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Abstract: Against the background of low global carbonization, blast furnace ironmaking technology
with coking puts huge amounts of pressure on the global steel industry to save energy and reduce
emissions due to its high pollution levels and high energy consumption. Bath smelting reduction
technology is globally favored and studied by metallurgists as a non-blast furnace ironmaking
technology that directly reduces iron ore into liquid metal without using coke as the raw material.
The smelting reduction reaction of iron ore, which is the core reaction of the process, is greatly
significant to its productivity and energy saving. Therefore, this paper focuses on the behavior and
mechanism of iron ore’s smelting reduction. This work focuses on three key aspects of smelting
reduction, namely, the thermal decomposition characteristics of iron ore during the smelting reduction,
the smelting reduction mechanism of iron-ore particles, and the smelting reduction mechanism of
FeO-bearing slag. The experimental study methods, reaction mechanisms, influencing factors, and
kinetic behavior of the three are highlighted. In this work, the reaction mechanism of thermal iron-ore
decomposition, iron-ore particle smelting reduction, and FeO-bearing slag smelting reduction on
the three reactions were observed, providing a theoretical basis for how to select and optimize raw
materials for the bath smelting reduction process. Moreover, the kinetic study clarifies the limiting
steps of the reactions and provides guidance for an improvement in the reaction rate. However,
certain blank points in previous studies need to be further explored, such as the differences in the
research results of same factor, the large variation in reaction activation energy, and the coupling
mechanism and inter-relatedness of the three key aspects’ reactions with each other.

Keywords: bath smelting reduction; iron ore; thermal decomposition; non-blast furnace ironmaking

1. Introduction

As part of the foundation of modern global metallurgical industry crafts, the blast-
furnace (BF) ironmaking process significantly impacts economic growth. Global BF pig
iron output in 2022 amounted to 1.28 billion tons. However, the energy consumption of
BF process is 70% of the energy consumption of the steel industry, and its gas pollution
emission is 90% in the steel industry. Highly polluting coking in the BF process requires
as the main raw material coking coal, which is becoming increasingly scarce. Sintering
and pelleting processes also require higher-quality iron-bearing raw materials. Therefore,
the BF process puts enormous pressure on global steel companies to save energy and
reduce emissions.

Non-blast furnace ironmaking technology has developed and matured as a dedicated
solution to the high energy consumption and high pollution of the BF ironmaking process,
such as HIsmelt, HIsarna, Corex, and Finex. The bath smelting process is a process
of reducing iron oxides into liquid metal in a high-temperature vessel without using
coking coal as fuel. The process’s advantages are environmental protection, fast reduction,
and a good separation effect of slag and iron. The current typical smelting reduction
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processes and fundamental parameters globally are shown in Table 1. Except for Corex
and Finex, where the final reduction is in a melter-gasifier, more processes have their final
reduction in a smelting reduction vessel (SRV), such as HIsmelt, Hisarna, and Romelt.
The smelting reduction in SRV, as the most important and final part of process, greatly
impacts the productivity of the smelting reduction process. A faster reduction reaction
could significantly increase the capacity of the smelting reduction process.

Table 1. Typical smelting reduction processes and fundamental parameters.

Process Illustrative Figure Type Iron-Bearing
Raw Material Time R&D Unit Distribution

HIsmelt [1,2]
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The smelting reduction of iron ore in SRV consists of the two following models
(shown in Figure 1). (1) Solid iron ore is injected into an iron bath melt where heat transfer,
reduction, and melting steps are completed (as shown in Figure 1a). In the HIsmelt smelting
reduction process, the melt temperature of SRV can be up to 1400 ◦C. When iron ore is
injected into the melt, it undergoes thermal decomposition due to the heat transfer, and
reduction melting in the floating process. Eventually, FeO in the slag is reduced into iron.
(2) The iron ore is injected from the upper part of the SRV and completes rapid heating,
thermal decomposition, gas–solid reduction, melting in the falling process, and a final
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reduction within the final slag layer (as shown in Figure 1b). In the HIsarna process, the
high-temperature gas from the lower part of the SRV enters a smelt cyclone where the
temperature exceeds 1500 ◦C [24]. The iron ore is heated and prereduced in this area.
Under such high-temperature conditions, the iron ore undergoes thermal decomposition
and melting in the falling process, and lastly enter the slag layer to be reduced. There are
three key aspects in the two smelting reduction models above: the thermal decomposition
of iron ore, the smelting reduction of iron-ore particles, and the smelting reduction of
FeO-bearing slag, as shown in Figure 1c.
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Figure 1. Different bath smelting models. (a) Injected into the melt; (b) ore melts and drops into slag;
(c) key aspects in smelting reduction.

How to improve the reaction of these three key aspects is important for improving the
efficiency of the bath smelting reduction process, which is greatly significant to the devel-
opment of low-carbon ironmaking. Extensive studies have been globally conducted on the
smelting reduction behavior of iron ore, focusing on the reaction mechanism, influencing
factors, and kinetic behavior of these three key reductions. Therefore, this paper elaborates
the process of the three key aspects and the mechanism of the smelting reduction reaction
to help in better understanding the nature of the bath smelting reduction reaction. On this
basis, the bath smelting reduction reaction is the next research direction.

