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Abstract: The use of bioabsorbable metals as temporary medical implants has attracted considerable
research interest as they do not require a second surgical operation for removal after the healing
process is completed. However, magnesium (Mg) and its alloys have a degradation rate that is
too high in biological environments. Therefore, it must be controlled using various strategies.
In this study, an AZ31-Mg-based alloy coated with CeO2 is investigated to analyse the effect of
the coating on its corrosion protection and biocompatibility. The AZ31 alloy is anodised with
NaOH solution, before coating to stabilise the alloy surface. The CeO2 coating is deposited on
anodised AZ31 by chemical conversion treatment. The electrochemical properties of samples are
evaluated using electrochemical impedance spectroscopy and cyclic polarisation curves using Hank’s
solution. Structural and morphological characterisation of the samples are performed using X-ray
diffraction and scanning electron microscopy–energy dispersive X-ray spectroscopy. Additionally,
biocompatibility is determined by live/dead assay using MC3T3-E1 pre-osteoblasts. The preliminary
results indicate that CeO2 coatings exhibit higher electrochemical properties. Additionally, an increase
in the ratio of live/dead cells of the AZ31OH-CeO2 surface is detected, in contrast with AZ31, thus
indicating improvement in biocompatibility upon CeO2 coating.

Keywords: AZ31 alloy; corrosion resistance; CeO2 coating; MC3T3-E1; biocompatibility

1. Introduction

Metal implants have been used for bone surgery over the last 100 years owing to
their good mechanical properties based on their crystal structure [1]. Degradable metal
implants are a new research area in biomaterial science for bone repair and regenera-
tion because these materials can avoid secondary surgical operations during their extrac-
tion [2]. Mg is the fourth most abundant cation in the human body and is an essential
element (240–420 mg day−1) because it is involved in numerous mechanisms, such as hu-
man metabolism, protein synthesis, and osteogenesis; further, it is present in bone tissues.
In addition, Mg has good biocompatibility owing to its low toxicity, and the elastic mod-
ulus of Mg (41–45 GPa) is closer to that of natural bones (3–20 GPa), with a density of
1.75 g cm−3 [3]; thus, Mg alloys are new candidates for degradable implants. The potential
applications of Mg and its alloys include coronary stents, screws, wires, and plates in
bones [4]. Orthopaedic devices have constantly been improved to enhance the quality
of life of patients; however, corrosion (an electrochemical process due to oxidation and
reduction reactions) can potentially produce an inflammatory response induced by the
degradability and production of ions and particles [5]. The most common forms of corro-
sion after implantation are general, pitting, crevice, fretting, and galvanic corrosion [6]. The
uncontrolled release of metal ions from alloys can affect the health of the patient because
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the human body contains aggressive ions, such as phosphates, carbonates, chlorides, and
sulphates [7]. The general corrosion reactions for Mg and its alloys involve Mg dissolution
and hydrogen evolution [8,9]. While Mg has the advantages of mechanical performances
close to bone and the best biocompatibility among biodegradable metals [10,11], the high
corrosion rate in the human body greatly hinders its development and application. There
are two methods for controlling the corrosion behaviour of Mg alloys. One is to rearrangehe
composition of Mg alloys through high purification or alloying, and the other is to change
the microstructure of the metal surface or form a protective coating on the surface [12,13].
In this regard, the alloying elements most commonly added to pure Mg are aluminium and
zinc to increase the mechanical (hardness, strength, and castability) and electrochemical
(low current density and more noble potential) properties [14]. On the other hand, several
studies showed that surface modification to form a homogeneous passive film (barrier
layer) or coating enhanced the corrosion resistance [15–17]. Surface modification can be
classified into three categories: chemical modification, physical modification, and a com-
bination of these. Chemical modification is one of the most effective methods; therefore,
it is widely used to provide a barrier between the metal and its environment. Currently,
surface modification methods use chemical conversion treatments based on rare earth (RE)
elements (Ce, Sm, Eu, Gd, Dy, Y, Er, and Yb) [18,19], which can improve the corrosion
resistance of xpure Mg. Conversion coatings are oxide-based coatings that have been
utilised to replace the native oxide film on metal surfaces, such as aluminium, zinc, or
magnesium, to provide higher corrosion resistance [20].

