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Abstract: In order to study the effects of rare earth La–Ce alloying treatment on the characteristics
of inclusions in non-oriented silicon steels, industrial experiments were conducted studying the
composition, morphology, size and quantity of inclusions in W350 non-oriented silicon steel during
the RH (Ruhrstahl-Hereaeus) refining process and tundish process, after rare earth treatment. The
products were analyzed by means of ICP-MS (inductively coupled plasma mass spectrometry),
SEM/EDS (scanning electron microscope-energy dispersive spectrometry), and ASPEX (automated
SEM/EDS inclusion analysis). The research results showed that the types of inclusions in experi-
mental steel changed significantly after rare earth treatment. The types of inclusions after RE (rare
earth) treatment are typically rare earth composite inclusions that are mainly composed of (La,
Ce)Al2O3, and conventional inclusions. The addition of rare earth promotes the agglomeration of
inclusions; the morphologies of the inclusions are mostly blocky, and some are distributed in long
strips. After rare earth treatment during the RH refining process, the number of inclusions with
sizes of 1.0~3.5 µm in the experimental steel is increased, and the average size of the inclusions is
2.66 µm. In addition, the number of inclusions larger than 4 µm in the specimens increases due
to the collision and growth of inclusions caused by the RH circulation. After rare earth treatment
during the tundish process, the number of micro inclusions with sizes of 1.0~2.5 µm in the specimen
steels decreases, while the number of inclusions larger than 5 µm increases. The size distribution of
micro inclusions in hot-rolled sheets after rare earth treatment was studied using TEM (transmission
electron microscopy). In the specimens without rare earth, the content of micro inclusions (≤1 µm) is
51,458.2/mm2 and the average size is 0.388 µm. In the specimens with rare earth added, the content
of micro inclusions (≤1 µm) is 24,230.2/mm2 and the average size is 0.427 µm. Compared to sheet
produced by the original process, the iron loss of the 0.35 mm finished experimental sheet is reduced
by 0.068 W/kg, and the magnetic induction is increased by 0.007 T. The iron loss of the 0.50 mm
finished experimental sheet is reduced by 0.008 W/kg, and the magnetic induction is increased by
0.004 T. After rare earth treatment, the average size of micro inclusions increases and the magnetic
properties are obviously improved.

Keywords: rare earth La–Ce; inclusions; modification; non-oriented silicon steel; magnetic property

1. Introduction

High-grade non-oriented silicon steel, as the functional material for high-end power
equipment [1,2], is widely used in the cores of large generators and high-efficiency energy-
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saving motors, in high-efficiency energy-saving appliances, and in electric vehicle manufac-
turing, due to its magnetic characteristics of low iron loss and high magnetic induction [3–5].
With the implementation and promotion of frequency conversion technologies in the home
appliance industry, the rise of the new energy automobile industry and the development of
energy-saving and high-efficiency motors, there is an increased demand for the low iron
loss and high magnetic induction properties of high-grade non-oriented silicon steel [6].
Inclusions in steel are one of the many factors affecting its magnetic properties, in particular,
the size of the inclusions. Since coercivity is inversely proportional to the size of inclusions,
when the size of the inclusions is close to the thickness of the domain wall, the ability of
inclusions to pin magnetic domains is usually at its strongest, and the deterioration of
magnetic properties is typically at its most serious [7,8]. Relevant production enterprises
and research institutes have carried out research on the modification and purification
of inclusions in silicon steels, with the mechanisms and production applications of rare
earth modified inclusions attracting a large number of researchers. Rare earth elements
have unique metallurgical and physical properties, and can change the inherent types and
morphologies of inclusions, reduce the harm of inclusions in the steel, and improve the
related properties of steel products [9–14]. Takashima et al. [15,16] proposed the addition
of composite rare earth and Al to non-oriented silicon steel. Their results showed that after
adding rare earth alloys and Al, the inclusion sizes increased, the grain growth rate was
significantly improved, the residual stress after annealing was reduced, and the product
performance was significantly improved. Li [17], Kong [18], Qiao [19], and Wan [20–22]
have studied the applications of rare earth elements in silicon steels. With the addition
of rare earth elements, the magnetic properties of silicon steel products are obviously
improved. The modification mechanism of rare earth elements on inclusions is relatively
clear. However, there is a lack of relevant research on how the type and size distributions
of inclusions formed in each process change after the addition of rare earth, especially the
type transformations and size changes of micro inclusions in liquid steel.