2. Progress on the Thermal Decomposition Characteristics of Iron Ore during
Smelting Reduction
2.1. Research Progress of Experimental Methods

Iron ores used in the bath smelting reduction technology are generally hematite or
hematite–limonite ore, minerals that contain Fe2O3, FeO(OH), SiO2 and Al2O3. The iron
ore undergoes thermal decomposition reactions in a high-temperature environment due to
heat transfer during smelting reduction.

For the study of the thermal decomposition behavior of iron ore during smelting
reduction, previous experimental methods included a thermogravimetric analysis (TGA)
device, a heated horizontal furnace, and a high-temperature drop tube furnace, as shown
in Figure 2 [25]. This method is used to investigate the thermal decomposition temperature



Metals 2023, 13, 672 4 of 20

and properties of iron ores via the thermal decomposition temperature and mass weight
loss of the sample at different heating rates. The TGA device (as shown in Figure 2a) is
often used in combination with differential scanning calorimetry (DSC) equipment to test
the endothermic peak at different heating rates. It requires a smaller sample mass, and it is
more difficult to test the chemical composition of the sample with it after a reaction than
other experimental methods are.
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Figure 2. Experimental methods for the thermal decomposition of iron ore. (a) TGA; (b) heated
horizontal furnace; (c) high-temperature drop tube furnace.

The heated horizontal furnace (as shown in Figure 2b) allows for experiments to
be performed on a large number of samples, and samples at room temperature could
be pushed directly into the constant temperature area for the thermal decomposition of
samples at a constant temperature. Its advantage is that the chemical composition of a
sample can be detected at different reaction times, and the atmosphere of experiment can
be changed.

Figure 2c shows the high-temperature drop tube furnace that produces the thermal
decomposition characteristics of iron ore during the falling process; therefore, it is closer
to the actual environment of the HIsarna process. The method allows for the thermal
decomposition characteristics of iron ore to be studied at different residence times, particle
sizes, and temperatures, and in different atmospheres.

2.2. The Thermal Decomposition Reaction Mechanism and Influencing Factors of Iron Ore

The thermal decomposition of iron ore involves the decomposition of hematite and hy-
drated minerals (such as goethite, kaolinite, and gibbsite). Goethite, as a mineral produced
through the weathering of hematite, contains crystalline hydrate. Its thermal decompo-
sition reaction is the process of dehydration into hematite. Wolska’s study showed that
goethite is converted into primary hematite, then into hydrogen hematite, and lastly into
hematite in the pyrolytic process [26]. Goethite is converted directly into hematite during
thermal decomposition without the formation of any intermediate phases [27,28]. The
thermal decomposition reaction of goethite is shown in Equation (1):

2FeOOH(s) = Fe2O3(s) + H2O(g) (1)

The thermal decomposition temperature of hematite is higher than that of goethite. The
step-by-step reaction process of the Fe2O3 decomposition is shown in Equations (2)–(4) [29]:

6Fe2O3(s) = 4Fe3O4(s) + O2(g) ∆G0 = 586770− 340.2T J/mol (2)

2Fe3O4(s) = 6FeO(l) + O2(g) ∆G0 = 858200− 392.6T J/mol (3)
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2FeO(l) = 2Fe(l) + O2(g) ∆G0 = 256061− 53.7T J/mol (4)

The results of partial oxygen pressure for the decomposition of iron oxides (Fe2O3,
Fe3O4 and FeO) at different temperatures were calculated with FactSage, as shown in
Figure 3. Partial oxygen pressure during the decomposition of Fe2O3 at 500 and 1000 ◦C
was 9.4505 × 10−20 and 1.7968 × 10−6 atm, respectively. The partial oxygen pressure
of hematite’s thermal decomposition at 1400 and 1500 ◦C was 0.1175 and 0.8919 atm,
respectively. The partial oxygen decomposition pressure of Fe3O4 500 and at 1500 ◦C was
5.2033 × 10−30 and 5.1294 × 10−7 atm, respectively. The partial oxygen decomposition
pressure of FeO at 1500 ◦C was 1.3700 × 10−9 atm. Hematite is more difficult to decompose
into magnetite at low temperatures, and easier to decompose at high temperatures to
produce magnetite. The decomposition reaction of Fe3O4 and FeO at normal pressure
levels does not occur below 1500 ◦C.
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The decomposition products of hematite at 1400 and 1500 ◦C are solid magnetite, and
liquid magnetite and FeO at 1600 ◦C [25]. Optical-microscopy observations based on the
thermal decomposition process of hematite also indicated that the core unreacted mineral
is hematite, and the edge decomposition product is magnetite [29]. The results of the study
correspond to the theoretical calculations in Figure 3.

Factors affecting the thermal decomposition of iron ore include the system atmosphere,
particle size, and residence time at high temperatures. The results of the relevant studies
are as follows.