Lanthanum and cerium oxide nanoparticles are considered candidates for medical
applications owing to their biocompatibility, lower toxicity, and similar chemical proper-
ties [21,22]. Moreover, rare earth oxides (REOs) have been applied as corrosion protectors
and coatings due to their chemical and thermal stability. Additionally, the lower reactivity
of REOs with water has led to their success as hydrophobic coatings [23–27]. Recent stud-
ies have emphasised that cerium-based salts and cerium-based conversion coatings are
the most effective in terms of corrosion inhibition compared with other lanthanide-based
conversion coatings [28,29]. Additionally, Ce-based conversion coatings have been shown
to possess self-healing properties under specific conditions [30].

In this study, a cerium oxide coating was deposited at different concentrations on the
AZ31 alloy, which was previously anodised with NaOH, through chemical conversion
treatment (CCT). The coated alloy was evaluated for anticorrosive performance in the
simulated Hank’s solution, and its structural properties and biocompatibility with pre-
osteoblasts cultures were evaluated.

2. Materials and Methods
2.1. Materials

Mg alloy disks (AZ31, Magnesium ELEKTRON, Hadco Metal Trading Co., LLC,
Bensalem, PA, USA) were cut from a cylindrical bar with a diameter and thickness of
13 and 3 mm, respectively. All samples were polished with SiC sheets from 320 to 1200 grit.
The disks were washed with distilled water following an acetone washing step to clean
the surface and dried in air at room temperature. The specimens were fixed using copper
wire to stabilise the contact current. The samples were anodised using a 1 M NaOH
solution (reagent grade; Fermont) as the electrolyte to achieve a stable surface. CCT was
performed using CeCl3·7H2O (Sigma-Aldrich, St. Louis, MO, USA; particle size of 25 nm)
with different concentrations (0.1, 0.01, and 0.001 M) to achieve the CeO2 coating. Further,
3% H2O2 from Sigma-Aldrich was used as an oxidant.

2.2. Anodisation Process

AZ31 alloy samples were anodised to observe their effect on surface stability. The
anodising process was performed at room temperature after the polishing and cleaning
steps in a two-electrode cell separated by 1 cm. The anode was AZ31, whereas the cathode
was graphite. Next, 1 M NaOH solution was used as the electrolyte by applying an external
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polarization constant of 3 V at two different times (30 and 60 min), summarized in Table 1.
Distilled water was used to wash the specimens.

Table 1. Summary of anodised samples.

Anodized Time NaOH 1 M; 3 V Sample Label

N/A AZ31

30 min AZ31OHa

60 min AZ31OHb

2.3. Cerium Chemical Conversion Coating

Cerium oxide was deposited onto AZ31 anodised surfaces at different concentrations
of Ce3+/Ce4+ ions by CCT (Table 2). A single cell was used to fix the sample in CeCl3·7H2O;
the sample solution was held for 5 min, and then, the oxidant agent was added. Next,
3% solution of H2O2 was added to increase the solubility limit of Ce ions and induce
precipitation on the metallic surface. All samples were washed with distilled water to
remove undeposited ions.

Table 2. Synthesis parameters of CeCC coatings on AZ31-Mg alloy.

Sample
Concentration of CeCl3·7H2O

0.001 M 0.01 M 0.1 M

AZ31OHb AZ31OH-CeO2a AZ31OH-CeO2b AZ31OH-CeO2c

2.4. Characterisation Techniques
2.4.1. Electrochemical Characterisation

Electrochemical testing was performed at room temperature, using potentiostat–
galvanostat BioLogic SP150 equipment and Hank’s buffered salt solution (HBSS), con-
sidered to be a human-simulated fluid, as presented in Table 3. A three-electrode cell was
used, with the AZ31 anodised alloy coated with cerium oxide as the working electrode,
a graphite bar as the counter electrode, and Ag/AgCl as the reference electrode. The
corrosion potential (Ecorr) was monitored as a function of time for 10 min. Electrochemical
impedance spectroscopy (EIS) was performed in a frequency range from 100,000 to 0.1 Hz, with
10 points per frequency and an amplitude of 10 mV. Polarisation resistance curves were obtained
by applying a potential scan ranging from−100 to +700 mV at a scan rate of 0.5 mV s−1.

Table 3. Chemical composition of HBSS at pH = 7.4.