In this work, industrial trials were carried out using La and Ce rare earth alloys during
the production of silicon steels. The effects of rare earth La and Ce alloys on the evolution
characteristics and metamorphism of inclusions, and the magnetic properties of products
from different processes were investigated, which was conducive to realizing the stable
application of rare earth elements in industrial production.

2. Materials and Methods

Slag was completely removed before the hot metal entered the desulfurization sta-
tion, and slag was removed twice after the deep desulfurization treatment, to achieve
[S] ≤ 0.0010% and minimize the amounts of high-sulfur slag entering the converter. The
scrap steel was self-produced high-quality scrap steel, of which about 50% was silicon steel
scrap. During the tapping of the converter, the slide plate and the slag stopper were used
to control the slag, and the thickness of the top slag in the ladle was required to be less
than 60 mm. Lime was added to the top slag during the tapping process, and the argon
flow rate was controlled to prevent the top slag of the ladle from agglomerating. During
the RH refining process, it was forbidden to add aluminum to the liquid steel to melt it
after the liquid steel had arrived at the RH refining station. After decarburization, the
oxygen content of the liquid steel was less than 300 ppm, before alloying. After adding the
desulfurizer and bauxite, rare earth alloys were added to liquid steel. The vacuum was
broken after 8 min of net circulation and the sedation time was not less than 15 min.

The chemical composition of La and Ce alloys used in the experiment is listed in Table 1.
Spectrography and inductively coupled plasma mass spectrometry (ICP-MS, Thermo Fisher
Scientific (China) Co., Ltd., China) were used to determine the steel composition. The
chemical composition of the experimental steel is shown in Table 2.
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Table 1. Chemical composition of rare earth La–Ce alloys (wt%).

Element C Mg Si Ca La Ce

Content 0.002 0.001 0.2 0.001 37.32 61.67

Table 2. Chemical composition of experiment steel (wt%).

Element C Mn S P Si Als N Ti Cu La Ce

RE-free (Rare earth-free) 0.0024 0.32 0.0022 0.016 2.69 0.53 0.001 0.0018 0.038 / /
RE-added (Rare earth-added) 0.0026 0.36 0.0028 0.015 2.62 0.54 0.001 0.0019 0.040 0.0012 0.0013

During the experiment, steel samples were taken during the RH refining process and
from the tundish. The specific sampling plan is shown in Table 3. Metallographic specimens
(20 mm × 15 mm × 15 mm) were taken from the edges of the steel samples after removing
the oxide scales on their surfaces, as shown in Figure 1. After grinding and polishing, the
morphology, quantity, size and composition of inclusions with sizes >1 µm in the steel
were analyzed by automated SEM/EDS inclusion analysis (ASPEX, FEI, USA), scanning
electron microscopy (SEM, JSM-6490LV, JEOL Ltd., Tokyo, Japan), and energy dispersive
spectroscopy (EDS, Oxford Instruments, High Wycombe, UK). The contents of total oxygen
(T.O.) and nitrogen in the steel were detected by inert gas fusion pulse-infrared absorption
spectroscopy.

Table 3. Sampling plan.

No. Process Sampling Location Sampling Method

1 RH refining Rare earth alloying Cylindrical sample (Φ70 mm × 100 mm)
2 Carrying out station Cylindrical sample (Φ70 mm × 100 mm)
3

Tundish
Impact zone Cylindrical sample (Φ70 mm × 100 mm)

4 Pouring zone Cylindrical sample (Φ70 mm × 100 mm)
Φ represents the diameter of cylindrical sample.
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Figure 1. Diagram depicting sampling of the experimental steel.

The magnetic flux density, B50, was determined at a magnetic field strength of
H = 5000 A/m, and the core losses, P15/50, at an induction of 1.5 T and 50 Hz. Mag-
netic measurements were carried out for final-annealed sheets of 30 mm in width and
100 mm in length, in both rolling and transverse directions. The measured values were
averaged to align with the Epstein method, using MPG100D equipment (Dr. Brockhaus
Messtechnik GmbH & Co. KG, Lüdenscheid, Germany).
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3. Results