(1) The influence of atmosphere

Monica et al. [30] investigated the thermal decomposition of hematite (α-phase, 99%
metal basis) with TGA, with the first and second decomposition peaks at 358 and 600 ◦C,
respectively. Mohammad et al. treated hematite up to 1450 ◦C in an inert (N2) and air
atmosphere [31], and showed that the decomposition reaction of hematite occurred at
1180 ◦C in the inert atmosphere and was basically completed at 1270 ◦C. However, the
decomposition of hematite started at 1360 ◦C in the air atmosphere. Qu et al. [25] found
that the decomposition temperature of hematite was 1264 ◦C at a heating rate of 10 ◦C/min.
Darken et al. [32] also reported that hematite’s decomposition temperature was 1264 ◦C in
an inert atmosphere, 1457 ◦C in an oxygen atmosphere, and 1392 ◦C in an air atmosphere.
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Hematite decomposes at a temperature of 1385 ◦C in an air atmosphere [33]. The decom-
position temperature of hematite is lower and lasts longer in an inert atmosphere than it
does in an air atmosphere. The results of the partial oxygen pressure for the decomposition
reactions calculated with FactSage show that the partial oxygen pressure of the system was
lower in the inert atmosphere, and its decomposition temperature was thereby lower. How-
ever, even for the same atmosphere, previous studies on the decomposition temperature of
hematite vary, with large differences in the decomposition temperature.

In addition, the differences in the decomposition behavior of hematite in CO2 and inert
(N2) atmospheres were compared by previous authors [25]. The oxygen loss percentage (R)
is the ratio of the weight loss of oxygen of a sample, ∆moxygen, to the total oxygen mass of
the iron oxide in sample, mtot-oxygen, as shown in Equation (5).

R =
∆moxygen

mtot−oxygen
(5)

The R of hematite in CO2 atmosphere was 3–4% higher than that in the N2 atmosphere,
as shown in Figure 4. This is mainly related to the structure of the gas molecules, as CO2
has a higher thermal radiation capacity than that of N2, as the particles heat up faster
through radiation in a CO2 atmosphere than they do in an N2 or Ar atmosphere [25].
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Figure 4. Thermal decomposition of hematite in different atmospheres [25].

(2) Particle size

Monica et al. [30] found that the decomposition temperature of fine-grained hematite
(99% metal basis) was lower after ball milling, and that the grain size had an important
influence on the thermal stability of hematite. Similarly, in TGA–DSC experiments, the
initial decomposition temperature was 1383 ◦C for 125–250 µm hematite and 1264 ◦C for
45–53 µm hematite on the basis of a 10 ◦C/min heating rate, showing that the decomposi-
tion temperature increased for the larger iron-ore fines due to the slow heating rate [25].
However, TGA thermal decomposition experiments with different hematite particle sizes
of −110 µm were also conducted, and the results showed that the particle size of hematite
had no significant effect on the thermal decomposition temperature [29].

However, in the thermal decomposition experiments based on a high-temperature
drop tube furnace, the variation in iron-ore particle size had no effect on the weight loss of
its thermal decomposition when both were −250 µm, mainly because the decomposition of
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hematite into magnetite had been completed before it fell to the bottom [25]. Although the
particle size causes changes in the decomposition temperature, it is not a major factor in
the HIsarna bath smelting reduction process, and decomposition was completed with the
falling process in CCF.

(3) Residence time/Heating rate

For the decomposition of goethite, an increase in residence time leads to an increase
in its weight loss, suggesting that the heating rate is the limiting step in its thermal de-
composition. Xing et al. [29] showed that the start and end temperatures of the thermal
decomposition reaction in the TGA experiments increased with the heating rate. There is
hysteresis in the reaction at faster heating rates. The residence time of iron ore with N2
in the vertical furnace had a significant effect on the thermal decomposition, while the
residence time in CO2 atmosphere had no effect on the thermal decomposition, indicating
that the heating rate of the particles is the limiting step of thermal iron-ore decomposition
in an N2 atmosphere.

2.3. Study of the Kinetics of Iron Ore Thermal Decomposition

The kinetic behavior of thermal iron-ore decomposition reactions has been extensively
studied by previous authors. The main investigations regarded the rate-controlled model of
thermal decomposition reactions and the activation energy of the reactions. The activation
energy characterizes the ease of the thermal iron-ore decomposition reaction and is the
energy absorbed by the reactant molecules to convert them from a stable state into activated
molecules. The activation energy of hematite decomposition is higher than that of hematite–
limonite ores.

Beuria [34] investigated the kinetics of the thermal decomposition of hematite–limonite
ore. The rate-limiting model of thermal decomposition reaction is dominated by random
nucleation and chemical reaction control. At higher temperatures, the random nucleation
model dominates the thermal decomposition process. The random nucleation and chemical
reaction models for the thermal decomposition reaction are shown in Table 2.

Table 2. Random nucleation and chemical reaction models for the thermal decomposition reaction [34].

