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Abstract: The effects of annealing time on microstructure, mechanical properties, and corrosion
resistance of Ti-0.3Mo-0.8Ni (TA10) titanium alloy hot-rolled sheets are investigated. With the increase
in annealing time, the α→ β phase transition occurs, and the grain size grows gradually. The strength
deteriorates, and elongation increases. The grains grow up, the number of grain boundaries decreases,
and intergranular corrosion decreases. With the increase in the annealing time, the corrosion kinetics
and thermodynamics are enhanced. When annealed at 780 ◦C for 2 h, TA10 alloy sheets exhibit the
best comprehensive properties, and its microstructure is composed of fine equiaxed α phase. The
mechanical properties and corrosion resistance are improved.

Keywords: titanium alloy; annealing; microstructure evolution; mechanical properties; corrosion
resistance

1. Introduction

With the development of the country and the progress of society, all walks of life have
higher requirements for the performance of products, resulting in demand for new materials.
Compared with other metals, titanium and titanium alloy, due to their high strength,
corrosion resistance, heat resistance, and other excellent performance characteristics, are
widely used in aerospace, vehicle manufacturing, high-precision equipment, marine field,
biomedicine, and other fields [1–7]. The molybdenum and nickel elements added in the
Ti-0.3Mo-0.8Ni (TA10) titanium alloy are relatively low price in the market and show good
comprehensive performance, which can replace the expensive Ti-0.2Pd (TA9) alloy. So, it is
widely used in hydrochloric acid steam heat exchangers, reactors, chlor-alkali industrial
brine systems, and vacuum salt-making devices [8–10].

Luo et al. [11] studied transformation characteristics of temperature and phases within
Ti-6Al-4V (TC4) aeroengine drum in hot forging and air-cooling procedures. It shows a
simple and effective modeling approach to predict the transformation characteristics of
temperature and phases during TC4 drum hot forging and air-cooling processes. Davari
et al. [12] studied the effects of annealing temperature and quenching medium on the
microstructure, mechanical properties, and fatigue behavior of TC4 alloy. The results show
that with the increase in annealing temperature, the length, width, and volume fraction of
the primary α phase decrease significantly, and the contents of the transformed β phase
and residual β phase increase significantly. In addition, the α colony size and effective
slip length decrease significantly, leading to an increase in hardness and tensile strength.
Wang et al. [13] studied the microstructure evolution and static recrystallization of the
hot-rolled Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb (TC21) titanium alloy with equiaxed structure
during annealing. The results show that uniform and fine microstructure can be obtained
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for hot-rolled TC21 titanium alloy when the annealing temperature is 880 ◦C. Vrancken
et al. [14] studied the heat treatment structure and mechanical properties of TC4 prepared
by selective laser melting and found that the effects of several heat treatments on the
microstructure and mechanical properties of laser sintering TC4 were studied. The effects
of these treatments on the hot forging and subsequent rolling annealing of the original
equiaxed TC4 were compared.

Sandenbergh et al. [8] studied the use of Tafel back extrapolation to clarify the influence
of Ru and Pa elements on the corrosion behavior of titanium in concentrated hydrochloric
acid. It was found that the Ru and Pa elements stimulated the cathodic reaction but that
the anodic behavior of the titanium was unchanged, and the corrosion of the titanium
was increased by the small amount of alloying as the catalysis of the hydrogen reduction
reaction was not strong enough to cause passivity of the titanium under these conditions.
Su et al. [15] studied the corrosion behavior of annealing Ti-6Al-3Nb-2Zr-1Mo (Ti80) alloy in
3.5wt. % NaCl and 5 M HCl solution. The results show that with the increase in annealing
temperature, the corrosion resistance of Ti80 alloy will be improved due to the higher
volume fraction of β phase and secondary α phase. β phase has higher corrosion resistance
than the α phase because of the higher contents of Nb, Mo, and Zr in the β phase. Meng
et al. [16] studied the effects of annealing temperature on the microstructure and corrosion
behavior of Ti80 alloy in a hydrochloric acid solution. The results show that Ti80 alloy has
similar corrosion behavior after being annealed at different temperatures. With the increase
in annealing temperature from 800 ◦C to 960 ◦C, the corrosion rate increases, and the lowest
corrosion rate occurs when the temperature reaches 1040 ◦C. Wang et al. [17] studied the
corrosion behavior of pure titanium and its alloys in fluorinated sulfuric acid. The results
show that in TA10 alloy, the addition of Ni can accelerate the cathodic reaction, while the
addition of Mo can inhibit the anodic reaction, which is the reason for the excellent corrosion
resistance of TA10 alloy, but the depletion of Mo and Ni may lead to an unstable system.