Solution
Composition (g/L)

NaCl KCl CaCl2 MgSO4·7H2O MgCl2·6H2O Na2HPO4·2H2O KH2PO4 D-glucose NaHCO3

HBSS 8 0.4 0.14 0.1 0.1 0.06 0.06 1 0.35

2.4.2. Structural and Surface Characterisation

The samples were characterised using X-ray diffraction (XRD) to determine the crys-
talline structure of the CeO2 coating on the surface. Bruker D8 advance equipment was
used by applying a voltage of 40 kV and filament current of 40 mA with Cu Kα radiation
(d = 1.5406 Å). Angular scanning was performed from 20◦ to 80◦ with a step size of 0.02◦.

2.4.3. SEM–EDS Characterisation

AZ31, AZ31OH, and AZ31OHCeO2 were analysed using scanning electron microscopy
(SEM) with Carl Zeiss SUPRA 55 VP equipment at 10 kV. The surface chemical analysis of
AZ31 modified by the coating was performed using energy-dispersive X-ray spectroscopy
(EDS). The accelerating voltage used for the EDS analysis was 15 kV.
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2.4.4. Cell Viability

The mouse calvaria pre-osteoblast cell line MC3T3-E1 used for in vitro cell culture
assays was provided by the DSMZ Human and Animal Cell Bank (DSMZ, Braunschweig,
Germany). This cell line was used as a bone cell model [31].

The pre-osteoblast cells MC3T3-E1 were seeded on AZ31 and AZ31 anodised discs at
a cell density of 133,000 total cells in a volume of 200 µL (100,000 cells/cm2 cell density) in
the complete cell culture medium DMEM without phenol red (Dulbecco’s Modified Eagle
Medium, DMEM 21063) and supplemented with sodium pyruvate, 10% heat-inactivated
foetal bovine serum, and a mixture of antibiotics (penicillin at 100 units/mL and strep-
tomycin at 100 µg/mL, Gibco, BRL) and incubated for 30 min to allow cell attachment.
Next, 1 mL of complete cell culture medium was added to the cell well. In the case of
AZ31OH-CeO2, as the coated assayed surface was smaller, cells were added in a volume of
95 µL to conserve the cell density of cells/cm2.

Cell viability was evaluated using calcein–AM/Hoechst double staining as described
previously [32]. Calcein–AM dye (C3100MP, Invitrogen, Waltham, MA, USA; Ex/Em
494/515 nm) stained the intact and viable cells green. Hoechst (2,7-Hoechst 33258, Sigma
Aldrich; Ex/Em 350/461 nm) is a fluorescent dye used to label DNA and stain the nuclei
of dead cells because its permeability in live cells is very low. A fluorescence microscope
(Leica DMIL LED Inverted Routine Fluorescence Microscope with 3-plate stage) was used
to observe the morphology of cells after assay.

3. Results and Discussion
3.1. Electrochemical Characterisation
3.1.1. Anodisation

AZ31 was anodised as a pre-treatment to reduce the reactivity that characterises the
Mg-based alloys and promotes cerium coating formation.

Figure 1 shows the open circuit potential (OCP) behaviour during AZ31 anodisation
using NaOH (1 M) as the electrolyte and a 3 V polarization for 0.5 and 1 h. A shift of the
Mg characteristic potential of −0.45 and −0.75 V to approximately +2.5 V, respectively, as a
consequence of the applied polarization (3 V) was observed. However, after approximately
500–600 s, the potential stabilised close to 2 V. This behaviour is associated with the rapid
formation of the Mg(OH)2 film (anodising) in approximately 10 min owing to surface
reactivity. The mechanism of Mg(OH)2 film formation can be described by Mg reactions
using Equations (1)–(3) [33], as follows:

Mg→ Mg2+ + 2e− (1)

2H2O + 2e− → 2OH− + H2 ↑ (2)

Mg2+ + 2OH− → Mg(OH)2 ↓ (3)

The naturally formed oxide or passive film present on AZ31 can exhibit high corrosion
resistance up to a certain exposure period. However, it may undergo fast corrosion beyond
the critical exposure period at which galvanic corrosion is initiated. Therefore, the oxide
film formed during the anodising process is more stable, thicker, and reduces the surface
reactivity, thereby increasing its corrosion resistance.

The sanding lines (Figure 1a) of AZ31OHa were detected by recording the optical
images of the sample surface (inset in Figure 1) because the passive film was thinner.
Evidently, the sanding lines of AZ31OHb were smoother than those of AZ31OHa. This
behaviour can be attributed to the presence of a thicker Mg(OH)2 passive layer than that of
AZ31OHa because of the long anodisation time.
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Figure 1. OCP behaviour for the AZ31 anodising samples using NaOH 1 M as the electrolyte, 3 V
polarization to (a) 0.5 and (b) 1 h, respectively.

