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Abstract: The adjustment of sintering raw materials has a decisive influence on the composition of
blast furnace slag and the properties of sinter. In order to smelt high-quality molten iron in the blast
furnace, the composition of the sinter must be properly adjusted so that the composition of the blast
furnace slag and the metallurgical properties of the sinter are optimal for the quality of the iron and
are conducive to the smooth operation of the blast furnace. In view of the huge difference in the
quality and price of sintering raw materials, this paper proposes an automatic sintering ore blending
model to quickly configure sintering raw materials according to the requirements of the production
line. This method is based on the calculation process of blast furnace charge, combined with the
constraints of process composition and cost performance, to establish a multi-decision sintering ore
blending model based on the OLS(Ordinary least squares) algorithm to automatically screen from
available raw materials and give the sinter that meets the requirements of the furnace. The plan
finally makes TFe, CaO, MgO, SiO2, TiO2, Al2O3, P, Mn, Na2O, K2O, Zn, and other components
meet the requirements of the production line, and meet the cost performance requirements of the
enterprise for sinter. The model can complete the screening and proportioning of 43 kinds of raw
materials within 10 s, and its performance can meet the requirements of the production of variable
materials. Combined with an example, a comparative analysis experiment is carried out on the
accuracy and practicability of the designed sintering and ore blending model. The experimental
results show that the accuracy and efficiency of the method proposed in this paper are higher than
those of the current ore blending scheme designed by enterprise engineers. This method can provide
an effective reference for the stable operation of the sintering production line.

Keywords: sintering decision; sinter; sintering change material

1. Introduction

Sinter is an important raw material for smelting molten iron, accounting for about
70–80% of the blast furnace charge, and its physical and chemical properties play a decisive
role in the smooth operation of the blast furnace and the quality of molten iron. The iron
and steel industry, with its high energy consumption and heavy pollution, has become the
focus of national energy conservation. Enterprises have higher and higher requirements
for the precision and efficiency of sinter raw material optimization, so that the existing ore
blending methods are difficult to meet the needs of enterprise production. Sintering is a very
complex process requiring the control and optimization of about 500 parameters to ensure
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high sintering quality. Reasonably adjusting the amount of raw materials such as iron, coke,
and anthracite can reduce costs and pollution emissions [1–3]. At present, the enterprise
ore blending requires that the error of the main elements be within 0.01, and the error of
the rare elements be within 0.001, so as to ensure that the slag can meet the production
requirements. The sinter automatic ore blending mode can improve the stability of the
operation, which is conducive to the production of sinter with stable chemical composition,
uniform particle size, and good strength, reducing costs and improving productivity [4–6].
Iron and steel enterprises rationally adjust the raw material composition and particle size of
sinter by combining mathematical methods and establishing a reliable ore blending system,
which can effectively solve the problems of serious burning loss and production decline in
the production of high-basic sinter [7–9]. Especially for an enterprise with a daily output of
20,000 tons of molten iron, any fluctuations in harmful elements and small cost differences
will be magnified many times, eventually leading to serious consequences [10,11]. At
present, iron and steel enterprises mainly use manual methods for sintering ore blending.
Although this method is direct and effective, its effect on ore blending largely depends
on the experience and judgment of professional technicians, lacks real-time performance,
and cannot meet actual production requirements. When the production needs to change
the material, the engineer needs to specify the plan based on the data of the silo, mixing
material, and sintering machine and submit it to the leader for feasibility discussion. This
process takes at least one hour. The calculation and decision-making of sinter composition
are two of the most important links in production [12,13]. The analysis and optimization
of sinter composition based on data mining needs to consider all the incoming charges
and establish a complete measurement model for blast furnace charge composition [14].
Therefore, the analysis and optimization of sinter composition need to establish a complete
calculation model for blast furnace batch composition [15].

Sintering ore blending is a predictable material change based on the conditions of
each production line. The purpose is to find a more suitable raw material ratio for the
next stage of production. Compared with real-time, whole-process prediction models, the
sintering ore blending method is easier to build. Modeling, development, and application
costs are lower [16,17]. To a certain extent, this method is also suitable for short-term sinter
production forecasting. Not only that, the process of sintering ore and blending can also
take into account the storage capacity of raw materials and other factors other than the
production line. The method of sintering ore blending has been used in iron and steel
enterprises for decades and has been unanimously recognized by engineers [18]. With
the development of artificial intelligence (AI), various sinter quality prediction models
from the perspective of sinter blending have emerged. The newly developed artificial
intelligence method for sinter quality prediction includes a deep learning algorithm, an
artificial neural network, an adaptive neuro-fuzzy reasoning system, fuzzy logic, a support
vector machine, an evolutionary optimization algorithm, and a neuro-fuzzy network. With
the wide application of artificial intelligence technology in the metallurgical industry, the
continuous adoption of new algorithms and optimization control theory for the sintering
process can further improve sintering control accuracy and product quality and finally
achieve the goal of large-scale industrial promotion [19].