At present, compared with previous studies, TA10 alloy is mainly smelted in vac-
uum arc remelting (VAR) furnaces, but there are few studies on TA10 alloy smelted in
Electron Beam Cold Hearth Melting furnaces (EB furnaces). The effects of annealing
time on microstructure, mechanical properties, and corrosion properties of TA10 alloy are
rarely studied, and the actual production is generally based on experience to choose the
annealing time.

TA10 alloy ingots were produced by EB technology, then hot rolled and annealed.
The influences of annealing time on the microstructure evolution and properties of TA10
alloy sheets were investigated to provide theoretical guidance and a scientific basis for the
formulation of the corrosion-resistant titanium alloy annealing process.

2. Experimental Materials and Methods

The EB furnace smelting process has a shorter smelting cycle and requires only one
smelting, so this method is chosen for refining TA10 titanium ingot. At 900 ◦C, the ingot
with a thickness of 200 mm was hot-rolled to a thickness of 3 mm by 5 rough passes and
7 finished passes.

Table 1 shows the chemical composition of titanium alloy ingot measured by PerkinElmer
8300 inductively coupled plasma (ICP) spectrogenerator (Error range: ±0.5). Figure 1a
shows the test results of its β transformation temperature by differential scanning calorime-
try (DSC) and the first derivative of the DSC curve (DDSC). The temperature of the β
transformation of the TA10 alloy is 913.81 ◦C (Error range: ±0.5). Then, the hot-rolled TA10
alloy sheets were annealed at 780 ◦C for 0.5, 1, 2, and 4 h.

Table 1. Chemical composition of TA10 ingot (wt. %).

Ti Mo Ni Fe H N C O

Bal. 0.282 0.769 0.078 0.001 0.016 0.021 0.052
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Figure 1. (a) DSC and DDSC curve of TA10 alloy; (b) experimental process.

TA10 alloy sheets were cut into 10 × 10 × 3 mm3 (Error range: ±0.3) metallographic
samples, sanded, and mechanically polished with Kroll reagent (HF:HNO3:H2O = 2:3:15),
and then the metallographic structure of the TA10 alloy sheets was observed by Nikon
ECLIPSE MA200 optical microscope. Phase analysis of the TA10 alloy sheets was performed
by a PANalytical Empyrean X-ray diffractometer (XRD) with Cu target Kα radiation at
a scanning rate of 10◦/min. The unidirectional tensile test was carried out by SHT4305
microcomputer electro-hydraulic servo universal testing machine, and the tensile rate was
10 mm/min. Figure 1b shows the experimental process and the size of the tensile sample
and metallographic sample. The tensile sample was a dumbbell shape, and the size was set
in accordance with GB/T 228.1-2010. The fracture morphology of the sample was analyzed
by ZEISS EVO18 scanning electron microscope. The Vickers hardness of the TA10 sheets
was measured by HMV-G21S Vickers hardness tester with a load of 100 g and a loading time
of 15 s. Each sample was tested seven times, and the final hardness values were the average
value after removing the highest and lowest values. The electron backscattered diffraction
(EBSD) test was carried out by a HitachiS-3400N scanning electron microscope. The sample
was polished first, and then the stress layer was removed after 3 h of vibration polishing.

The electrochemical corrosion sample was cut into 10 × 10 × 3 mm3 (Error range:
±0.3) by an electric spark wire cutting machine, and the 10 × 10 mm2 surface was used
as the working surface. The working surface was polished to ensure that the surface was
bright and without scratches.

The open-circuit potential (OCP), polarization curve, and impedance graph test in this
experiment were all completed in the three-electrode system electrochemical workstation,
in which the sample was the working electrode. An amount of 3.5% NaCl was used as
the corrosion solution. After these samples were put into the working area, the stability
time was set at 1800 s; then, we conducted the OCP test. The impedance graph test was
conducted after 1800 s, and finally, the polarization curve test was conducted after 3600 s.
The OCP test time was 3600 s. The impedance test time was 1800 s, the polarization curve
test potential ranged from −1.5 V to 1.5 V, and the scanning rate was 0.001 V/s. Although
1 mV/s is adopted in this stage of the experimentations, it is remarked that this selection is



Metals 2023, 13, 566 4 of 18

based on the fact that no substantial distortions were provided in the polarization curves
obtained. In this sense, it is worth noting that potential scan rate has an important role in
order to minimize the effects of distortion in Tafel slopes and corrosion current density
analyses, as previously reported [18–21].