3.1.2. EIS Results (Anodisation)

EIS analysis was performed to investigate the resistive, capacitive, and inductive
contributions of each system. All samples were evaluated electrochemically using Hank’s
solution, which simulates the biological fluids of the human body. First, the OCP was
measured for 10 min before performing the electrochemical impedance test to allow the
system to stabilise for AZ31, AZ31OHa, and AZ31OHb. The Nyquist diagrams obtained
from the bare sample and those anodised at 0.5 and 1 h polarization time (AZ31, AZ31OHa,
and AZ31OHb, respectively) are shown in Figure 2. Evidently, AZ31 exhibited an inductive
loop characteristic of magnesium-based alloys at low frequencies; this was associated with
its high surface reactivity [34]. The most widely reported corrosion mechanism [35,36] in-
volves AZ31 dissolution as a consequence of the oxidation reaction and hydrogen evolution
due to the reduction reaction. Additionally, the redox rate reactions were very high and
aggressive, and occasionally, the bubbling of hydrogen gas was observed. Nevertheless,
the appearance of a low-frequency inductive loop is related to the relaxation of adsorbed
anions on the metal surface [37,38]. Based on this, the presence of Cl ions in the Hank’s
solution can increase their adsorption of AZ31.

Figure 2 shows the impedance response of AZ31OH at 0.5 and 1 h, where one and two
constant times were observed at low frequencies, respectively. AZ31OHa exhibited a single
time constant associated with the passive film [Mg (OH)2] obtained by anodising; according
to the constant phase element (CPE) values (6 × 10−6 Ω−1 sn/cm2) from the simulation, this
constant time adds resistive contributions, passive film, and charge transfer resistance. By
contrast, two constant times were distinguished for AZ31OHb: one was well defined at high
frequencies and associated with the passive film [Mg(OH)2], whereas the other was not well
defined at low frequencies and corresponded to the electrochemical double-layer resistance
(the resistance to charge transfer). Notably, no significant difference was observed in the total
impedance values of the system between anodised samples. However, AZ31OHb was more
stable and exhibited larger CPE values (8 × 10−7 Ω−1 sn/cm2) compared with AZ31OHa.

To understand the corrosion behaviour of AZ31, AZ31OHa, and AZ31OHb in the
presence of the HBSS, Nyquist plots were analysed using EC-Lab software and fitted using
an equivalent circuit to determine the values for each contribution. The equivalent circuits
comprising a corrosion environment Rs (electrolyte), resistance of the passive film (Rfilm),
and resistance of charge transfer (Rct) were estimated. AZ31 exhibited an inductance (L)
associated with the redox reaction owing to the high reactivity of Mg. The CPE was used
instead of a capacitive element, (ΥCPE (ω) = 1/ZCPE = Q(jω)n) the Υ admittance of the CPE,
whereω is the angular frequency, Q is the modulus, and n is the phase deviation from ideal
electrical component behaviour that provides information about surface inhomogeneity.
Table 4 lists the fitting parameters of EIS spectra.
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Table 4. Fitting parameters related to EIS spectra are shown in Figure 2.

