, 32.053◦, 35.743◦, and 48.650◦ were assigned to (012), (211), (116), (300), and (226),
respectively, corresponding to the NASICON-type NVP of rhombohedral space group
(R3C) (JCPDS. No.53-0018). The morphology information of the samples with different
V-doping ratios was examined using SEM, and the results are shown in Figure 1b and
Figure S2. The pores of NMP samples exhibited a macroporous/mesoporous hierarchical
distribution without the addition of V. In addition, the SEM image showed that NMP
exhibited a uniformly distributed hierarchical macroporous/mesoporous structure when
V was not added. The N2 adsorption-desorption isotherms were measured to obtain the
detail information of BET surface and pore volumes.
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Figure 1. (a) XRD patterns of different V: Mn molar ratio adsorbents, (b) SEM image of 1V: 9Mn
NVMP, (c) N2 adsorption isotherms of different adsorbents, (d) N2 adsorption isotherms of 1V: 9Mn
(inset: pore size distribution), (e) Relationships among BET surface area, pore volume and different V:
Mn molar ratio, (f) TEM image of 1V: 9Mn NVP@NMP, and (g) 1V: 9Mn NVP@NMP corresponding
element mapping.

The results show (Figure 1c) that the amount of nitrogen adsorbed by the samples
gradually decreases with the increase of V addition, the adsorption isotherm shows a
capillary condensation step. In particular, the isotherm of 1V: 9Mn is a type- IV curve, with
an H3 hysteresis loop (Figure 1d). It is implied that 1V: 9Mn suggests the existence of macro-
pores and mesopores, and the main pore size was estimated to be about 14.55 nm from the
Barrett–Joyner–Halenda (BJH) pore size distribution. With the increase of V doping, the
pore volume of the sample gradually decreased. This phenomenon is attributable to the
increase in V doping, affecting the growth of NVP and NMP crystals and blocking the pores.
The BET surface area and pore volume (Figure 1e) gradually decreased as the addition
of V increased. The decrease in BET surface area may be attributed to the V competing
with the original NMP phase after the introduction of NVP, and the pores on the surface of
the sample were plugged, thus reducing the BET surface area. To understand the specific
surface/interface microstructure of NVP@NMP, 1V: 9Mn was examined using TEM. As
shown in Figure 1f, a clearly lattice stripe with a spacing of ≈2.201 Å, corresponding to
the NMP of (040) crystal plane, was observed on the right side. The adjacent outer layer
showed lattice fringes with a spacing of ≈2.510 Å, corresponding to the (300) plane of NVP,
confirming the existence of a mixed NVP@NMP two-phase crystal structure. In addition, a
nano-heterogeneous interface was observed between the primitive NMP and NVP-doped
phases, which might promote the rapid diffusion of sodium ions during the adsorption
process. As shown in Figure S3, the selected area electron diffraction mode of 1V: 9Mn
exhibited a polycrystalline phase [34]. Furthermore, the EDS ( Figures 1g and S4) revealed
that 1V: 9Mn had a uniform distribution of Na, Mn, V, P, and O on the surface with an
atomic ratio of 6.62: 0.8: 6.04: 7.33: 34.97.

3.2. Effects of Adsorbent Dosage and pH on Sr Adsorption

The effect of the adsorbent amount and V: Mn molar ratio on strontium adsorption
onto NVP/NMP is shown in Figure 2a. The removal rate of the adsorbents increased
as the adsorbent amount from 0.6 to 1.4 mg/mL. When the adsorbent amount exceeded
1.0 to 1.4 mg/mL, little change was observed in the removal of Sr2+ by the adsorbents (just
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increase ~2%). This phenomenon is attributable to the competition of active adsorption
sites resulting from the increased adsorbent concentration, thereby reducing the adsorption
performance [35]. In Figure 2a, the remove rate of Sr2+ using the pristine NVP and NMP
was low, and the removal rate of Sr2+ using adsorbents decreased with the increasing
addition of V.
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Considering that the pH of radioactive seawater could vary from acidic or alkaline,
we chose a larger pH range of 2–10 to test the adsorption performance of the adsorbent
under different pH conditions. The relationship between the pH value of the solution and
zeta potential is shown in Figure 2b. The zeta potential results indicate a rapid decrease
in the NVP@NMP surface from −3.82 mV to −37.26 mV at the same pH conditions. The
negative charge forms a strong electrostatic interaction between the adsorbent and Sr2+.
As the pH value increases, the adsorption quantity gradually increases (Figure 2c), the
adsorption capacity increases from 115.56 to the maximum of 142.78 mg/g until reaching
the pH 10. This result indicates that 1 V:9 Mn has an excellent adsorption performance
in the large pH range (2–10). The increase in pH of the solution reduced the protonation
and enhanced the interaction between the adsorbent and the target ion, thereby increasing
the adsorption performance of the adsorbent. Based on the experimental results and the
adsorption environment of acidic radioactive wastewater, pH = 3 adsorbent amount is 1.0
mg/mL and 298 K were selected for further adsorption experiments.