3. Results and Discussions
3.1. Microstructure of TA10 Alloy

Figure 2 shows the microstructure of hot-rolled TA10 alloy sheets. As shown in
Figure 2a,b, the microstructure is dominated by α phase (gray area) with a small amount
of β phase (black bar area) diffused. The calculation results of Image Pro software show
that the volume fraction of the α phase is 84.7%. The structure of the α phase is dominated
by crisscross strips with a length–width ratio greater than 10 without obvious regularity.
Figure 2c shows the scanning electron microscope (SEM) microstructure of the rolling
surface. The gray-black region is the α phase, and the gray-white thin bands are the β
phase, which is dispersed in the α phase.
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(c) SEM.

Figure 3 shows the microstructure of the cross-section of TA10 alloy annealed at 780 ◦C
for different annealing times. Figures 3a and 4a show the microstructure of the cross-section
of TA10 alloy sheets after annealing at 780 ◦C for 0.5 h. It can be observed that there are
still some rolling streamline and elongated α phases, indicating that there are still obvious
deformation structures and obvious plastic deformation characteristics in the TA10 alloy.
The grain size of the primary α phase was not uniform, and the β phase was dispersed
among the primary α phases. In addition, a part of the primary α phase with an elliptic
shape can be clearly observed in the microstructure, which indicates that a certain degree
of recrystallization has occurred. Figures 3b and 4b show the microstructure of the cross-
section of TA10 alloy sheets after annealing at 780 ◦C for 1 h. It can be observed that the
microstructure is composed of evenly distributed equiaxed α phase and a small amount of
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intergranular β phase. The results show that β phase content gradually decreased and α
phase content gradually increased. The grain size of the equiaxed α phase is different, and
the content of the α phase is 88.63% at an annealing temperature 780 ◦C for 1 h. Compared
with the hot rolling microstructure, it increased by 3.88%. The thickness of sheets α phase
in a hot rolling state widened from 1.17 µm to 4.14 µm when annealed at 780 ◦C for 0.5 h
and tended to spheroidize gradually. The microstructure of annealing at 780 ◦C for 2 h is
shown in Figures 3c and 4c. It can be seen from Figure 4e that it is composed of an equiaxed
α phase and intergranular β phase. After calculation, the grain size of the equiaxed α phase
is 5.35 µm and the content of α phase is 92.73%. Compared with holding for 1h, the average
grain size increases, and the size of the equiaxed α phase tends to be uniform. Figures 3d
and 4d show the microstructure of the cross-section of TA10 alloy sheets after annealing at
780 ◦C for 4 h. It can be seen from Figure 4e that the size of equiaxed α phase grain increases
significantly, and the number of equiaxed small grains decreases, with the average grain
size of 9.63 µm, indicating that the degree of recrystallization increases, accompanied by the
absorption of small grains by large grains, and obvious grain coarsening occurs. The results
show that when the annealing temperature is 780 ◦C, the driving force of recrystallization
increases with the increase in annealing time, and the α and β grains have sufficient time
for recrystallization. Therefore, the size of the equiaxed α phase gradually increased, and
the size of the β phase dispersed between α phases increased. Static recrystallization takes
place. The average grain size of the equiaxed α phase is 5.35 µm, and the α phase content
is 93.18%.
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Figure 5 shows the surface scanning energy spectrum of the cross-section of TA10 alloy
annealed at 780 ◦C × 2 h. Compared with Figure 5a,b, it can be seen that the Ti element
is uniformly distributed in the microstructure of TA10 alloy. The α and β phases in the
structure are mainly composed of Ti element atoms. Comparing with Figure 5a,c, we can
see that microscopically, Mo elements are concentrated at the grain boundaries of the α
phase. Compared with Figure 5d, the distribution of Ni elements is the same as that of Mo
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elements. This phenomenon of element segregation is due to the static recrystallization
of the alloy annealed at 780 ◦C—2h; however, there are some residual β phases between
equiaxed α grains, and both Mo and Ni elements are β phase stable elements, so there is
segregation of Mo and Ni elements between grains. The segregation of this element will
affect the mechanical properties and corrosion resistance of TA10 alloy. Figure 6 shows the
possible microstructure evolution of different annealing times at 780 ◦C. As can be seen
from the figure, the microstructure under hot rolling conditions gradually changes from a
long strip with a length–width ratio greater than 10 to an equiaxed shape through different
annealing times. With the increase in annealing time, the transformation process can be
roughly divided into three parts: incomplete recrystallization, complete recrystallization,
and grain growth. The recrystallization driving force is enhanced, and the phenomenon of
large grains absorbing small grains occurs when the annealing time is too long. With the
increase in annealing time, the volume fraction of α phase decreases with the increase in
the β phase dispersed between α phases.
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Figure 7a shows the XRD patterns of TA10 alloy sheets at 780 ◦C for different annealing
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decreases with the extension of annealing time. By using Jada software calculation, the peak
difference of 780 ◦C × 4 h was obviously smaller than other annealing processes, indicating
that the grain coarsening and growth were consistent with the above metallographic
structure. Figure 7b depicts that When annealed at 780 ◦C for 0.5 h, it has the highest
β-phase content; it may be that the β phase is not decomposed into α phase in time due to
the short annealing time. The peak intensity ratio (Iβ/Iα) decreases with the increase in
annealing time, mainly due to the β→ α phase transformation in sufficient time.
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The results show that the equiaxed α phase increases gradually with the increase in
annealing time. Due to the α→β phase transformation, the grain size gradually decreases.
With the increasing annealing time, the β phase gradually grows. When annealed at
780 ◦C for 2 h, the microstructures of TA10 alloy sheets are the most uniform, and the
microstructure is basically composed of fine equiaxed α phase.