Sample AZ31 AZ31OHa AZ31OHb

Rs (Ω·cm2) 78 80 100

CPEAZ31OH (Ω−1·sn/cm2) – 6 × 10−6 8 × 10−7

η – 0.83 0.85

CPEcorr.prod (Ω−1·sn/cm2) 2 × 10−6 – –

η 0.75 – –

Rcorr.prod (Ω·cm2) 40 – –

RAZ31OHb (Ω·cm2) – – 8500

CPEdl (Ω−1·sn/cm2) 1 × 10−6 – 2 × 10−7

η 0.98 – 0.93

Rct (Ω·cm2) 3690 8350 10,000

CPEL (Ω−1·sn/cm2) −5 × 10−6 – –

η 0.40 – –

RL (Ω·cm2) −2000 – –
L (H cm2) 0.05 – –

χ2 9.30x−2 4.91x−3 2.36x−3

AZ31 exhibited inductive behaviour, as shown in Figure 2a. The inductive loop
was correlated with the high surface reactivity of AZ31, and the presence of Cl− ions in
HBSS increased their adsorption by AZ31 (increasing metal oxidation), which consumed
electrons from adsorption sites [39,40]. The inductive loop exhibited characteristic CPE
values associated with AZ31 (−5 × 10−6 Ω−1 sn/cm2) but was negative as presented in
Table 4. By contrast, the time constant associated with AZ31OHa (passive film) obtained
by anodising exhibited CPE values (6 × 106 Ω−6 sn/cm2) was close to those of AZ31
(2 × 10−6 Ω−1 sn/cm2). Therefore, this behaviour can be attributed to the addition of
the resistive contribution (the passive film and charge–transfer resistance). Additionally,
two constant times were identified for AZ31OHb. The first is associated with the passive
film [Mg(OH)2] with 8 × 10−7 Ω−1 sn/cm2 CPE values, whereas the second corresponds
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to electrochemical double-layer resistance (2 × 10−7 Ω−1 sn/cm2). This behaviour suggests
that the passive film obtained after polarisation for 1 h (AZ31OHb) decreases AZ31 surface
reactivity more efficiently, thus increasing its corrosion resistance. This allows subsequent
coatings to be obtained more easily.

3.1.3. Polarisation Curve Results (Anodisation)

Polarisation curves were recorded in a potential range (−0.1 to 0.7 V) and are shown
in Figure 3. AZ31, AZ31OHa, and AZ31OHb exhibited significant differences, which were
reflected primarily in the pitting potential (Epitt) and passivation zone amplitude (∆Epass).
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Figure 3. (CP results for the (a) bare and (b,c) anodized sample, polarizing 0.5 (AZ31OHa) and 1 h
(AZ31OHb), respectively, using HBSS.

Taking these variables as a reference, evidently the Epitt shifted toward more positive
or noble values, essentially moving from 1.34 V (AZ31) to 1.24 V (AZ31OHa) and 1.16 V
(AZ31OHb) in the anodic branch. This behaviour is associated with passive film forma-
tion [Mg(OH)2], which provides higher resistance to the pitting corrosion of AZ31OHb
compared with AZ31OHa and AZ31. Following the same analysis but considering the
passivation zone amplitude (∆Epass), an increase from 0.058 V (AZ31) to 0.165 V (AZ31OHa)
and 0.227 V (AZ31OHb) was observed. Therefore, the obtained passive film on AZ31OHb
was more stable and resistant to localised corrosion (pitting).

3.2. Cerium Chemical Conversion Coatings
3.2.1. EIS Results

Figure 4 shows the EIS results of AZ31 anodised to AZ31OHb and the subsequent
cerium coating obtained at different concentrations of 0.1, 0.01, and 0.001 M (AZ31OH-
CeO2 a, b, and c) in comparison with the reference sample (AZ31). The improvement in the
corrosion resistance by CeO2 coating was analysed by EIS (Figure 4a). The Nyquist diagram
of AZ31OH-CeO2b exhibited the highest total impedance (30,000 Ω·cm2) compared with
the reference sample (3730 Ω·cm2). This behaviour is closely related to the presence of
the cerium coating, which sealed the passive film (AZ31OHb), thereby increasing the total
impedance of the anodised reference sample.

By contrast, the impedances of AZ31OH-CeO2a and AZ31OH-CeO2c were lower than
that of AZ31OHb but greater than that of AZ31. The lower impedance of the 0.001 M cerium-
coated sample might be due to the lack of cerium ions (i.e., the ions are insufficient to form
cerium coatings) or coating defects, such as cracks and pores, whereby the electrolyte can
easily pass through the coating and reach the base metal surface, thereby leading to corrosion.
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Figure 4. (a) EIS results for AZ31, anodised sample (AZ31OH), and CeCC coating at 0.1, 0.01, and
0.001 M (AZ31OH-CeO2a, AZ31OH-CeO2b, and AZ31OH-CeO2c), respectively, in Hank’s solution
and (b) the equivalent circuits applied in the fitting.

The coating formed on the material of the 0.1 M cerium-coated sample was highly
dense and lost surface adhesion. Additionally, previous studies have reported that when
cerium coatings are extremely dense, the drying is superficial; thus, the film continues to
store moisture inside, and, when it dries, it generates water vapor which induces cracks
in the coating, thus weakening it [41]. This behaviour reduces the coating resistance and
allows the easy access of water or aggressive ions. Data from EIS assays were analysed
by fitting, and the behaviour of coating with the Hank’s solution was simulated using
equivalent circuits. The results are presented in Table 5.

