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Abstract: The yield criterion of many metallic materials differs from the von Mises yield criterion.
However, the available upper bound solutions are almost all restricted to this criterion. The objective
of the present paper was to derive an upper bound solution based on a generalized yield criterion for
evaluating the extrusion and drawing force, assuming a conical die. The solution method differs from
the conventional method used in conjunction with the von Mises yield criterion. The development of
this method is necessary, since the work function is not readily expressed as an explicit function of
strain rate invariants if the generalized yield criterion is adopted. The solution is illustrated using
numerical examples, which show the effect of the yield criterion on the limit load.

Keywords: extrusion; drawing; generalized yield criterion; upper bound; singularity

1. Introduction

The upper bound technique is often used to evaluate the loads required for performing
metal formation processes. The general theorem is available for quite a large class of
constitutive equations [1]. However, its application is almost exclusively restricted to the
von Mises yield criterion. In this case, the work function introduced in [1] can readily be
expressed as an explicit function of the quadratic invariant of the strain rate tensor.

Pioneering solutions for axisymmetric extrusion and drawing through conical dies
have been provided in [2,3]. These solutions are based on simple radial kinematically
admissible velocity fields, without parameters for minimization. These fields include two
spherical velocity discontinuity surfaces between the plastic region and two rigid blocks
moving along the axis of symmetry. The paper in [4] extended these solutions [2,3], assum-
ing that these velocity discontinuity surfaces are not spherical. The equations determining
these surfaces may include several parameters for minimization. Paper [5] clarified that
an additional rigid region may appear near the friction surface. As a result, an additional
velocity discontinuity surface appears. Paper [6] employed the kinematically admissible
velocity field proposed in [4] to account for the singular behavior of the real velocity field
near the maximum friction surfaces. Note that this singular behavior is valid for a large
class of yield criteria, not only for the von Mises yield criterion [7]. A continuous kinemat-
ically admissible velocity field for axisymmetric extrusion and drawing through conical
dies was proposed in [8].

The solutions above were extended to non-conical dies in [9–13]. The mean yield
criterion was adopted in [13]. A mathematical feature of this criterion is that the work
function introduced in [1] can readily be expressed as an explicit function of the principal
strain rates. Therefore, the use of this criterion in conjunction with the upper bound
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theorem does not differ from the use of the von Mises yield criterion. Meanwhile, many
yield criteria that adequately describe the behavior of various materials do not exhibit such
a mathematical feature. Particular forms of such yield criteria were proposed in [14,15].

The extrusion and drawing processes have also been extensively used in methods other
than the upper bound theorem. The effect of temperature and speed on the drawing force
in the wire drawing process was studied in [16]. Automatic optimization techniques were
employed in [17] to determine the optimal die angle in wire drawing. The relationships
between the various kinematic parameters in plane-strain drawing were derived in [18].
The effect of the die geometry on the drawing force was studied in [19], using three-
dimensional finite element simulation. Finite element simulation was been used in [20–22]
to show the influence of various parameters on the wire-drawing process. An experimental
study on the effect of elastic deformation in the material entering the plastic region on the
drawing force was conducted in [23].

The present paper adopts the yield criterion proposed in [14] to reveal the effect of a
parameter involved in this criterion on the extrusion and drawing forces. Moreover, the
effect of process parameters on these forces is shown for several values of this parameter.
These values correspond to BCC and FCC metals. The solution’s novelty is that this yield
criterion has not previously been used in conjunction with the upper bound theorem.
Moreover, the solution accounts for the singular behavior of the real velocity field near
maximum friction surfaces [7].