3.3. Kinetics of Sr2+ Adsorption

The adsorption time between the adsorbent and the adsorbate in the solution is an
important factor affecting the adsorption efficiency. The results are shown in Figure 3a,
with the different molar ratios of NMP@NVP reaching the adsorption equilibrium in a
short time. At 2 min, the removal rate of Sr2+ from the solution using 1V: 9Mn was 99%.
Compared with the adsorbents at other molar ratios (Figure 3b), 1V: 9Mn exhibited an
ultrafast adsorption equilibrium time.

To study the adsorption kinetics of Sr2+ on 1V: 9Mn, three kinetic models were se-
lected (pseudo-first-order, second-order kinetic, and internal diffusion models) to fit the
adsorption process. The fitting results (Figure 3c and Table 1) showed that the second-
order kinetics had a higher degree of correlation coefficient and could better represent
the adsorption process of the adsorbate at equilibrium, which means that the adsorption
reaction of NVP@NMP is controlled by chemical adsorption process rather than physical
adsorption process. Specifically, 1V: 9Mn had a shorter adsorption equilibrium time than
other adsorbents, and the plot of t/qt vs. t showed a linear relationship (the high correlation
coefficients R2 > 0.99, the equilibrium adsorption of Sr2+(qe = 102.35 mg/g) was consistent
with theoretical values (qe,cal = 101.83 mg/g), where indicated that the adsorption process
of 1V: 9Mn was chemisorption. Moreover, the rate constant of second-order kinetics was
relatively high (K2 = 0.05 g/mg/min) than other molar ratios, implying that the 1V: 9Mn
had an ultrafast adsorption rate.
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Table 1. Different NVP@NMP of the adsorption kinetic model fitting of Sr2+.

Adsorbents

Pseudo-First-Order Pseudo-Second-Order

E.T. (min)
K1 (L/min) qe R2 K2

(g/mmol/min) qe R2

1V: 9Mn 3.01 99.23 0.97 0.05 101.83 1.00 2
3V: 7Mn 2.57 98.09 0.97 0.03 102.04 0.99 5
5V: 5Mn 1.69 98.40 0.98 0.02 102.04 0.99 20
7V: 3Mn 1.34 98.20 0.98 0.02 102.14 0.99 30
9V: 1Mn 0.72 93.35 0.97 0.01 102.35 0.99 60

NVP 1.05 97.33 0.99 0.01 102.04 0.99 40
NMP 0.83 94.78 0.98 0.01 102.14 0.99 40

To understand the ultrafast kinetics of the 1V: 9Mn, the adsorption kinetic data of the
1V: 9Mn before 30 min were selected for internal diffusion model fitting. The fitting results
showed two different sorption stages (Figure 3c), indicating that the adsorption process of
the 1V: 9Mn was controlled with two steps [36]. The first stage was liquid film diffusion,
mainly the diffusion of adsorbent from high-concentration solution to low-concentration
water film. The large surface area of 1V: 9Mn provided more active sites on the surface,
thereby increasing the Sr2+ removal rate from the solution. Because of the charge effect,
Sr2+ in the solution was attracted to the sample surface and permeated to the adsorbent
surface through the liquid film, thus increasing the adsorption process. The second stage
was intraparticle diffusion. In this stage, the adsorbent diffused further from the surface
to the interior through the pores. In this process, Sr2+ moves to the corresponding active
site and exchanges ions with Na+. The fitted images showed that the liquid film diffusion
phase of strontium occurred before 2 min, the intra-particles diffused after 2 min. None
of the fitted curves of the intraparticle diffusion model passed the origin, illustrating that
the adsorption process was not the only controlled by the intraparticle diffusion. Thus,
the adsorption process occurred due to chemical adsorption under the synergistic effect of
strong charge effect and intraparticle diffusion [37]. This excellent adsorption equilibrium
time can be attributed to the following reasons: (i) the porous structure and large specific
surface area improve the contact efficiency between the active site and the target ions on
the adsorbent surface. (ii) The nano-heterogeneous interface resulting from the composite
of NVP and NMP phases (Figure 2e) facilitated the diffusion of sodium ions at the interface
and improved the ion exchange rate [34,38].