The sintering process includes many non-linear and high-delay steps, especially since
there is no way to monitor the quality of sintered ore in real time by changing the raw
material ratio scheme. Therefore, it is necessary to build a model to predict the composition
of sinter [20]. In order to reduce the fluctuation of alkalinity and its impact on sinter, real-
time and accurate detection of alkalinity is the key to improving the sintering process and
sinter quality [21]. Studying the principles in the process of sintering batching and choosing
an appropriate algorithm to model the raw material composition can well improve the
quality of sinter and contribute to the stable operation of the blast furnace. Compared
with the traditional mineral blending technology, better prediction results can be achieved
by learning a large amount of tag data, and the prediction results based on prediction
algorithms and mathematical modeling methods are highly instructive. However, the
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above-mentioned modeling and calculation methods require professional and technical
personnel to operate and are still difficult to apply in traditional iron and steel enterprises,
and it is difficult to ensure the accuracy and timeliness of diagnosis.

In view of the limitations of the above-mentioned artificial neural network fault
diagnosis model, the neural network model optimized based on an intelligent optimization
algorithm is widely used in the production of the metallurgical industry to improve
the accuracy of the results. BP (back propagation) is a multi-layer feed-forward neural
network trained according to the error back propagation algorithm and is one of the most
widely used neural network models. The BP neural network obtains the solution with the
minimum variance from the expected output value through gradient descent. Alkalinity
prediction models established using algorithms such as the BP neural network have strong
adaptive and self-learning capabilities and perform well in predicting total iron content and
alkalinity [22]. At present, in iron and steel, data such as feeding conditions, the operation
status of primary and secondary mixing, and real-time parameters of sintering machines
are mainly used for real-time forecasting of sintering production. In production, the sensors
on each production line report and count data every 30 s, but this needs to be calculated on
a high-performance server.

The purpose of combining the OLS algorithm and decision-making algorithm is to take
advantage of data processing and high adaptability to obtain globally optimal forecasting
performance [23]. Due to the limited information contained in individual prediction
methods, the combined method can maximize the use of available sintering raw material
information, integrate individual model information, and fully utilize the advantages of
multiple methods, thereby improving prediction accuracy. The hybrid method combines
different methods, such as mixed data algorithms and statistical methods, or uses big
data for forecasting. Not only is the accuracy higher than a single algorithm, but the
operating efficiency is far better than a single algorithm. The literature shows that hybrid
methods generally yield better forecast results in industrial production than models using
a single algorithm.

2. Least Square Method (OLS)
2.1. OLS Algorithm

When a variety of raw materials are combined, an exponential explosion phenomenon
will occur, which makes the ore blending process very difficult. Therefore, there is an
urgent need for a method to reduce the difficulty of ore blending. As a discrete param-
eter estimation algorithm, the OLS algorithm is very suitable for discrete data collected
in the metallurgical and other industrial industries. It has the advantages that other al-
gorithms find difficult to achieve, and it is an important algorithm in this system. The
OLS algorithm can integrate model information and make full use of the advantages of
various mathematical methods, thereby improving prediction accuracy and its effect in
practical applications. [24] Calculate the sintering composition under different proportions
by changing the calculation formula; finally, judge whether the scheme can be applied to
actual production through a series of decisions. In view of the above problems, this paper
proposes a multi-decision sintering ore blending model combined with the OLS algorithm
for sintering ore blending decision-making in order to solve the disadvantages of many
current algorithms that require a large number of samples for learning and cannot meet the
actual production needs. This method has the following features and advantages:

(1) The raw material composition analysis method based on the OLS algorithm can
analyze the characteristics and differences of different raw materials. This method
takes into account the analysis of raw material composition by traditional ore blending
and the dimensionless machine learning algorithm, and can improve the sintering
process while complying with the sintering process.

(2) The raw material ratio adjustment method based on multiple decisions can accurately
adjust the ratio according to the weight of various constraints and can adapt to a
variety of production environments.
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(3) The calculation time complexity of the sintering ore blending model is low, and
the calculation performance is significantly better than other sintering ore blending
algorithms, which can meet the real-time requirements of online material change.