2. Statement of the Problem

A schematic diagram of extrusion and drawing processes through a conical die is
shown in Figure 1. The initial radius of the rod is R0, and its final radius is R1. The die
angle is 2α. In addition, Fd = 0 in the case of extrusion, and Fe = 0 in the case of drawing.
The velocity of the rod entering the plastic region is V0. The velocity of the rod existing
from the plastic region is V1. Estimating Fd in the case of drawing and Fe in the case of
extrusion is required. It is natural to use the spherical coordinate system (ρ, θ, ϕ) shown
in Figure 1. The solution is independent of ϕ.
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The material is assumed to be rigid and perfectly plastic. An essential difference with
the available solutions is that it obeys the generalized yield criterion proposed in [14]. In
terms of the principal stresses σ1, σ2, and σ3, this criterion reads

(σ1 − σ2)
n + (σ2 − σ3)

n + (σ1 − σ3)
n = 2σn

0 , (1)

where σ0 is the yield stress in tension and n is constant. The yield criterion in the form of (1)
is based on the assumption

σ1 ≥ σ2 ≥ σ3. (2)

The plastic flow rule associated with the yield criterion (1) is

ξ1 = χn
[
(σ1 − σ2)

n−1 + (σ1 − σ3)
n−1
]
,

ξ2 = −χn
[
(σ1 − σ2)

n−1 + (σ3 − σ2)
n−1
]
,

ξ3 = χn
[
(σ3 − σ2)

n−1 − (σ1 − σ3)
n−1
]
.

(3)

Here ξ1, ξ2, and ξ3 are the principal strain rates and χ ≥ 0. Additionally, the principal
directions of the stress and strain rate tensors coincide. It is seen from (1) that the shear
yield stress is

k =
σ0

n√1 + 2n−1
. (4)

The die surface is rough. The friction law is assumed to be τf = mk, where τf is the
friction stress and 0 ≤ m ≤ 1. Using (4), one can represent this law as

τf =
m

n√1 + 2n−1
σ0 (5)

for θ = α.

3. Kinematically Admissible Velocity Field

The boundary value problem is axisymmetric. Therefore, it is sufficient to consider a
generic meridian plane. In the remainder of this paper, the velocity discontinuity surfaces
will be referred to as the velocity discontinuity lines, meaning the intersections of the
generic meridian plane and the velocity discontinuity surfaces.

The kinematically admissible velocity field proposed in [4] can be combined with
any pressure-independent yield criterion. The present section outlines the basic equations
required when using the upper bound theorem. It is convenient to introduce the following
dimensionless quantities:

µ =
ρ2

R2
0

and λ =
R2

0
R2

1
. (6)

The general structure of the kinematically admissible velocity field is shown in Figure 2.
The material above line AB and below line A’B’ is rigid. These rigid blocks move along
the axis of symmetry. The velocity field in the plastic region ABB’A’ must be compatible
with these motions. It is assumed that the only non-vanishing velocity component in the
plastic region is the radial velocity in the spherical coordinate system (Figures 1 and 2).
This velocity component is represented as

uρ = −V0u(θ)
µ

, (7)
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where u(θ) > 0 is an arbitrary function of θ. It is straightforward to check that the velocity
field chosen satisfies the equation of incompressibility. In particular, the non-vanishing
strain rate components in the spherical coordinate system are

ξρρ =
2V0u(θ)
R0µ3/2 , ξθθ = ξϕϕ = −V0u(θ)

R0µ3/2 , ξρθ = − V0

2R0µ3/2
du
dθ

. (8)
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Consider the rigid/plastic boundary AB (Figure 2). Let n and τ be unit vectors normal
and tangent to this boundary, respectively. The vector n makes angle γ with the radial
coordinate, measured from the coordinate line anticlockwise. In addition, eρ and eθ are
the unit base vectors of the spherical coordinate system. It follows from the geometry of
Figure 2 that

n = cos γeρ − sin γeθ and τ = sin γeρ + cos γeθ. (9)

The velocity vectors in the rigid and plastic regions are given by

ur = −V0(cos θeρ − sin θeθ) and up = uρeρ, (10)

respectively. The continuity of the normal velocity across the velocity discontinuity line
demands ur · n = up · n on AB. Using (7), (9), and (10), one can transform this equation to

u(θ)
µ
− cos θ − tan γ sin θ = 0. (11)

It follows from the geometry of Figure 2 and (6) that

1
2µ

dµ

dθ
= tan γ. (12)
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Eliminating tan γ in (11) employing (12), one can obtain

dµ

dθ
=

2
sin θ

(u− µ cos θ). (13)

Since ρ = R0/sin α and θ = α at A, it follows from (6) that

µ =
1

sin2 α
(14)

for θ = α. The solution of Equation (13) satisfying boundary condition (14) is

µ = µAB(θ) =
1

sin2 θ

2
θ∫

α

u(η) sin ηdη + 1

. (15)

This curve may have a common point with the axis of symmetry only if

α∫
0

u(θ) sin θdθ =
1
2

. (16)

In the following, it is assumed that the function u(θ) is chosen to satisfy this condition.
Then, applying l’Hospital’s rule, one can find from (15) that

u = µ (17)

at θ = 0.
The amount of velocity jump across AB is required to apply the upper bound theorem.