Rate Controlling Process Kinetic Equation Differential Form

Random nucleation,
two dimensional A2(α) : [− ln(1− α)]1/2 = kt 2(1− α)[− ln(1− α)]1/2

Random nucleation,
three-dimensional A3(α) : [− ln(1− α)]1/3 = kt 3(1− α)[− ln(1− α)]2/3

Random nucleation,
first-order decay law F1(α) : − ln(1− α) = kt (1− α)−1

For the study of goethite’s kinetic model’s thermal decomposition, previous studies
showed that the thermal decomposition process of goethite is controlled by the random
nucleation with nucleation growth models [35–37]. The activation energies for the decom-
position reactions of goethite were also extensively reported, and the results of previous
studies for the activation energies of goethite decomposition are shown in Table 3. The
activation energy for decomposition was around 80 kJ·mol−1 for most researchers, with
some activation energy values varying considerably.

For the kinetic study of the thermal decomposition reaction, previous studies had
consistent results regarding its thermal decomposition kinetic model, but they vary consid-
erably for the activation energy of decomposition reactions.
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Table 3. Activation energy results for different thermal decomposition studies in the literature.

No. References Activation Energy/kJ·mol−1

1 Lopez [38] 114.4
2 Lima-de-Faria [39] 82.8
3 Pollack [40] 121 ± 13
4 Thrierr-Sorel [41] 88
5 Keller [34] 96–167
6 Goss [28] 154 ± 15
7 Prasad [42] 85
8 Beuria [34] 70

The activation energy of the thermal decomposition of hematite has also been exten-
sively studied with the isoconversion method. The activation energy of hematite in air
and inert atmospheres was 382 and 324 kJ/mol through an isoconversion methodogy, re-
spectively. The activation energy calculated with the DSC method was significantly higher
than the values achieved with TG [31]. However, two stages of the thermal decomposition
of hematite in an inert atmosphere were reported with activation energies of 636 and
325 kJ/mol [33,43]. Xing’s results indicated that activation energy for the thermal decom-
position of hematite was 1256 kJ/mol with a pre-exponential factor of 1.94 × 1041 s−1 with
the TGA method [29].

3. Progress on the Smelting Reduction of Iron-Ore Particles
3.1. Research Progress of Experimental Methods

When iron-ore particles are injected into a liquid iron bath melt, the key aspect of
the smelting reduction process involves the smelting reduction reaction between the solid
iron-ore particles and the liquid melt. The main adopted research approaches are shown in
Figure 5.
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Figure 5. Experimental methods for the study of the smelting reduction of solid iron ores. (a) Gas
testing method; (b) rotating cylinder method; (c) breakpoint experiment method.

The gas testing method (as shown in Figure 5a) focuses on the characterization of the
reduction gas produced by the smelting reduction reaction, as shown in Equation (6). The
method can be used to calculate reduction rates using the CO gas flow generated during
experiments [44], and reaction rates using a pressure detector to determine changes in
pressure within the sealed system [45].
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FexOy + y[C] = xFe + yCO(g) (6)

The rotating cylinder method (as shown in Figure 5b) is used to characterize the
smelting reduction process and investigate the effect of different factors on the smelt
reduction reaction by rotating the sample after it had been immersed in the melt for a
period of time. The method is suitable for experiments with slower reaction rates [46–49].

The breakpoint experiment method (as shown in Figure 5c) involves throwing experi-
mental sample directly into a high-temperature melt and using the disappearance time of
the sample as the smelting reduction time. During this process, samples can be raised for
quenching, and used to study the microscopic interfaces and phase evolution during the
reaction [50–52].

3.2. Solid Iron-Ore Smelting Reduction Mechanisms and Influencing Factors

Udalov et al. [53] investigated the interactions between solid materials containing
hematite and liquid molten iron, which began with the thermal decomposition of hematite
and the formation of a FeO layer at the interface. The schematic diagram is shown in
Figure 6. The hematite in the ceramic material undergoes thermal decomposition reactions
at high temperatures, and the O formed by decomposition reacts with the molten iron to
form wüstite. When the solid material contains Al2O3, wüstite reacts with Al2O3 to form
a FeAl2O4 spinel phase [54,55]. Ceramic materials containing hematite form a four-zone
structure when combined with molten iron: the solid material zone, the reduced wüstite
zone, the decomposition-generated gas zone, and the molten-iron zone [56]. However, the
molten iron in these studies is liquid metallic iron without carbon.
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Interfacial reactions, and the phase evolution of iron oxides and carbonaceous iron
were also extensively investigated. Marcelo [45] observed an interfacial phase evolution be-
tween hematite pellets and carbon-saturated molten iron via scanning electron microscopy.
Figure 7 illustrates the phase evolution of a hematite pellet during its smelting reduction in
an iron bath, with a continuous wüstite layer at the edge of pellet. There was unreacted
hematite inside [45]. The the reaction of iron oxides with Fe–C melts results in the formation
of FeO layers between them that are then reduced into the metallic iron phase.
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For the reaction process of the smelting reduction of solid iron oxides with [C] in the
melt, the whole reaction may be limited by the formation of FeO and the production of
reducing gas CO. The reaction process is shown in Equations (7)–(9).