The morphologies and compositions of inclusions in the steel were analyzed by
SEM and EDS. Figures 2 and 3 show the typical morphologies, compositions and surface
scanning results for inclusions in the steel during the RH refining process, with rare earth
treatment. The main types of inclusions in the steel are (La, Ce)Al2O3+CaO-Al2O3-MgO,
(La, Ce)Al2O3+CaS-(CaO-Al2O3), and CaO-Al2O3-MgO. Inclusions with (La, Ce)Al2O3 as
the core are surrounded by a CaO-Al2O3-MgO or CaO-Al2O3-MgO composite phase, and
their morphologies are spherical or ellipsoidal. Among the inclusions, the (La, Ce)Al2O3
inclusions are distributed in light, white blocks, and CaO-Al2O3-MgO inclusions are
spherical or approximately spherical.
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Figure 2. Typical morphologies and compositions of inclusions, with rare earth treat-
ment. (a) (La,Ce)AlO3+Al2O3-CaO-CaS; (b) Inner layer: (La,Ce)AlO3, Outer layer:Al2O3-CaO-
MgO; (c) (La,Ce)AlO3+Al2O3-CaO-MgO; (d) Al2O3-CaO-MgO; (e) (La,Ce)AlO3+Al2O3-MgO-CaS;
(f) (La,Ce)AlO3.

Figures 4 and 5 show the typical morphologies, compositions and surface scanning
results for inclusions in the steel at the end of the RH refining process. It was found that the
types of inclusions are still (La, Ce)Al2O3+CaO-Al2O3-MgO, (La, Ce)Al2O3+CaS+oxides,
and CaO-Al2O3-MgO. (La, Ce)Al2O3 inclusions are distributed in long strips at the edge of
the composite phase. In addition, some inclusions contain a small amount of SiO2.
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The main types of inclusions in the tundish impact zone are (La, Ce)Al2O3+CaO-
Al2O3-MgO, (La,Ce)Al2O3+CaS+oxides and CaO-Al2O3-MgO-(CaS); the typical morpholo-
gies and compositions are shown in Figure 6. Compared to the inclusions found after
the RH refining process, the morphologies of inclusions in the tundish impact zone are
mainly spherical. Figure 7 shows surface scanning results for typical inclusions. The (La,
Ce)Al2O3+CaO-Al2O3-MgO inclusions are composed of two composite phases with (La,
Ce)Al2O3 as the core, surrounded by CaO-Al2O3-MgO.
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Figures 8 and 9 show the typical morphologies, compositions and surface scanning
results for inclusions in the tundish pouring zone. The types of inclusions in the tundish
pouring zone are mainly (La, Ce)Al2O3+CaO-Al2O3-MgO, (La, Ce)Al2O3+CaS+oxides, and
MgO-Al2O3-SiO2-CaS. The (La, Ce)Al2O3 inclusions are distributed in light, white blocks.
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4. Discussion
4.1. Changes to Inclusion Types after Rare Earth Treatment

Figure 10 shows the morphologies and compositions of typical inclusions after alloying
in the RH refining process, with and without rare earth treatment. It can be seen that
without rare earth treatment, the types of inclusions in the steel after RH alloying are
mainly Al2O3-SiO2-(MnO) and Al2O3-(MgO), and some inclusions contain a small amount
of CaS and MnS. The Al2O3-(MgO) inclusions are mostly spherical, while those including
CaS and MnS have square or angular shapes. In addition, some Al2O3 inclusions aggregate
in clusters. After adding rare earth La–Ce alloys during the RH refining process, the main
types of inclusions are (La, Ce)Al2O3+CaO-Al2O3-MgO, (La, Ce)Al2O3+CaS-(CaO-Al2O3),
and CaO-Al2O3-MgO, a finding which is similar to that of Ren et al. [23,24]. Inclusions
with (La, Ce)Al2O3 as the core are surrounded by a CaO-Al2O3-MgO or CaO-Al2O3-MgO
composite phase, and the morphologies are spherical or ellipsoidal.
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Figure 10. Morphologies and compositions of inclusions, before and after rare earth treatment,
after RH alloying. (a) Al2O3-MgO; (b)MgO-Al2O3-MnO; (c) Al2O3-MgO; (d) Al2O3-MgO-MnS;
(e) (La,Ce)AlO3+Al2O3-CaO-CaS; (f) (La,Ce)AlO3+Al2O3-MgO-CaO; (g) (La,Ce)AlO3+Al2O3-MgO-
CaO; (h) Al2O3-MgO-CaO.

Figure 11 shows the morphologies and compositions of typical inclusions in the
steel before and after rare earth treatment, after the RH refining station. The majority of
inclusions at the RH station are composed of Al2O3-CaO, with some inclusions containing
a small amount of MnS and CaS. The content of Al2O3 in the inclusions is high, and their
morphologies are spherical or irregular. After rare earth treatment, the main types of
inclusions in the steel after the RH refining station are (La, Ce)Al2O3+CaO-Al2O3-MgO, (La,
Ce)Al2O3+CaS+oxides, and CaO-Al2O3-MgO. The (La, Ce)Al2O3 inclusions are distributed
at the edge of the composite phase. In addition, some of the inclusions contain a small
amount of SiO2.