By definition, this amount is given by

[u] =
∣∣(ur − up

)
· τ
∣∣. (18)

Substituting (7), (9), (10), and (13) into (18) yields

[u] = V0
sin θ

cos γ
. (19)

An infinitesimal surface element of AB is given by

dS = ρ

√(
dρ

ρdθ

)2
+ 1 sin θdθdϕ. (20)

Employing (6) and (12), one can transform this equation into

dS = R2
0

µ sin θ

cos γ
dθdϕ. (21)

The velocity discontinuity line A′B′ (Figure 2) can be treated similarly. In particular,
the equation of this line is

µ = µA′B′(θ) =
1

λ sin2 θ

2
θ∫

α

u(η) sin ηdη + 1

. (22)

The kinematically admissible velocity field is classified using three parameters: λ, α,
and V0. However, the latter is immaterial, because the material model is rate independent.
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4. Estimation of Extrusion and Drawing Forces

The upper bound theorem for an arbitrary yield criterion was proven in [1,24]. The
theorem [1] involves the work function, which is a function of the invariants of the strain
rate tensor. In the case of the von Mises yield criterion, the work function is a linear
function of the quadratic invariant. This simplicity is the reason for using the von Mises
yield criterion in almost all upper bound solutions. In the case of the yield criterion (1), the
work function cannot readily be expressed as an explicit function of the invariants, except
for some particular n-values. Therefore, one must consider Equation (3) together with a
kinematically admissible velocity field.

The plastic work rate in the plastic region is

WV = 2π

α∫
0

ρAB(θ)∫
ρA′B′(θ)

(ξ1σ1 + ξ2σ2 + ξ3σ3)ρ
2 sin θdρdθ. (23)

Here ρ = ρAB(θ) and ρ = ρA′B′(θ) are the equations of the velocity discontinuity lines
AB and A′B′, respectively (Figure 2). Using (6), one can rewrite this equation as

WV

πR2
0V0σ0

=
1
σ0

α∫
0

µAB(θ)∫
µA′B′ (θ)

(ε1σ1 + ε2σ2 + ε3σ3) sin θdµdθ, (24)

where
ε1 = ξ1

R0

V0
, ε2 = ξ2

R0

V0
, and ε3 = ξ3

R0

V0
. (25)

The limits µAB(θ) and µA′B′(θ) are given by Equations (15) and (22). Equation (8)
allows for the principal strain rates to be calculated. Then, it follows from (25) that

ε1 =
1

2µ3/2

(
Λ +

√
9Λ2 + Λ2

1

)
, ε2 =

1
2µ3/2

(
Λ−

√
9Λ2 + Λ2

1

)
, ε3 = −u(θ)

µ3/2 , (26)

where

Λ(θ) = µ cos θ +
sin θ

2
dµ

dθ
and Λ1(θ) =

sin θ

2
d2µ

dθ2 +
3 cos θ

2
dµ

dθ
− µ sin θ. (27)

Introduce the following stress variables:

s12 =
σ1 − σ2

σ0
, s13 =

σ1 − σ3

σ0
, and s32 =

σ3 − σ2

σ0
. (28)

It is evident that
s12 − s32 − s13 = 0. (29)

Equation (1) becomes
sn

12 + sn
23 + sn

13 = 2. (30)

Equations (3), (25), and (28) yield

η =
ε1

ε2
= −

sn−1
12 + sn−1

13

sn−1
12 + sn−1

32

. (31)

On the other hand, the first two equations in (26) result in

η(θ) =
Λ +

√
9Λ2 + Λ2

1

Λ−
√

9Λ2 + Λ2
1

. (32)
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Equations (31) and (32) combine to give