3.4. Effects of Concentrations and Temperature on Sr2+ Adsorption

Temperature can directly influence the adsorption process of pollutants [39]. To deter-
mine the saturated adsorption capacity (qmax) of the adsorbent, the adsorption isotherm of
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different molar ratios was investigated. R2 (>0.99) of the Langmuir model was higher than
that of the Freundlich model (Figure 4a and Figure S5, Table S1). The adsorption capacity
using the Langmuir model fitting (1V: 9Mn) was 198.88, 283.16, and 361.36 mg/g at 298,
308, and 318 K, respectively.
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Figure 4. (a) isothermal adsorption fitting curve of Sr2+ adsorption using 1V: 9Mn at different
temperatures and concentrations (solid lines is Langmuir model, dashed lines is Freundlich model),
(b) thermodynamic investigations of 1V: 9Mn.

The equilibrium constant RL (L/mg) in the Langmuir model can be used to confirm
whether the adsorption is favorable or unfavorable [40]. The equilibrium constant (RL) was
calculated using Equation (5), and the results obtained ranged from 0.02 to 0.03, indicating
that the adsorption is favorable. As shown in Table 2, both the adsorption capacity and the
ultrafast adsorption kinetic equilibrium time of the adsorbent in this study were higher
than most of those reported in the literature.

Table 2. Comparison of NVP/NMP with other adsorbents.

Adsorbent pH E.T. (min) qe (mg/g) Reference

Covalent triazine framework-B 2–9 10 35.61 [41]
Metakaolin/slag-based zeolite microspheres 2–8 60 37.04 [42]
Uranyl and strontium ion-imprinted aerogel 2–7 120 160 [43]

Nano ZrO2-MnO2 4–6 30 65.7 [44]
Thiacalixarene-functionalized graphene oxide 7–9 55 101.10 [45]

Layered sodium vanadosilicates 2.5–11 5 174.30 [46]
Na/Zn/Sn/S 2–12 5 32.30 [12]

Sodium manganese silicate material 2–12 1 249.00 [47]
1V: 9Mn NVMP 2–10 2 198.88 This work

To further understand the effect of temperature, the relationship between thermo-
dynamic parameters and reaction temperature was explored using the reaction principle
of adsorbent. The results are demonstrated in Figure 4b, and the corresponding data are
showed in Table 3. The negative value of ∆Go and positive value of enthalpy (∆Ho and
∆So) indicates that adsorption is feasible and spontaneous. In addition, the values of the
Gibbs free energy decreased from −25.45 to −30.00 as the temperature increased from
298 to 318 K. This result confirmed that the temperature influenced the adsorption process
of strontium ions.
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Table 3. Thermodynamic parameters for 1V: 9Mn NVP@NMP.

Temperature (K) ∆Ho (kJ/mol) ∆So (kJ/mol/K) ∆Go (kJ/mol)

298
42.29 0.23

−25.45
308 −27.73
318 −30.00

3.5. Effects of Competitive Ions on Sr2+ Adsorption

Batch experiments were conducted on the adsorbent at different concentrations of
competing ions to investigate the effect of competitive ions on the adsorption performance
of the adsorbent. The results are shown in Figure 5a. With the increasing concentration
of coexisting ions, the removal rate of Sr2+ gradually decreased. However, Na+ and K+

have a slight effect on the adsorbent; when the cation concentration is 100 mmol/L, the
removal efficiency of Srr2+ for each is 75% and 70%, respectively. Conversely, Car2+ and
Mgr2+ greatly impact the adsorbent efficiency; when the concentration is 100 mmol/L, the
removal efficiency of Srr2+ for each is 46% and 57%, respectively.
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Figure 5. (a) Sr2+ adsorption efficiency at different concentrations of competing ions, (b) Sr2+ adsorp-
tion efficiency at different Molar rate (Cs/Sr).