Fe2O3(s,l) + Fe = 3FeO(s,l) (7)

FeO(s,l) = Fe(s,l) + O (8)

C + O = CO(g) (9)

As the main raw material for smelting master batches of stainless steel, chromite is
usually added to carbonaceous iron to increase the chromium content of the molten iron.
Within iron containing [C] and [Si], the smelting reduction reaction of chromite proceeds
mainly through Reactions (10) and (11) [48].

FeCr2O4(s) + 4[C] = Fe(l) + 2Cr(l) + 4CO(g) (10)

FeCr2O4(s) + 2[Si] = Fe(l) + 2Cr(l) + 2SiO2(l) (11)

The smelting reduction rate of iron-ore particles in molten iron is mainly limited by
factors such as melt composition, melt temperature, and the particle size and weight of
iron-ore particles. The relevant studies are as follows:

(1) Melt composition

The dissolution rate of chromite in slag is altered by changes in the composition of the
slag system. The reduction rate decreases with increasing slag alkalinity (0.8 to 1.6), Al2O3
content (10 to 20 wt %), and MgO content (5 to 15 wt %). A decrease in the liquid phase
temperature and viscosity of the slag system also leads to an increase in the dissolution
rate [50].

The increase in [C] content within a Fe–C–Si melt promotes the smelting reduction
process of chromite, mainly because the higher [C] content increases [C] activity and
reduces equilibrium O content within the melt. In addition, the lower oxygen content
increases the driving force for oxygen diffusion at the pellet interface [47].

(2) Melt temperature

For the smelting reduction reaction of chromite in Fe–C–Si melts, high temperatures
could facilitate the endothermic decomposition reaction of iron oxides. In addition, high
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temperatures increase the rate of element diffusion in the solid and liquid phases, so
increasing the temperature facilitates the smelting reduction reaction [47]. The findings of
Demir et al. are consistent with this [48]. When the iron oxide is reduced in a Fe–C melt, the
rate of reduction increases because the melting of FeO increases the contact area between
the iron oxide and melt at 1487 ◦C [44].

(3) Particle size and mass of iron ore

For the dissolution of chromite in slag, particle size had an important influence on
the dissolution rate, with small particles increasing the area of the chromite and reaction
boundary, and accelerating the dissolution rate [50]. Marcelo measured the reaction time for
different types of pellets at different temperatures according to the gas testing method, and
fitted the relationship between reaction time and pellet mass. For the same type of pellet,
the reaction time decreased with increasing pellet mass and temperature, and showed a
good linear relationship. The reaction time depended on the contact area between the
pellets and melt in an experimental bath-dissolution study of the same mass and different
numbers of pellets [45].

3.3. Study of the Kinetic of Solid Iron Ore Smelting Reduction Reaction

To investigate the smelting reduction limiting step of chromite, Liu et al. [50] inves-
tigated the dissolution process of chromite in a CaO–SiO2–MgO–Al2O3 slag system and
characterized the dissolution rate via the mass change in chromite. After the dissolution of
the chromite surface had begun, the liquid product rapidly diffused into the slag through
the surface boundary layer. Therefore, the dissolution reaction was limited by the surface
dissolution reaction.

On the basis of the interfacial dissolution reaction as the limiting step of chromite in
slag, the kinetic model of chromite in converter slag is shown in (12) [50]:

t =
ρPr0

kr

[
1− (1− f )1/3

CCr2O3
∗ − CCr2O3

i

]
(12)

where kr is the apparent rate constant for dissolution reaction, CCr2O3
i is the molar con-

centration of Cr2O3 at the surface of chromium ore, CCr2O3∗ is the molar concentration of
Cr2O3 for saturation solubility in slag, ρP is the molar density of chromium ore; r0 is the
initial radius of a chromium ore particle, and f is the dissolution ratio of chromium ore.

Ding et al. explored the smelting reduction process of chromite pellets within Fe–C–Si
and Fe–Cr–C melts. The first stage is the reduction of the solid pellets, the second stage
is the dissolution and melting over of the pellets, and the third stage is the interfacial
slag–gold reaction after melting. Heat transfer had an important influence on the reaction
during the initial phase, of which the limiting step is the interfacial chemical reaction with
a reaction activation energy of 472 kJ/mol [46].

Demir et al. showed that the reduction rate of chromite in Fe–Cr–C melts is controlled
by the liquid phase transfer of oxygen with a reaction activation energy of 92.9 kJ/mol [48].
The apparent activation energies of [C] in molten-iron-reduced iron oxides obtained in
previous studies fluctuated widely, ranging from a minimum of 76.2 ± 27.7 kJ/mol to a
maximum of 234 kJ/mol [44].