−
sn−1

12 + sn−1
13

sn−1
12 + sn−1

32

=
Λ +

√
9Λ2 + Λ2

1

Λ−
√

9Λ2 + Λ2
1

. (33)

Equations (29), (30), and (33) constitute the system for determining s12, s13, and s32 as
functions of θ. In particular,

s12 = n

√
2

1 + An + (1− A)n , s32 = As12, and s13 = s12 − s32, (34)

where A(θ) is determined from the equation

ηAn−1 + (1− A)n−1 + 1 + η = 0. (35)

This equation should be solved numerically. The principal stresses are determined
from (28). Then, upon substitution of these stresses, (6), and (26) into (24), one finds

WV

πR2
0V0σ0

=
ln λ

2

α∫
0

(s13η − s32)

[
Λ−

√
9Λ2 + Λ2

1

]
sin θdθ. (36)

This integral should be evaluated numerically.
The plastic work rate dissipated at the velocity discontinuity surface AB (Figure 2) is

Wd = k
∫
S

[u]dS, (37)

where [u] and dS are given by (19) and (21), respectively. Using these equations and (4),
one can rewrite (37) as

Wd

πR2
0V0σ0

=
2

n√1 + 2n−1

α∫
0

µ
sin2 θ

cos2 γ
dθ. (38)

In this equation, γ can be eliminated using (12). Then, the integral involved in (38) can
be evaluated numerically.

The plastic work rate dissipated at the velocity discontinuity surface A′B′ (Figure 2) is
calculated similarly. In particular, since V0R2

0 = V1R2
1, this work rate equals Wd.

The plastic work rate dissipated at the friction surface is

W f = τf

∫
S

|[u]|dS, (39)

where [u] equals the radial velocity at θ = α and dS = ρ sin αdϕdρ. Using (5), (6), and (7),
one can rewrite (39) as

W f

πR2
0V0σ0

=
m n√1 + 2n−1 sin αu(α)

3

1/sin2 α∫
1/(λ sin2 α)

dµ

µ
=

m sin αu(α) ln λ
n√1 + 2n−1

. (40)

The virtual work-rate principle for a continuum yields

FeV0 = WV + 2Wd + W f and FdV1 = WV + 2Wd + W f (41)
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for extrusion and drawing, respectively. Using (36), (38), (40), and (41), and employing the
upper bound theorem [24], one can derive

fu =
ln λ

2

α∫
0

(s13η − s32)

[
Λ−

√
9Λ2 + Λ2

1

]
sin θdθ +

4
n√1 + 2n−1

α∫
0

µ
sin2 θ

cos2 γ
dθ +

m sin αu(α) ln λ
n√1 + 2n−1

. (42)

Here fu is an upper bound on the dimensionless extrusion force, defined as
fe = Fe/

(
πR2

0σ0
)
. Since V0R2

0 = V1R2
1, it is straightforward to show that fu is also

an upper bound on the dimensionless drawing force defined as fd = Fd/
(
πR2

1σ0
)
.

It remains to assume u(θ) or µ(θ). It is more convenient to specify µ(θ) and find
u(θ) from (13). It is known that the velocity field is singular near the friction surface if
m = 1 [7]. In this case, the function must contain a term of order O

[
(α− θ)3/2

]
as θ → α .

The function proposed in [6] is

µ(θ) =
1

sin2 α
+ b(α− θ)3/2. (43)

This function satisfies (14) at any value of b. It follows from (13) and (43) that

u(θ) = −3b
4

√
α− θ sin θ +

cos θ

sin2 α
+ b cos θ(α− θ)3/2. (44)

This function satisfies (16) at any value of b. Equations (43) and (44) allow for the
integrands and the last term in (42) to be calculated. The right-hand side of this equation
should be minimized with respect to b, to find the best upper bound limit load based on
the kinematically admissible velocity field chosen.

If b→ 0 , the kinematically admissible velocity field chosen reduces to that used in [3].
In this case, the upper bound limit load is determined from (42) with no minimization.
Its value coincides with the solution [3], which confirms the correctness of the derivation
of (42).