As a major element in nuclear fission, strontium separation in cesium-containing
solutions facilitates resource recovery. We also investigated the selective adsorption ability
of 1V: 9Mn when Cs+ and Sr2+ coexist (Sr2+ concentration was 10 mg/L). The results
(Figure 5b) show that the Cs/Sr molar ratio was 0.5, RCs = 13.09%, and RSr = 98.95%. Even
when the Cs/Sr molar ratio was 10:1, the removal rate (87.28%) of Sr2+ were at high levels
in acidic solutions (pH = 3). The above results indicate that the strontium ion capturing
ability of 1V: 9Mn is less affected by competing ions and Cs+.

3.6. Sr2+ Adsorption with Actual Water

To better study the adsorption performance of the adsorbent for strontium ions in
the real water environment, we spiked seawater (SW), tap water (TP), and lake water
(LW). The results are shown in Figure S6. The removal rate of Sr2+ in different real water
environments was 97.6%, 94.2%, and 91.3%. The experimental results confirm that 1V: 9Mn
has a good ability to remove Sr2+ in the solution

3.7. Adsorption Mechanism

To investigate the adsorption mechanism of 1V: 9Mn, the adsorption of Sr2+ and desorp-
tion of Na+ were determined at the initial concentration of strontium ions (150–750 mg/L),
and their quantitative relationship is shown in Figure 6a. At different adsorption temper-
ature, the experimental data were fitted as lines (slopes near 2, R2 > 0.98), meaning that
1 mol of Sr2+ was adsorbed when 2 mol of Na+ was released in the solution and that Na+

exchanged ions with Sr2+.
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Figure 6. (a) Amount of Sr2+ adsorbed and Na+ released in quantitative experiments (m/v = 1,
pH = 3, t = 30 min). (b) XRD patterns of adsorbent before and after adsorption; (c) TEM images of 1V:
9Mn and the enlarged images of the white regions, as indicated in the panels; (d) SEM image and the
corresponding elemental (Na, V, P, O, Mn, and Sr) mapping images of the NVP@NMP (1V: 9Mn).

To investigate the crystal structure changes of NVP@NMP after the adsorption of
Sr2+, the changes of NVP@NMP before and after the adsorption were analyzed by SEM,
XRD and TEM. The SEM image and elemental mapping of NVP@NMP after adsorption
are provided in Figure 6d, which characterized the morphological changes and surface
elemental distribution of NVP@NMP after strontium ion adsorption. The new crystalline
material on the sample surface after adsorption can be clearly observed in Figure 6d, and
the uniform elemental distribution of Sr on the NVP@NMP surface indicated that the Sr2+

were successfully adsorbed on the surface of the NVP@NMP. To determine the composition
of the crystals precipitated on the adsorbent surface, the samples were analyzed by XRD.
The XRD patterns of sample before and after adsorption are shown in Figure 6b. The
peaks at 2θ of 24.89, 30.81, 32.03, 32.80, 43.11, 50.97 corresponding to Sr5(PO4)3(OH) and
Sr3(Mn(OH)6)2. The NVP@NMP samples of Sr2+ after adsorption was analyzed by TEM,
as shown in Figure 6c, the lattice stripes of 1.81 and 2.39 Å could be assigned to the (202)
facet of Sr5(PO4)3(OH) and the (611) facet of Sr3(Mn(OH)6)2, respectively, consistent with
the XRD results. This result indicated that Sr2+ are immobilized on the sample surface in
the form of Sr5(PO4)3(OH) and Sr3(Mn(OH)6)2.

Subsequently, the XPS full spectrum analysis of the samples before adsorption showed
in Figure 7a that the main elements contained in the samples were Na, Mn, V, P, and O,
which was consistent with the results reported in the literature [41–43].
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After the Sr2+ was adsorbed, the signal peak of Sr2+ appeared on the XPS spectra
(Figure 7b) due to the overlap of the signal peaks of Sr3d and P2p at 133.73 eV, resulting
in a significantly higher peak intensity at this location than that of the sample before
adsorption. Sr3d was divided into two peaks: Sr 3d5/2 at 134.06 eV and Sr 3d3/2 at
135.86 eV, which was consistent with that in the literature report [44–46], confirming that
Sr2+ was successfully adsorbed on the sample surface.