3.2. Mechanical Properties of TA10 Alloy

Figure 8a shows the tensile strength, yield strength, and elongation of TA10 alloy
sheets at different annealing times. It can be seen from Figure 8 that the tensile strength of
the sample annealed at 780 ◦C for different annealing times is lower than that of hot rolled,
but the plasticity is higher than that of the hot rolled state. With the increase in annealing
time, the tensile strength decreases, and the plasticity increases gradually. The reason
for this phenomenon is because of the increase in annealing time; the recrystallization
driving force is further enhanced. So, the degree of recrystallization is enhanced. The
microstructure is equiaxed α phase. Compared with the microstructure of hot-rolled, the
microstructure becomes more uniform and compact, the grain is more complete, and the
degree of work hardening is eliminated to a certain extent. Figure 8b shows the stress–strain
curves of TA10 alloy at 780 ◦C for different annealing times. The true stress–strain curves
of all TA10 alloys show the characteristics of elastic-plastic stress–strain curves. Elastic
deformation occurs first, and there is the obvious yield on the curve, and then uniform
plastic deformation occurs under continuous external force loading. The tensile strength of
specimens obtained from different annealing processes is lower than that of the hot-rolled
state, while the plasticity is obviously improved, in which the elongation increases from
12.0% to 29.7%. With the extension of the annealing time, the strength decreased, elongation
increased, and plasticity increased. The reasons are that the equiaxed α structures of the
annealed sheets become more uniform and denser, the grains are more complete, and the
internal stress is eliminated [12,22]. Through the analysis of comprehensive performance,
when annealed at 780 ◦C for 2 h, and the tensile strength, yield strength, and elongation are
527.28 MPa,495.7 MPa, and 28.4%, respectively.
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Figure 9 shows the fracture morphology of TA10 alloy hot-rolled sheets tensile speci-
mens in RD direction under different annealing times (0.5–4 h) at 780 ◦C. It can be seen from
Figure 9 that the fractures of the sample with different annealing times are composed of
dimples of different sizes, all of which belong to ductile fracture. With the extension of the
annealing time, the dimples at the fracture gradually become larger, and the larger dimples
contain a few small dimples. Furthermore, the dimples gradually tend to be equiaxed
in size. There were more small dimples at 0.5 h and 1 h, while large dimples and small
dimples were interlaced and overlapped at 2 h. Figure 9 shows that the fracture dimples
of 780 ◦C × 1 h are larger than those of 780 ◦C × 0.5 h, and the larger dimples contain a
few small dimples, which are typical ductile fracture morphology. When the annealing
time is 2 h and 4 h, the microstructure of the fracture is composed of many large and
deep dimples, and the large dimples contain a few small dimples, which is typical ductile
fracture morphology. Compared with the fracture dimples of these four-annealing time,
the dimples of 780 ◦C × 4 h is the largest. The average size of fracture dimples is 11.52 µm
at 780 ◦C × 4 h.
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Figure 9. Fracture morphology of TA10 annealed sheets: (a) hot-rolled, (b) 0.5 h, (c) 1 h, (d) 2 h,
(e) 4 h, and (f) average size of dimples.