A rigid region may appear near the friction surface if the angle α is large [5]. This
new rigid plastic boundary is a velocity discontinuity line. The equation of this line is
θ = β, where

β ≤ α (45)

Equation (42) is valid, but α should be replaced with β, and it is necessary to use m = 1.
As a result,

fu =
ln λ

2

β∫
0

(s13η − s32)

[
Λ−

√
9Λ2 + Λ2

1

]
sin θdθ +

4
n√1 + 2n−1

β∫
0

µ
sin2 θ

cos2 γ
dθ +

sin βu(β) ln λ
n√1 + 2n−1

. (46)

It is also necessary to replace α with β in (43) and (44). The right-hand side of (46)
should be minimized with respect to b and β, to find the best upper bound limit load based
on the kinematically admissible velocity field chosen. Equation (45) should be taken into
account in the course of minimization.

The main output of the solution is the dimensionless extrusion or drawing force. In
addition, the solution determines whether or not a rigid region appears near the friction
surface. If it does, the other important output parameter is the angle β. The essential input
parameters are λ, α, n, and m.

5. Numerical Examples

Using numerical integration and minimization, one can estimate the extrusion and
drawing force from (42) or (46). The present section provides several numerical examples.
A comprehensive parametric analysis has not been performed, because of the many param-
eters required. Moreover, using commercially available software, it is straightforward to
carry out the numerical operations above for any given set of parameters.
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5.1. Drawing

In the case of drawing, both α and m are small. Typical values of these and other
process parameters are provided, for example, in [25]. The dependence of the dimensionless
drawing force on n at several values of α is depicted in Figure 3. These calculations were
carried out using (42) at m = 0.05 and λ = 1.07. Figure 3 demonstrates the effect of the
yield criterion on the drawing force. Figures 4 and 5 demonstrate the effect of α on this force
at λ = 1.07 and several n-values. These calculations were carried at m = 0.05 and m = 0.15,
respectively. Note that n = 2 corresponds to the von Mises yield criterion. Moreover, the
yield criterion (1) closely approximates the yield criteria for BCC and FCC metals if n = 6
and n = 8, respectively [26]. Tresca’s yield criterion is approaching when n→ ∞ .
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5.2. Extrusion

In the case of extrusion, the angle α may be so large that a rigid region appears near
the friction surface [5]. Therefore, Equation (46) should be used to determine the extrusion
force. The dependence of the dimensionless extrusion force on n at several values of λ
is depicted in Figure 6. This figure demonstrates the effect of the yield criterion on the
extrusion force. The inequality in (45) determines the range of validity of this solution if
m = 1 at the friction surface. The variation of β with n is depicted in Figure 7.
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Figure 7. Variation of β with n at several extrusion ratios, λ. The value of n controls the shape of the
yield surface. The angle β determines the rigid plastic boundary between the plastic region and the
rigid region appearing near the friction surface.

6. Discussion

A new upper bound solution for extrusion and drawing through a conical die has been
found. Its outstanding feature over the available upper bound solutions is that the yield
criterion proposed in [14] has been adopted. A difficulty with using this yield criterion
in conjunction with the upper bound theorem is that the plastic work rate is not readily
expressed as an explicit function of the strain rate invariants. The solution accounts for
the singular behavior of the real velocity field near maximum friction surfaces and the
possibility of the appearance of a rigid region near the friction surface.

Numerical integration and minimization are required to evaluate the extrusion (or
drawing) force using Equations (42) or (46). The latter accounts for a rigid region near the
friction surface, and the former does not.

The numerical results have been collected in Section 5. These results illustrate the effect
of the yield criterion on the limit load. Particular values of the exponent n in Figures 4 and 5
correspond to the von Mises yield criterion (n = 2), BCC metals (n = 6), FCC metals (n = 8),
and a nearly Tresca yield criterion (n = 100). Figure 7 shows the effect of the yield criterion
on the size of a rigid region that appears near the friction surface.
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7. Conclusions

The main achievement of the present paper is that it provides a procedure for find-
ing upper bound solutions in the case of arbitrary pressure-independent yield criteria
and applies this procedure to evaluate the extrusion and drawing forces in the case of
conical dies.
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