Table 5. Electrochemical data obtained from equivalent circuit fitting of EIS graphs in Figure 4.

Sample AZ31 AZ31OHb AZ31OH-CeO2a AZ31OH-CeO2b AZ31OH-CeO2c

Rs (Ω·cm2) 78 100 76 20 80

CPEAZ31OH (Ω−1 sn/cm2) – 8 × 10−7 – – –

η – 0.85 – – –

CPEcorr.prod (Ω−1 sn/cm2) 2 × 10−6 – – – –

η 0.75 – – – –

CPEAZ31OH-CeO2 (Ω−1 sn/cm2) – – 1 × 10−6 1.7 × 10−7 1 × 10−6

η – – 0.89 0.96 0.88

Rcorr.prod (Ω·cm2) 40 – – – –

RAZ31OHb (Ω·cm2) – 8500 – – –

RAZ31OH-CeO2b (Ω·cm2) – – – 5200 –

CPEdl (Ω−1 sn/cm2) 1 × 10−6 2 × 10−7 – 1.3 × 10−7 –

η 0.98 0.93 – 0.93 –

Rct (Ω·cm2) 3690 10,000 7100 24,500 4560

CPEL (Ω−1 sn/cm2) −5 × 10−6 – – – –

η 0.4 – – – –

RL (Ω·cm2) −2000 – – – –

L (H cm2) 0.05 – – – –

χ 9.30x−2 2.36x−3 2.35x−3 2.48x−2 5.66x−4
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3.2.2. Polarisation Curves Results

Polarisation curves were recorded in a potential range from −0.1 to 0.7 V to determine
the electrochemical behaviour of cerium coatings. The polarisation curves of AZ31OH-
CeO2 revealed that the layer of hydroxides (OH−) formed on the surface increased the
corrosion resistance (Figure 5). However, the contribution of CeO2 was not observed in the
form of a potential shift toward a positive direction, in contrast to the OH− coating, thus
indicating that more noble corrosion potentials were obtained. This is associated with the
solubility of cerium oxides in Hank’s solution. However, it may also be associated with the
cathodic character of the CeO2 coating as a corrosion inhibitor [42].
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Figure 5. Polarisation curves of AZ31 and AZ31OHb (1 h anodised time) modified at different con-
centrations of CeCl2 after being anodised to form AZ31OH-CeO2a, AZ31OH-CeO2b, and AZ31OH-
CeO2c, at 0.001 M, 0.01 M, and 0.1 M, respectively.

Nevertheless, the main contribution of cerium coating obtained in the anodic branch
was reflected by a greater amplitude of the passive zone (∆Epass) and a displacement of the
pitting potential (Epitt) toward more positive values, as presented in Table 6. The increase
in the passive zone of the CeO2 coating can be attributed to the self-healing mechanism.
The PO3−

4 and Ca groups in the Hank’s solution precipitate until a corrosion product forms
on the substrate, primarily generating hydroxyapatite (HA) [43].

Mg→ Mg2+ + 2e− (4)

2H2O + 2e− → 2OH− + H2 ↑ (5)

Mg2+ + 2OH− → Mg(OH)2 (6)

10Ca2+ + 6PO3−
4 + 2OH− → Ca10(PO 4)6(OH)2 (7)

Subsequently, cerium precipitates in the oxide layer through microcracks generated
by corrosion reactions [44].

6H+ + 2Ce3+ + 2Mg→ 2Ce4+ + 2Mg2+ + 3H2 ↑ (8)

Ce4+ + 4OH− → CeO2 ↓ +2H2O (9)

In this mechanism, CeO2 is reduced to Ce2O3 by releasing Ce3+ ions; subsequently,
these ions diffuse to AZ31, whose surface allows the oxidation of Ce3+ to Ce4+, which is
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attributed to the passive layer formed on the substrate [45]. Evidently, AZ31OHb-CeO2b
exhibited the most positive pitting potential (−1.11 V) as well as a larger passivation zone
(0.386 V) compared with the anodised sample (0.227 V) and reference (0.058 V).

Table 6. Electrochemical parameter related to the polarisation curve of AZ31 anodised and modified
at different concentrations of Ce2+ ions.