4. Progress on the Smelting Reduction of FeO-Bearing Slags
4.1. Research Progress of Experimental Methods

For the study of the smelting reduction reaction between liquid iron oxide and molten
iron or carbon-containing materials, the experimental methods used by previous authors
are shown in Figure 8 [5,57–60].
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Figure 8. Experimental methods for the study of the smelting reduction of FeO-bearing slag. (a) Ro-
tating cylinder method; (b) gas testing method; (c) breakpoint experiment method.

Figure 8a shows that rotating a carbon rod within slag containing FeO can be used to
determine whether the limiting step of the smelting reduction reaction contains the mass
transfer of FeO.

Figure 8b shows the smelting reduction process based on the pressure of gas generated
by reduction reactions where the smelting reduction rate is calculated by measuring the
volumetric flow rate of the exhaust gas or by using the mass spectrometer technique [61,62].
Solid carbon can be placed at the bottom or the particles can be thrown into the slag.

The method shown in Figure 8c can be used to conduct smelting reduction experiments
between slag and Fe–C melts. The reaction rate of the experimental process is calculated
from the chemical composition of the slag sample, the overall weight loss of the crucible, or
via the reaction gases, as in the method shown in Figure 8b. These experimental methods
could be observed by using X-ray fluoroscopy.

4.2. Smelting Reduction Reaction Mechanism of FeO-Containing Slag and Influencing Factors

In the smelting reduction process, a large proportion of molten iron oxides in slag are
reduced to iron by the solid carbon particles or carbon dissolved in the molten iron.

When molten iron oxide in slag is reduced by solid carbon, numerous previous studies
have shown that the total reaction of FeO-bearing slag with solid carbon can be indicated
with Equation (13), and the reaction process is shown in Figure 9.

(FeO)(l) + C(s) = Fe(s) + (CO)(g) < 1808K (13)

where (FeO) denotes the FeO dissolved in slag, and C represents solid carbonaceous
material in the slag. As shown in Figure 10, the smelting reduction process of FeO in slag
consists of five separate steps.
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Figure 9. Schematic diagram of the smelting reduction reaction of FeO-bearing slag with solid
carbon [5].
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• Chemical reactions at the gas–slag interface, as shown in Equation (14):

(FeO)(l) + (CO)g = Fe(l) + (CO2)g (14)

• Chemical reactions at the gas–carbon interface, as shown in Equation (15):

(CO2)(g) + C(s) = 2CO(g) (15)
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• Diffusion of FeO from the slag to the gas–slag interface.
• Diffusion of CO2 into solid carbon through the gas halo.
• Diffusion of CO into gas–slag interface through the gas halo.

The results of Amitava et al. [58] showed that the whole reaction of FeO reduction by
dissolved [C] in melt is shown in (16). Reactions (16) can be divided into gas–slag interface
Reaction (17) and gas–metal interface Reaction (18)

(FeO) + [C] = Fe + (CO)g (16)

(FeO) + (CO)g = Fe + (CO2)g (17)

(CO2)g + [C] = 2(CO)g (18)

According to Reactions (17) and (18), the various steps for the reduction of FeO by
carbon dissolved in molten iron can be written as follows:

C in the molten iron is transported to the gas–metal interface.
• Chemical Reaction (18) occurs at the gas–metal interface.
• Gas transfer from the gas–metal interface to the gas–slag interface.
• FeO in the slag is transported to the gas–slag interface.
• Chemical Reaction (17) occurs at the gas–slag interface.

On the basis of the above reaction steps, the schematic diagram of the smelting
reduction of FeO in slag by [C] is shown in Figure 10. �slag represents an available vacant
site for the adsorption of oxygen on the slag surface; �metal represents the available vacant
site for oxygen adsorption on the metal surface; index “O” indicates a site occupied by
adsorbed oxygen in the slag and metal, respectively. In this case, the diffusion of [C] within
the carbon saturated melt (Step 1) can be basically neglected as the rate-controlling step.

During the smelting reduction of FeO-bearing slag, reaction product CO produces
a gas film to separate the carbonaceous material from the slag, which also leads to slag
blistering. Previous studies showed that the diffusion and interfacial chemistry of iron
oxides in slag are rate-limiting steps in low-FeO slag, and the interfacial chemistry reaction
is the limiting step within medium-to-high-FeO slag.

Factors influencing the smelting reduction rate of FeO in slag are mainly FeO content
and carbonaceous material. The specific results of previous studies are as follows.

(1) FeO content in slag

The FeO content of slag affects its mass transfer process, and the limiting step of the
reaction differs at different levels of FeO. At low FeO mass content in the slag (<5 wt %),
the smelting reduction process is controlled by two steps: the mass transfer of FeO in slag
and interfacial gas–metal chemical reaction. At medium FeO mass content (5–40 wt %), the
process is controlled by three steps, i.e., gas–metal interface chemistry reaction, gas–slag
interface chemistry reaction, and FeO mass transfer in the slag phase. When the FeO
content is high (>50 wt %), the process tends to be a mixed chemical reaction controlled by
a gas–metal interface chemistry reaction and a gas–slag interface chemistry reaction [58].
Min et al. [62] found that, at low FeO content (<5 wt %), the mass transfer rate of FeO in
liquid slag is limited, while at high FeO content (>30 wt %), the chemical reaction at the
gas–carbon interface is the limiting step that controls the reaction rate. The limiting step of
the FeO smelting reduction of slag at different FeO contents is shown in Table 4.
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Table 4. Limiting melting-reduction step in slag at different FeO contents [58,62].