2.2. Fitting to the Analysis

In order to explore the relationship between raw material adjustment and sinter
composition, the OLS algorithm was used to fit the change in sinter composition when
each raw material was changed. A model with coefficients is fitted to the influence of a raw
material ratio change on the sinter composition in the material change scheme so that the
residual sum of squares between the actual observed data and the predicted data (estimated
value) of the data set is minimized; see Formula (1). For this unary linear regression model,
an array of observations is obtained from the population, and for the n points in the plane,
a curve is used for fitting, and the fitted curve is used to adjust the relationship between a
raw material and sinter composition between changes (see Formula (2)). Taking the total
fitting error (that is, the total residual error) as the standard for the smallest best fitting
curve, it can be seen that all sets of data are fitted with a more reasonable curve. Its sample
regression model is Formula (3):

w =
(
w1 . . . . . . wp

)
(1)

(X1, Y1), (X2, Y2), . . . . . .(Xn, Yn) (2)

ei = Yi −
∧
β0 −

∧
β1Xi (3)

where ei(X1, Y1) is the error in the sample.
Quadratic loss function:

Q =
n

∑
i=1

e2
i =

n

∑
i=1

(
Yi −

∧
Yi

)2

=
n

∑
i=1

(
Yi −

∧
β0 −

∧
β1Xi

)2

(4)

This curve can be determined by Qmin, i.e.,
∧
β0,
∧
β1 can be determined. Treating them

as functions of Q, this formula becomes a problem of finding the extremum, and can be
obtained by taking derivatives. Find the partial derivative of Q with respect to the two
parameters to be estimated, setting the partial derivative to zero:

∂Q

∂
∧
β0

= −2
n
∑

i=1

(
Yi −

∧
β0 −

∧
β1Xi

)2
= 0

∂Q

∂
∧
β1

= −2Xi
n
∑

i=1

(
Yi −

∧
β0 −

∧
β1Xi

)2
= 0

(5)

Finally, the solution:
∧
β2 = n∑ XiYi−∑ Xi−∑ Yi

n∑ X2
i −(∑ Xi)

2

∧
β1 =

∑ X2
i ∑ Yi−∑ Xi∑ XiYi

n∑ X2
i −(∑ Xi)

2

(6)

When one raw material is adjusted, the rest of the raw materials are weighted accord-
ing to the ratio to follow the adjustment ratio, so we can use the OLS algorithm to fit the
composition change curve of the sintered ore when each raw material is adjusted. Use the
API (Application Programming Interface) interface in the statsmodels library in Python
to call the OLS algorithm model and encapsulate the data in a two-dimensional table of
pandas. DataFrame, where each set of data includes the ratio of each raw material and
the composition of sinter, and the ratio of raw materials between different sets of data
is different, so the composition of sinter is also different. By calling the OLS algorithm
model, we obtained the impact of a certain raw material on various sinter components
when changing.
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3. Multiple Decision Ore Allocation Algorithm Based on OLS Analysis
3.1. Overall Algorithm Framework

For practical applications, mineral blending must not only have high enough precision
but also require real-time response to production material changes. For this reason, this
paper proposes a multiple decision-making algorithm based on OLS analysis. By analyzing
and fitting the characteristics of various raw materials, multiple decision-making algorithms
are used to establish multiple decision-making algorithms with different weights in the
sintering process to achieve sintering batching decisions. The framework of the multiple
decision-making ore-allocation algorithm based on OLS analysis is shown in Figure 1.

Metals 2023, 13, x FOR PEER REVIEW 5 of 15 
 

 

( )

( ) 
  

 
  

−

−
=

−

−−
=

∧

∧

22

2

1

222

ii

iiiii

ii

iiii

XXn

YXXYX

XXn

YXYXn

β

β

 (6) 

When one raw material is adjusted, the rest of the raw materials are weighted accord-
ing to the ratio to follow the adjustment ratio, so we can use the OLS algorithm to fit the 
composition change curve of the sintered ore when each raw material is adjusted. Use the 
API (Application Programming Interface) interface in the statsmodels library in Python 
to call the OLS algorithm model and encapsulate the data in a two-dimensional table of 
pandas. DataFrame, where each set of data includes the ratio of each raw material and the 
composition of sinter, and the ratio of raw materials between different sets of data is dif-
ferent, so the composition of sinter is also different. By calling the OLS algorithm model, 
we obtained the impact of a certain raw material on various sinter components when 
changing. 

3. Multiple Decision Ore Allocation Algorithm Based on OLS Analysis 
3.1. Overall Algorithm Framework 

For practical applications, mineral blending must not only have high enough preci-
sion but also require real-time response to production material changes. For this reason, 
this paper proposes a multiple decision-making algorithm based on OLS analysis. By an-
alyzing and fitting the characteristics of various raw materials, multiple decision-making 
algorithms are used to establish multiple decision-making algorithms with different 
weights in the sintering process to achieve sintering batching decisions. The framework 
of the multiple decision-making ore-allocation algorithm based on OLS analysis is shown 
in Figure 1. 

 
Figure 1. Framework of multiple decision ore allocation algorithm based on OLS analysis. 