Sample Ecorr
(V)

Epitt
(V)

∆Epass
(mV)

Icorr
(A.cm−2)

Vcorr
mmy

AZ31 −1.480 −1.34 58 1.76 × 10−5 0.4021

AZ31OHb −1.488 −1.18 227 1.74 × 10−5 0.3975

AZ31OH-CeO2a −1.526 −1.24 210 2.37 × 10−5 0.0541

AZ31OH-CeO2b −1.574 −1.11 386 1.08 × 10−6 0.0246

AZ31OH-CeO2c −1.551 −1.22 257 4.62 × 10−6 0.1055

Note that a larger passivation zone is associated with the presence of more stable
cerium oxides, such as CeO2, whereas a noble or positive pitting potential indicates that
the passive film is more resistant to pitting corrosion [46].

Table 6 presents a summary of the behaviour of the samples treated with cerium,
the shift in pitting potentials (Epitt), and the amplitude of the passivation zone (∆Epass)
described earlier. Evidently, the results of the polarization curves agreed well with the EIS
results obtained.

3.3. Morphology

SEM images were obtained to study the surface morphology and elemental distri-
bution of the AZ31, AZ31OH, and AZ31OH-CeO2b. Figure 6a shows the morphology of
the AZ31 bare sample with #1200 polishing. Sanding lines oriented uniformly along a
single direction were detected. The elemental distribution in the bare sample through EDS
revealed the presence of 86.2 wt% Mg, 2.3% Al, and 0.6% Zn in the alloy. Additionally, the
presence of O was detected as a result of the spontaneous oxidation of Mg in the surround-
ing environment. For the AZ31OH (anodized) sample (Figure 6b), the incorporation of a
passive OH layer increased the O content to 46.9 wt%, whereas the Mg content decreased
to 41 wt%; further, the presence of Al and Zn was confirmed.

The micrograph corresponding to the modified sample AZ31OH-CeO2b (Figure 6c)
revealed a cracked surface with considerably more cracks compared with the anodised
sample, which were probably caused by cerium oxide nucleation at the grain boundaries of
the first Mg layer of oxide/hydroxides. This can be due to the reactions involved in the
coating process with the precursor CeCl3·7H2O and the presence of H2O2, which causes
dehydration or stress in the passive layer. H2O2 was added to the conversion solution as an
oxidising agent to produce a more homogenous deposit. The presence of H2O2 increased
the deposition rate and conversion layer thickness with a cracked mud structure owing to
the stress induced in coating during the drying step. Some heterogeneities such as sanding
lines (surface preparation) were still visible as a consequence of the presence of more active
sites covered by a thinner coating. EDS mapping indicates that the coating was composed
of cerium oxide with 34.8 wt% Ce and 38.2 wt% O; however, Mg was shielded and its
content was estimated to be 13.5 wt% on the surface.
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Figure 6. SEM micrography of (a) AZ31, (b) anodised AZ31OH, and (c) AZ31OH-CeO2.

3.4. Crystal Structure of Passive Film and CeO2 on AZ31

The XRD patterns of AZ31, AZ31OH, and modified AZ31OH-CeO2b are shown in
Figure 7. The Mg characteristic peaks of AZ31 were located at 2θ values of 32.18◦, 34.39◦,
36.61◦, 47.81◦, 57.37◦, 68.63◦, and 70.01◦, associated with the (100), (002), (101), (102), (110),
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(112), and (201) crystallographic planes, respectively (JCPDS 01-089-7195). These peaks
have been identified and are related to the specific presence of the α-Mg phase [47].
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Figure 7. XRD pattern of AZ31 (substrate), AZ31OH anodised [Mg(OH)2 film], and AZ31OH-CeO2,
cerium coating.

The AZ31OH diffractogram exhibited two peaks at 33.01 (100) and 38.28 (011) of
Mg(OH)2. However, a specific and characteristic peak reported for Mg(OH)2 at approxi-
mately 18.82◦ did not appear, probably because the passive film [Mg(OH)2] had a smaller
thickness. Therefore, the Mg peaks of the substrate were stronger.

Note that determining the characteristic thin peaks of the CeO2 coating was chal-
lenging owing to the X-ray diffraction equipment configuration (grazing incidence). This
behaviour might be owing to strong peroxide bonds in Ce(O2)(OH)2 in solution, which
hinder the precipitation of large CeO2 crystals and impede growth owing to the presence
of mixed oxide/hydroxide phase(s) of Ce and Mg at the coating/metal interface [48], thus
preventing the growth of the CeO2 film. Therefore, detecting CeO2 peaks via XRD was
challenging. Nevertheless, the XRD pattern of AZ31OH-CeO2b exhibited peaks with a
smaller breadth compared with those of AZ31 and AZ31OH, thus indicating a finite CeO2
crystal size. Minor peaks associated with the CeO2 coating appeared at 2θ values of 33.07◦,
56.33◦, and 79.06◦, assigned to the (200), (311), and (420) crystal planes, respectively (JCDPS
01-081-0792). These peaks have already been identified and are related primarily to the
presence of CeO2 [49].