Figure 12 shows the typical morphologies and compositions of inclusions in the
tundish pouring zone, before and after rare earth treatment. The results show that with-
out rare earth treatment, the inclusions in the tundish pouring zone are composed of
Al2O3-CaO-MgO-(SiO2), and their morphologies are spherical or oval. After adding rare
earth, the main types of inclusions in the steel are (La, Ce)Al2O3+CaO-Al2O3-MgO, (La,
Ce)Al2O3+CaS+oxides, and MgO-Al2O3-CaS.
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Figure 11. Morphologies and compositions of typical inclusions in the steel, before and after rare earth
treatment, after the RH refining station. (a) Al2O3-CaO; (b) Al2O3-SiO2-MnS-CaS; (c) Al2O3-CaO-CaS;
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Through the analysis of the experimental results before and after rare earth treatment
in different processes, it can be seen that rare earth treatment transforms the typical CaO-
Al2O3-MgO inclusions with rectangular, acicular, or irregular shapes, into spherical or
ellipsoidal rare earth inclusions. According to the investigations of Li et al. [17], rare earth
elements added to liquid steel at a certain temperature will first react with the non-metallic
elements O, S, etc., to form inclusions. The general formula of the chemical reaction is
as follows:

[RE] +
y
x
[M] =

1
x

RExMy(s) (1)

where [RE] represents various rare earth elements dissolved in liquid steel, [M] represents
various impurity elements dissolved in liquid steel, and (s) refers to the solid phase, with an
activity of 1. According to the change of Gibbs free energy, the different types of inclusions
can be determined. In addition to the formation sequence of inclusions in liquid steel, rare
earth inclusions can also be converted to each other, which is closely related to the amounts
of rare earth elements added. In the previous study, the author introduced the modification
of inclusions in W350 non-oriented silicon steel by rare earth Ce [25].
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Furthermore, it is generally accepted that rare earth inclusions have high melting
points, that is, higher than 1690 ◦C. The temperature of liquid steel during the RH refining
process and the continuous casting process is lower than the melting point of rare earth
inclusions. Therefore, the physical properties of rare earth inclusions essentially determine
that they can be used as the basic conditions for heterogeneous nucleation in liquid steel [26].
Whether during the RH refining process or the tundish process, the types of inclusions
in the steel changed significantly before and after rare earth treatment. With the ability
of rare earth oxides (sulfides) to form heterogeneous nuclei, the types of inclusions with
rare earth treatment are mainly rare earth composite inclusions, and most of them are (La,
Ce)Al2O3+conventional inclusions [27]. In addition, the inclusions detected after rare earth
treatment are usually composed of more than two composite phases, indicating that the
addition of rare earth elements promotes the agglomeration of inclusions.

4.2. Size Distribution of Inclusions before and after Rare Earth Treatment

Figure 13 shows the size distributions of inclusions, the proportions of inclusions
with different sizes, and the changes in average size during the production processes
of RH refining→after RH station→tundish. The morphologies, quantities and sizes of
inclusions with a size of >1 µm in the steel were analyzed by an automatic scanning electron
microscope (ASPEX). It can be seen that the number of inclusions with a size of 1.0~3.5 µm
in the steel during the RH refining process, after rare earth treatment, is increased and
their proportion is 11.11~24.07%. The average size of inclusions in the steel is 2.66 µm.
The number of inclusions in the steel increases after the RH station, and the number of
inclusions larger than 5 µm in the steel increases due to the collision of inclusions during
the RH refining process. As the pouring casting proceeds, the number of micro inclusions
with sizes of 1.0~2.5 µm in the steel decreases, while the number of inclusions with sizes of
>5 µm increases, especially in the tundish impact zone. The number density of inclusions in
the tundish pouring zone is 8.50/mm2 and their proportion is 28.57%. The size distribution
of inclusions is relatively stable.

Inclusions of less than 1 µm were difficult to observe due to their small size. Therefore,
high-magnification TEM (backscattered, JEM-2100, JEOL Ltd, Japan) observation was used
to assist in the identification of typical inclusions, through energy spectrum observation
statistics.

The carbon extraction replica test samples for TEM were prepared as samples with
sizes of 8 mm (TD)× 10 mm (RD) by wire cutting, and then roughly and finely ground. The
samples were prepared by electro-polishing at 90 mA in 10% AA (acid alcohol) electrolyte
for 120 s. The electrolyzed samples were coated with a layer of carbon film with a thickness
of approximately 30 nm, using a vacuum carbon spray instrument. After dividing the
carbon film into sizes of approximately 2 mm× 2 mm, they were placed in a 10% perchloric
acid alcohol solution for electrolytic release, and then molybdenum nets with a 3 mm
diameter were used to extract the carbon film. The samples were also prepared for TEM,
and then electropolishing and observations, with 30 fields in each sample, were performed
at different magnifications under TEM. The sizes and numbers of precipitates were analyzed
using Image-Pro Plus.