No. FeO in Slag Limiting Step

1 Low FeO content (<5 wt %) Mass transport in slag
2 Medium FeO content Mixed rate limiting step
3 High FeO content (>30 wt %) Chemical reaction of carbon/gas

(2) Carbonaceous materials

Khasraw et al. [5] compared the smelting reduction effect of thermal coal (TC) and
charcoal (CC) on the slag system of the HIsarna process; the reduction of CC was better
for FeO than that of TC. The results of the reduction rates of different carbonaceous
materials in FeO-bearing slag showed that the reduction rates of fixed coke rods were
slightly worse than those of graphite rods. This is mainly because coke contains a certain
amount of ash that hinders the direct contact between slag and solid carbon as the reduction
time increases. However, in the smelting reduction experiments with static carbonaceous
spheres and horizontally placed carbonaceous materials, the reduction rate for spheres
or horizontal surfaces with coke was higher than that for graphite in slag with 8 wt %
FeO [57]. No detailed mechanistic explanation was previously given for the differences in
these experimental situations.

Different carbonaceous materials react at different degrees with CO2, which is critical
for CO production and thereby affects the smelting reduction rate [62,64]. Therefore, the
carbon gasification step is defined as a control mechanism. Story et al. [64] found that
the type of carbon had a significant effect on the reduction rate. However, Seo et al. [65]
showed that the reduction rate of FeO in slag is independent of the type of coal. Therefore,
whether the type of carbon-containing material had an effect on the smelting reduction of
FeO in slag needs further investigation.

Furthermore, when Khasraw et al. [5] used carbonaceous materials to reduce FeO
in a CaO–SiO2–Al2O3–MgO–FeO slag system, the temperature had a large effect on the
reduction index of FeO in carbon reduction slag, and the reduction index increased with
increasing temperature. Temperature had a significant effect on the variation in gaseous
products CO and CO2.

4.3. Study of the Kinetics of the Smelting Reduction Reaction of FeO-Bearing Slag

For the smelting reduction rate of FeO-bearing slag, the reduction rate is a function
of FeO content in the slag. The reaction rate measured in previous experiments is an
n-order relationship for (wt % FeO), with n is being close to 2. In general, the mass transfer
coefficient of FeO in slag depends on the fluid flow conditions in slag. If the flow conditions
are natural convection, the diffusion distance (boundary-layer thickness) is determined
via the fluid flow in system, which is driven by the presence of a density gradient. If flow
conditions are controlled by natural convection, the rate linearly varies with FeO content.
The turbulent conditions that may occur due to rod rotation and CO gas precipitation
lead to the forced convection of the liquid and a further reduction in the boundary layer
thickness, resulting in a reaction number (n) close to 2.

Sarma et al. [57] investigated the reduction rate of graphite rods in FeO-bearing slag at
different rotation speeds. The increase in graphite rod speed also increased the reaction rate
from 3.56 × 10−7 mol·cm−2·s−1 when fixed without rotation to 6.3 × 10−7 mol·cm−2·s−1

at 2.35 wt % FeO at 185 rpm. The liquid-phase mass transfer of FeO in slag is a limiting
step in smelting reaction process. For the reduction of FeO with solid carbon in a slag
system, limiting steps are different for different stages of the smelting reaction. The first
stage of the reaction is represented by secondary model F2, with activation energies in
range of 229–290 kJ/mol. The reaction rate at the first stage is controlled by the chemical
reaction at the solid–carbon interface, and the reaction rate at the second stage is described
by a three-dimensional diffusion model (D3) that may be influenced by a mixture of gas
diffusion, liquid-phase mass transfer, chemical reaction, and carbon diffusion [5]. The
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integral form of the F2 model is shown in Equation (19), and the integral model of D3 is
shown in Equation (20); α is the conversion rate of the reaction.

F2 : G(α) = (1− α)−1 − 1 (19)

D3 : G(α) = [1− (1− α)1/3]
2

(20)

Sarma et al. [57] showed that the n value changed with FeO content, with an n (reaction
order) of 1.43 for 5 wt % FeO in slag and 1.67 for 5–10 wt % FeO in slag. Bafghi et al. [66]
investigated the effect of slag foaming on the reduction of FeO in slag. The results showed
that slag foaming had an effect on smelting rate, and that the liquid phase transfer was the
limiting step in the smelting reduction rate. Smith et al. [67] investigated the reduction rate
of FeO in slag by carbon in melts with different sulfur content at 1450 ◦C. At a high sulfur
content (0.2 wt %), the reaction was limited by the interfacial gas–metal reaction, and at
low sulfur content (0.003 wt %), it was limited by the FeO mass transfer and gas–metal
mixing control mechanism.