3.5. Biocompatibility

MC3T3-E1 pre-osteoblasts’ cell viability and morphology on AZ31, AZ31OH, and
AZ31OH-CeO2b modified discs were evaluated by staining the cells cultured on each
metallic surface with calcein–AM and Hoecht reagents (Figure 8), which stain live and dead
cells, respectively. The calcein–AM dye stains intact and viable cells as the ester groups in
the dye molecule are removed by intracellular esterases and converted into a fluorescent
green compound. Hoechst is a fluorescent dye that labels DNA and is used to stain the
nuclei of dead cells as its permeability in live cells is very low [50].
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Figure 8 shows a comparative live/dead study of pre-osteoblast cultures on different
materials, analysing the results at 24 h incubation time. MC3T3-E1 cells cultured in the
absence of any material were used as the control. The pre-osteoblasts culture in the control
assays exhibited a culture in good conditions as almost no dead cells (blue colour) were
observed. Cells in the control exhibited the characteristic morphology of pre-osteoblasts,
with elongated cells shaped with typical extensions called filopodia [51]. When the pre-
osteoblasts culture was exposed to AZ31, a dramatic change was observed in the behaviour
of the culture as no live cells were observed. Essentially, the few cells that were on the metal
surface appeared as clumps of dead cells. This is probably owing to the high reactivity of
Mg with the cell culture medium, which produced CaCO3, MgCl2, Mg(CO3)2, Mg3(PO4)2,
and H2 gas degradation products that affect cell viability due to pH alkalinisation and
corrosion [52,53]. The anodisation of AZ31 produced a clear change in cell distribution on
the metallic surface as pre-osteoblasts cells cultured on this surface (AZ31OH) exhibited a
dispersed and more uniform cell distribution on the metallic surface compared with AZ31.
This suggests an improvement in surface passivation, probably due to the enhancement
of hydrophilic character that can affect cell adhesion to the metal surface [54]. However,
no live cells (green) were detected on AZ31OH and only dead cells (blue) were observed,
thus indicating the lack of biocompatibility of this material. Nevertheless, significant and
completely different results were observed when AZ31OH was coated with cerium oxide
(AZ31OH-CeO2b); essentially, pre-osteoblast cells were all live cells, as indicated by the
high green fluorescence, and only a few dead cells were observed. Thus, these results were
comparable to those of the control (in the absence of any material). This confirms the good
biocompatibility of AZ31 anodised by modification with cerium oxide.

4. Conclusions

In this study, the AZ31-Mg-based alloy was coated with CeO2 to determine the effect
of coating on corrosion protection and biocompatibility. To reduce the surface activity
of the AZ31 bare sample and promote CeO2 coating formation, a Mg(OH)2 layer was
deposited through anodisation. EIS and CP electrochemical results demonstrated that the
Mg(OH)2 passive film obtained by applying 3 V at 1 h using NaOH 1 M produced a more
homogenous, thicker, and electrochemically more stable passive film, which increased its
corrosion resistance by approximately one order of magnitude.
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The SEM–EDS results corroborated the contribution of the polarisation time in the
anodising process; AZ31OHb exhibited fainter sanding lines, which could be associated
with the formation of a more homogenous and thicker passive film of Mg(OH)2.

Furthermore, EIS and CP revealed that the CeO2 coating obtained at 0.01 M exhibited
better electrochemical behaviour in Hank’s solution. Cerium coating sealed the passive film
(AZ31OH), thus increasing the total corrosion resistance compared with AZ31. SEM/EDS
revealed that cerium coating had a cracked-mud surface owing to the induced stress in the
coating during the drying step.

Finally, the analysis of live cells/dead cells show that the incorporation of CeO2
conferred biocompatibility to AZ31OH-CeO2b. This property could be related to the fact
that CeO2 mimics the activity of metalloenzymes, such as superoxide dismutase (SOD) or
catalase (CAT), which decrease reactive oxygen species due to the structural configuration
(Ce3+/Ce4+), thus favouring the osteoblast proliferation necessary for bone repair.
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