The inclusions in hot-rolled sheet were observed and counted, and 30 fields of view
were randomly selected, as shown in Figure 14.
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Figure 14. TEM morphology of micro inclusions in hot-rolled sheet, after rare earth treatment.

As illustrated in Figure 15, the content of micro inclusions (≤1 µm) in hot-rolled
sheets is 51,458.2/mm2 and their average size is 0.388 µm, before rare earth treatment.
After rare earth treatment, the content of micro inclusions (≤1 µm) in hot-rolled sheets is
24,230.2/mm2 and their average size is 0.427 µm. According to previous investigations,
when the size of micro inclusions in non-oriented silicon steel is 0.1~0.5 µm, the magnetic
properties of non-oriented silicon steel seriously deteriorate because the sizes of the micro
inclusions are close to the thickness of the magnetic domain wall. In the current study,
the number of micro inclusions in hot-rolled sheets after rare earth treatment is greatly
reduced, and the average size of the micro inclusions is also increased. The magnetic
properties of the steel with rare earth treatment are improved, which is consistent with
previous investigations [28–30]. Compared to sheet produced through the original process,
the iron loss of the 0.35 mm finished experimental sheet is reduced by 0.068 W/kg, and
the magnetic induction is increased by 0.007 T, as shown in Table 4. The iron loss of the
0.50 mm finished experimental sheet is reduced by 0.008 W/kg, and the magnetic induction
is increased by 0.004 T.
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Table 4. Electromagnetic properties of the steel.

Grade Project P1.5/50, W/kg ∆ Value (P1.5/50, W/kg) B50, T ∆ Value, (B50, T)

0.35 mm
Experiment roll after rare earth treatment 2.370 −0.068 1.679 +0.007

Original process sheet 2.438 1.672

0.50 mm
Experiment roll after rare earth treatment 2.730 −0.008 1.695 +0.004

Original process sheet 2.738 1.691

5. Conclusions

(1) The types of inclusions in the steel significantly change after rare earth treatment.
They are mainly composed of (La, Ce)Al2O3 and conventional inclusions. The morphologies
are mostly blocky and partially chain-shaped.

(2) Adding rare earth La–Ce alloys during the RH refining process results in inclu-
sions that are mainly (La, Ce)Al2O3+CaO-Al2O3-MgO, (La, Ce)Al2O3+CaS+oxides, and
CaO-Al2O3-MgO. At the end of RH refining, the inclusions are mainly (La, Ce)Al2O3+CaO-
Al2O3-MgO, (La,Ce)Al2O3+CaS+oxides, and CaO-Al2O3-MgO. The inclusions in the tundish
impact zone are mainly (La, Ce)Al2O3+CaO-Al2O3-MgO, (La, Ce)Al2O3+CaS+oxides,
and CaO-Al2O3-MgO-(CaS). The inclusions in the tundish pouring zone are mainly (La,
Ce)Al2O3+CaO-Al2O3-MgO, (La, Ce)Al2O3+CaS+oxides, MgO-Al2O3-SiO2-CaS, and Al2O3-
SiO2-CaO. After rare earth treatment during the RH refining process, the number of inclu-
sions in the steel with sizes of 1.0~3.5 µm is increased and their average size is 2.66 µm.
Due to collisions and growth, the number of inclusions with sizes greater than 4 µm in the
steel increases after the RH refining station. The number of micro inclusions with sizes of
1.0~2.5 µm in the tundish decreases, while the number of inclusions with sizes larger than
5 µm increases.

(3) Before rare earth treatment, the content of micro inclusions (≤1 µm) in hot-rolled
sheets is 51,458.2/mm2 and their average size is 0.388 µm. The content of micro inclusions
(≤1 µm) in hot-rolled sheets with rare earth treatment is 24,230.2/mm2 and their average
size is 0.427 µm. Compared to sheets produced by the original process, the magnetic
properties of the experimental sheets show that the iron loss of the 0.35 mm finished
product is decreased by 0.068 W/kg, and the magnetic induction is increased by 0.007 T.
The iron loss of the 0.5 mm finished product is decreased by 0.008 W/kg, and the magnetic
induction is increased by 0.004 T.
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