The results of Ding et al. equally indicated that, at the third stage of a chromite pellet’s
smelting reduction (i.e., reaction between slag and metal), the rate-controlling step was
the mass transfer process of slag [46]. The process of Fe–C melt reduction of iron oxide
(FeO < 5% in slag) was studied and showed that the gas–gold interface reaction was the
rate controlling factor. The smelting reduction of FeO (5 % FeO in slag) with metal droplets
was also studied, and for metals with more than 2–3 % C content (in metal droplets), the
reduction rate of FeO was controlled by the mass transfer of FeO in slag.

The results of the smelting reduction reaction rate and the activation energy of FeO
under different experimental conditions are further summarized in Table 5. For the smelting
reduction reaction between [C] in molten iron and iron oxides in slag, the reduction
rates obtained by different scholars vary relatively little, but the activation energy values
widely vary, which may be mainly attributed to the different experimental conditions. The
reduction rates of the solid carbon and dissolved carbon of molten iron differed significantly.

Table 5. Kinetic results for different smelting reduction studies in the literature.

Reductants Oxide Temperature (◦C) Reduction Rates
(mol-FeO/cm2·s)

Activation
Energies (kJ/mol) References

Graphite FeO–CaO–SiO2
(10 wt % FeO) 1480 3.04 × 10−6 251.2 Min [62]

Molten iron (Csat)
100 g Slag 70 g 1600 5.70 × 10−5 Jung [63]

Molten iron
(3~4.5 wt % C) 1.5kg

Molten FeO 50 g
1470 1.19 × 10−4

184.1 Sato [51]1520 1.73 × 10−4

1620 3.30 × 10−4

Molten iron
(4.15 wt % C) 200 g

Fe2O3 0.7 g 1400 7.94 × 10−4
234.3 Lloyd [68]

1600 5.01 × 10−3

Molten iron (Csat)
1.5 kg

FeO 20 g
1420 3.55 × 10−4

175.7

Sato [69]

1520 5.18 × 10−4

1620 8.58 × 10−4

Fe3O4 30 g
1420 5.41 × 10−4

96.21520 8.35 × 10−4

1620 1.05 × 10−3

Fe2O3 15 g
1420 5.82 × 10−4

96.21520 8.13 × 10−4

1620 1.17 × 10−3
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5. Conclusions

In this study, the thermal decomposition characteristics of iron ore, the smelting
reduction mechanism of iron-ore particles, and the smelting reduction mechanism of FeO-
bearing slag in bath smelting reduction process were reviewed and studied, focusing on
the experimental study methods, reaction mechanisms, influencing factors, and kinetic
behaviors of the three key aspects above. Our main conclusions are as follows.

(1) For the study of the thermal decomposition of iron ore in the smelting reduction
process, the reaction mechanism of goethite and hematite decomposition was clearer.
However, discrepancies in previous studies regarding the decomposition tempera-
ture, especially the influence of different factors (particle size, heating rate, and high
temperature-residence time) on it, need to be further clarified. In addition, there are
differences between the current experimental conditions and the actual process con-
ditions of iron ore’s thermal decomposition, so the falling process of iron ore within
SRV and the thermal decomposition within the molten iron need to be further investi-
gated. The correlation between the internal cracking characteristics during thermal
decomposition and the subsequent smelting reduction reaction was also analyzed.

(2) Research was advanced on the smelting reduction of solid iron-ore particles within
a melt: For the melt temperature, the composition and particle-size factors on the
smelting reduction influence rule, the results of previous studies are more consistent.
However, the effect of the particle size of the iron ore used in smelting reduction
process on reduction rate needs to be further investigated. Previous studies clarified
the existence of a liquid FeO layer between iron-ore particles and the melt in the
reduction mechanism, but the specific smelting reduction mechanism and the phase
evolution need to be further explored. In terms of kinetics, the study of the rate-
controlling step of the reaction is still unclear, the values of the reaction activation
energy derived vary greatly, and the limiting steps of the reaction and activation
energy values need to be further clarified.

(3) The mechanism of the FeO-bearing slag reduction with solid or dissolved [C] in SRV
was more deeply studied. The effect of different factors on the reaction rate had
been investigated, but the results need to be further refined to provide guidance on
improving the reduction rate. Further studies on the activation energy of smelting
reduction reaction are needed to obtain more consistent results.

In summary, the three key aspects (thermal decomposition, solid iron ore particle
smelting reduction process and FeO-bearing slag smelting reduction process) of smelting
reduction in SRV have been extensively studied by previous authors and provide implica-
tions for improving the smelting reduction process. However, the three methods’ reaction
influencing factors, kinetic behavior, coupling reaction mechanism, and inter-relationship
during the smelting reduction reaction need to be further investigated. This provides
theoretical evidence for the selection and optimization of raw materials for, and improves
the productivity and energy saving of the bath smelting reduction process.
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Abbreviations

BF blast furnace
SRV smelting reduction vessel
CCF cyclone converter furnace
TGA thermogravimetric analysis
DSC differential scanning calorimetry
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