For the others, the O high-resolution XPS pattern (Figure 7c) was shifted to higher
binding energy (from 531.20 to 531.56 eV), while the Na KLL peak disappeared, indicating
that Na+ was released into the solution during the adsorption process and exchanged ions
with Sr2+ and that a chemical bond was formed between the adsorbed Sr2+ and oxygen.
The high-resolution Mn 2p spectrum of 1V: 9Mn is shown in Figure 7d. Before adsorption,
four fitted peaks were centered at 641, 642.5, 653.15, and 654.4 eV, indicating the presence
of Mn2+ and Mn3+ in the adsorbent. After Sr2+ was adsorbed, the binding energy of Mn3+
increased (from 642.5 to 642.86 eV), indicating that the Sr2+ in the solution was bonded
to MnO6. Moreover, the analysis of Na high-resolution XPS patterns (Figure 7e) revealed
that the intensity of the characteristic peaks of Na1s significantly decreased before and
after adsorption. Specifically, the adsorbed Na1s significantly shifted to lower binding
energy (from 1072.28 to 1071.72 eV). This phenomenon was due to the release of Na+ from
NVP@NMP and exchange with Sr2+ [48–53].

In summary, the ultrafast adsorption mechanism of NVP/NMP (1V: 9Mn) can be
described as follows (Figure 8): (1) Sr2+ accumulated on the adsorbent surface due to
electrostatic and concentration effects. (2) When Sr2+ was adsorbed onto the sample surface,
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sodium ions were released from the crystal structure into the solution to exchange ions
with strontium ions. The ion exchange mechanism of NVP@NMP can be described as:

xSr2+ + NaMnPO4→SrxNa1−2xMnPO4 + 2xNa+ (12)
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Figure 8. Mechanism of Sr2+ adsorption onto NVP@NMP.

After ion exchange, Sr2+ was bonded to PO4 and MnO6 in the crystal structure and
then formed Sr5(PO4)3(OH) and Sr3(Mn(OH)6)2.

4. Conclusions

In summary, we have successfully synthesized porous NVP@NMP with a nano-
nonhomogeneous interfacial crystal structure through a simple polymer droplet templating
strategy. The nano-nonhomogeneous interfacial crystal structure enhanced the activity of
M-NMP, thus promoting the diffusion efficiency of Na+. NVP@NMP was used to remove
Sr2+ from wastewater. NVP@NMP (1V: 9Mn) exhibited remarkable adsorption properties
for Sr2+, such as ultrafast adsorption kinetics (only 2 min), high equilibrium adsorption
concentration, wide pH activity range, and strong resistance to interference. The ther-
modynamic analysis showed that the adsorption of Sr2+ on 1V: 9Mn was a spontaneous
endothermic process. The adsorption isotherm curves were consistent with the Langmuir
model. The adsorption experiments and XPS spectroscopy analysis showed that the ad-
sorption mechanism of the NVP@NMP was mainly ion exchange. Compared with other
adsorbents, NVP@NMP (1V: 9Mn) exhibited ultrafast removal of radioactive Sr2+ from
wastewater.
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molar ratios NVP@NMP.; Figure S2: SEM image of the NVP/NMP. (a) NMP, (b) 7Mn: 3V NVP/NMP,
(c) 5Mn: 5V NVP/NMP, (d) 3Mn: 7V NVP/NMP, (e) 1Mn: 9V NVP/NMP, (f) NVP.; Figure S3:
Selected area electron diffraction pattern of 1V: 9Mn NVP@NMP; Figure S4: The SEM-EDS spectrum
of 1V: 9Mn NVP@NMP. Figure S5: Isothermal adsorption curve fitting for strontium adsorption
by different molar ratios of adsorbents (solid lines is Langmuir model, dashed lines is Freundlich
model). Figure S6. Efficiency of adsorbents on the removal of Sr2+ from solutions under different
water. Table S1: Parameters calculated from the Langmuir and Freundlich models.
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