Figure 10 shows the Vickers hardness of TA10 alloy sheets at 780 ◦C for different
annealing times. As can be seen from Figure 10, TA10 alloy sheets with an annealing
process of 780 ◦C × 0.5 h had the highest Vickers hardness of 173.75 HV0.1. With the rise of
annealing time, the Vickers hardness value decreases gradually (the Vickers hardness value
for 1 h, 2 h, and 4 h: 161.26 HV0.1, 154.19 HV0.1, and 150.33 HV0.1, error range: ±8 HV0.1).
The reason for the lower Vickers hardness is that with the extension of the annealing process,
the degree of recrystallization increases, and the impact of work hardening gradually
decreases. At the same time, the α-β phase transformation occurs, the area fraction of α
phase decreases, and the hard α phase decreases, so the hardness decreases. By comparing
the Vickers hardness value with the tensile properties mentioned above, it can be seen that
with the increase in annealing time, the Vickers hardness value decreases gradually, which
is consistent with the change law of tensile and yield strength, and contrary to the change
law of elongation.
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Figure 10. Vickers hardness of TA10 alloy.

3.3. Recrystallization Analysis of TA10 Alloy

In order to investigate the recrystallization, grain boundary, and texture changes of
the sheets after annealing treatment, the hot-rolled sheets and the best annealing time (2 h)
were characterized by the EBSD test. Figure 11a,b show the recrystallization diagram of
TA10 alloy sheets after hot rolling and annealing treatment. In these figures, blue is the
fully recrystallized crystal nucleus, yellow is the substructure, and red is the deformed
matrix. It can be seen from Figure 11a,b that after annealing, the recrystallized crystal nuclei
and substructures of the sheets are significantly increased, and the deformation matrix
structure is significantly reduced. Figure 11c shows the proportion of recrystallized crystal
nucleus, substructure, and deformed matrix. Figure 11c shows that the recrystallized nuclei
of hot-rolled sheets increased from 2.13% to 65.5%. The substructures of hot-rolled sheets
increased from 19.4% to 28.46%. The deformation matrix structure of hot-rolled sheets
decreased from 78.4% to 6.4%. After annealing at 780 ◦C for 2 h, the deformation matrix
structure of the sheets disappeared, mainly consisting of recrystallized crystal nuclei and
substructures. The reason for the recrystallization nucleation is that the recrystallization of
TA10 alloy hot-rolled sheets occurred when the appropriate temperature and reasonable
annealing time are reached in the annealing process, and the recrystallization driving
force is strong under the annealing temperature and annealing time. During annealing
treatment, a certain grain boundary penetrates into the grain with large residual strain,
the deformation storage energy disappears, and many strain-free recrystallized nuclei are
formed. Moreover, through the merger of grain boundaries or subgrain boundaries, a more
recrystallized crystal nucleus is formed.
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3.4. Electrochemical Properties of TA10 Alloy

Figure 12a shows the curve of OCP of TA10 alloy sheet in 3.5% NaCl solution with
time after different annealing times at 780 ◦C. As shown in Figure 12a, the trends of the
OCP variability are similar for the TA10 alloys treated with different thermal processing
processes. At the initial stage of the potential test, the OCP curves showed a positive trend
and decreased rapidly. With the extension of the test time, the change rate of the OCP
curves gradually slowed down until it reached a relatively stable state at last. The OCP
curves changed to the positive direction in the initial stage, indicating that the titanium
alloy was in an active state at this time. It can be seen from Figure 12a that the OCP curves
of TA10 alloy treated by different annealing times have a similar trend. It takes about 500 s
to reach the potential stability state, and the activation time is short. However, the potential
after stabilization is significantly different. When the OCP reaches stability, the OCP of hot
rolled TA10 alloy is −0.3574 V, and the OCP of the alloy is −0.2628 V when the annealing
process is 780 ◦C × 4 h. The potential of the alloy at 780 ◦C × 1 h and 780 ◦C × 2 h is
−0.3539 V and−0.2982 V. The results show that when the annealing process is 780 ◦C × 4 h,
the corrosion resistance of TA10 alloy is better than others, and the corrosion resistance of
the alloy in the hot rolling state is the worst.
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For uniform corrosion, the corrosion rate can be calculated using the following for-
mula [23]:

R =
8.76× 104 × (W −Wt)

STD
(1)

R is corrosion rate, mm/y; W is the sample quality before soaking, g. Wt is the sample
quality after soaking, g. S is the total surface area of the sample, cm2. T is the test time, h. D
is the density of the sample, g/cm3.

The corrosion rate of hot-rolled and TA10 alloy sheets with different annealing times
(0.5–4 h) at 780 ◦C were calculated as shown in Figure 12b. It can be seen from Figure 12b
that the corrosion rate of hot-rolled is the highest,0.00785 mm/y. When the annealing
treatment was 780 ◦C × 0.5 h, the corrosion rate was 0.00672 mm/y. When the annealing
treatment is 780 ◦C × 1 h and 780 ◦C × 2 h, the corrosion rates are 0.00493 mm/y and
0.00476 mm/y. The corrosion rate is the slowest when the annealing process is 780 ◦C
× 4 h, which is 0.00409 mm/y. In conclusion, after annealing at 780 ◦C, the corrosion
rate decreases gradually with the extension of the annealing time; this is because, with
the prolongation of the annealing time, the grain size gradually increases, resulting in
weakened intergranular corrosion, so the corrosion rate decreased.

Figure 13 shows the polarization curve of TA10 alloy in 3.5% NaCl after different
annealing times. With the increase in potential, the current density increases rapidly first.
When the potential is greater than −0.2 V, the increase in current density is inhibited, and
the current enters the stable region. The reason is that the formation of a new passivation
film on the surface of TA10 alloy has a protective effect on the alloy. When the formation
and consumption rates of the new and initial passivation films reach a balance, the current
density tends to be stable, which is consistent with the test results of OCP. It can be
concluded from Table 2 that with the increase in annealing time, the corrosion potential
increases from -0.482 V to −0.420 V, and the corrosion current density decreases from
1.734 µA/cm2 to 1.388 µA/cm2. The results show that the corrosion resistance of the
material is enhanced kinetically and thermodynamically with the increase in annealing
temperature. At the annealing temperature of 780 ◦C, with the extension of annealing time,
the corrosion resistance of TA10 alloy is the worst at 780 ◦C × 0.5 h, while the corrosion
resistance of TA10 alloy is the best at 780 ◦C × 4 h.
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Table 2. Corrosion potential and corrosion current density of TA10 alloy.

Annealing Time (h) Hot-Rolled 0.5 1 2 4

The corrosion potential
(Ecorr/V) −0.482 −0.477 −0.422 −0.421 −0.420

Corrosion current density
(Icorr/µA·cm−2) 1.734 1.641 1.421 1.393 1.388

Since an equivalent circuit is used in order to determine the simulated values and
compare them with experimental data, a CNLS (complex non-linear least squares) simu-
lation is used, as previously reported [24–26] was carried out. Figure 14a is the Nyquist
diagram of TA10 alloy in 3.5% NaCl after annealing at 780 ◦C for different annealing
times. It can be seen from Figure 14a that TA10 alloy exhibits a typical single capacitor-
reactance arc after being annealed at different annealing times. Therefore, all the oxide
film structures on its surface are monolayer structures, which is caused by the formation
of highly stable and compact oxide film on its surface [15]. According to the comparison
in Figure 14a, the impedance map radius of TA10 alloy is the largest when the annealing
process is 780 ◦C × 4 h, and the impedance map radius of TA10 alloy is the smallest when
the annealing process is 780 ◦C × 0.5 h. This phenomenon is probably due to the difference
in the microstructure of TA10 alloy after annealing at different temperatures, which is
mainly manifested in the change of α and β phase content and grain size. Figure 14b
shows the Bode diagram of TA10 alloy after hot rolling and annealing treatment at different
annealing temperatures. As can be seen from Figure 14b, when the annealing process is
780 ◦C × 4 h, its phase angle is 81.3◦, showing the best corrosion resistance. The phase
angle is 79.4◦ when the annealing process is 780 ◦C × 0.5 h, showing the worst corrosion
resistance. The phase angle of TA10 alloy at 780 ◦C × 1 h and 780 ◦C × 2 h is between the
first two, 80.6◦ and 80.8◦, respectively, indicating that the longer the annealing time, the
better the corrosion resistance. The phase angle of TA10 alloy under different annealing
times at 780 ◦C has only one peak, indicating that the surface of TA10 alloy is a single
electric layer structure. The model curves in its Bode diagram are smooth and stable, with
no obvious fluctuation in slope. The oxide film on its surface is uniform, compact, and
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complete, basically free of defects. This proves that when the annealing temperature is
780 ◦C, the corrosion process is uniform even if the annealing time is different.
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Figure 15 is the impedance fitting circuit diagram. ZSimpWin software was used to
fit the equivalent circuit of TA10 alloy after annealing treatment at 780 ◦C for different
annealing times. Its equivalent circuit parameters are shown in Table 3. The bilayer layer
on the metal interface has the ability to accumulate charge, but the corrosion process at the
interface is complicated by structural defects and uneven surface roughness. Therefore, a
constant phase element (CPE) must be used to compensate for the deviation from the ideal
capacitor. The impedance of CPE can be calculated by the following formula [27,28]:

ZCPE = [Q(jω)n]−1 (2)
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Table 3. Equivalent circuit parameters of TA10 alloys.

Rs (Ω cm2) Q (F cm−2) n Rp (Ω cm2) χ2

Hot-rolled 22.73 1.661 × 10−5 0.857 1.879 × 105 3.47 × 10−3

0.5 h 27.81 1.568 × 10−5 0.852 3.126 × 105 3.42 × 10−3

1 h 21.56 1.469 × 10−5 0.874 3.329 × 105 3.02 × 10−3

2 h 20.53 1.441 × 10−5 0.881 3.463 × 105 3.01 × 10−3

4 h 24.31 1.385 × 10−5 0.894 3.801 × 105 4.74 × 10−3

Q is the CPE parameter; n is the CPE index related to surface roughness and the exis-
tence of defects; ω is the angular frequency, at which the imaginary part of the impedance
is the largest; Rs is the resistance of the solution; The Rp value is mainly affected by the
characteristics of passivation film of titanium alloy, the destruction of the passivation film
is more difficult to occur. The corrosion resistance of the alloy increases with the increase
of Rp.

The equivalent circuit of TA10 alloy is indicated that the corrosion reaction process of
TA10 alloy in 3.5% NaCl is basically the same after different annealing times. The different
parameters of each element in the equivalent circuit indicate that after annealing treatment
with different annealing times, the reaction speed of TA10 alloy in 3.5% NaCl is different,
so the corrosion resistance is different. The parameters of each component after fitting are
shown in Table 3.

As can be seen from Table 3, after annealing at different times, the Rp value of TA10
alloy is much higher than Rs, indicating that the corrosion resistance of TA10 alloy mainly
comes from the protection of the passivation film. The damage severity of NaCl on
TA10 alloy passivation film decreased with Rp value, which makes the alloy exhibit poor
corrosion resistance. Therefore, when the annealing process is 780 ◦C × 4 h, it shows the
best corrosion resistance, while when the annealing process is 780 ◦C × 0.5 h, the corrosion
resistance is the worst.

4. Conclusions

With the increase in annealing time, the equiaxed α phase increases gradually, the
grain size increases, the strength of the sheets decreases, and the plasticity improves. When
annealed at 780 ◦C for 2 h, TA10 alloy sheets have the best performance, the microstructures
of TA10 alloy sheets are basically composed of fine equiaxed α phase.

With the increase in annealing time, the best mechanical properties were obtained
when annealed at 780 ◦C for 2 h, and the Vickers hardness, tensile strength, yield strength,
and elongation are 154.19 HV0.1, 527.28 MPa, 495.7 MPa, and 28.4%, respectively.

With the increase in annealing time, grain size increases, the number of grain bound-
aries decreases, and the nucleation location of the passivation film decreases. When
annealed at 780 ◦C for 4 h, TA10 alloy sheets exhibit the best corrosion resistance. With
the increase in annealing time, the corrosion kinetics and thermodynamics enhance the
corrosion resistance of the alloy.
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