3.2. Multiple-Decision Ore Allocation Algorithm Based on OLS Analysis 
The calculation of the furnace charge needs to analyze the composition of feed mate-

rials such as sinter and lump ore, which is an important part of production. Therefore, the 
analysis and optimization of sinter composition based on data mining requires a complete 
calculation model of blast furnace charge composition. Sintering production has a decisive 
impact on blast furnace ironmaking production from the perspectives of raw materials, 
smelting costs, slag discharge, and environmental protection. Calculation of the incoming 
charge requires analysis of the composition of the incoming materials, such as sinter and 
lump ore. 

Figure 1. Framework of multiple decision ore allocation algorithm based on OLS analysis.

3.2. Multiple-Decision Ore Allocation Algorithm Based on OLS Analysis

The calculation of the furnace charge needs to analyze the composition of feed materi-
als such as sinter and lump ore, which is an important part of production. Therefore, the
analysis and optimization of sinter composition based on data mining requires a complete
calculation model of blast furnace charge composition. Sintering production has a decisive
impact on blast furnace ironmaking production from the perspectives of raw materials,
smelting costs, slag discharge, and environmental protection. Calculation of the incoming
charge requires analysis of the composition of the incoming materials, such as sinter and
lump ore.

The calculation model for blast furnace charge is mainly composed of two parts: sinter
calculation and lump ore calculation. The sinter calculation is based on the available iron
ore and its quantity, the slag agent and its quantity, and fuel and its quantity to calculate
the composition of sinter and prepare the data for lump ore calculation. The lump ore
calculation is to calculate the composition of the blast furnace charge based on the sinter
and its amount, the available high-grade lump ore and pellets, and the comprehensive blast
furnace fuel, and finally obtain the composition of the blast furnace charge.

In order to calculate the composition of iron in sinter, the formula is as follows.

IFe =

(
∑

MFe × Draw

D

)
×∑ Draw(1− Rraw × 100%) (7)

Among them, IFe is the Fe mineral composition of sinter, MFe is the Fe content of each
raw material, Draw is the dry ratio obtained by subtracting the moisture ratio of each raw
material from the wet ratio, D is the total dry ratio, and Rraw is the burning loss of each
raw material. Among them, Rraw is represented by a number from 0–100 in the company,
which is converted into a percentage and added to the calculation when used. According
to this formula, replace the elements represented by IFe and MFe with CaO, MgO, SiO2,
TiO2, Al2O3, P, Mn, Na2O, K2O, and Zn one by one to get the content of the corresponding
elements in the sinter. For example, replacing it with ICaO and MCaO can calculate the
content of CaO in the sinter. The final composition ratio is obtained by combining the
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amounts of iron, coal, and coke in the feed. It will be used to calculate information such as
iron grade, basicity of blast furnace slag, and magnesium to aluminum ratio of the feed.
The comprehensive measurement model of sinter and blast furnace charge composition
has a better effect than the traditional artificial ore blending method.

Theoretically, in order to achieve the best ratio of raw materials in the blast furnace
charge, the calculation model can be used in reverse. However, the company’s calculation
model is one-way, and it cannot complete the reverse calculation from the result to the
raw material ratio. As shown in Figure 2 below, the forward calculation is from the raw
material wet ratio to the raw material dry ratio, and the sinter composition is calculated
according to the formula. After the composition of the sinter is calculated, the composition
of the furnace charge is calculated, and finally the basicity and magnesium-aluminum ratio
of the blast furnace slag are obtained. However, in order to calculate the ore composition
from the raw material composition, it is necessary to calculate the burning loss during
the sintering process by means of unit consumption. The purpose of back-projection is to
calculate the ratio, and the process of calculating the back-projection ratio is still used, so
back-projection is not established. Figure 2 below is a flow chart of the steps for calculating
the composition of raw materials and the steps for inferring the ratio in reverse.
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Taking Ca1 as an example, the formula for calculating the mineral composition in
Section 2.1.

Ca1 = MCa ×
D2

1(1− R1 × 100%)

D
(8)

Among them, the constant MCa is the known calcium content of iron ore fines, R1 is
the known residual amount of iron ore fines, D1 is the dry ratio of iron ore fines, and d
is the total amount. The total amount only needs to be calculated when the dry ratio of
each raw material is known, but the purpose of this equation is to find the dry ratio of iron
ore powder. Therefore, the above equation has no solution, and the equation system for
inverting the dry mix ratio is not established.

Before performing OLS fitting, we need to determine the method of changing materials.
Situation 1: In actual production, after the laboratory detects that a certain element index of
the sinter product does not meet the requirements for entering the blast furnace, the iron ore
blending personnel need to adjust the raw materials to bring the composition of the sinter
back to the ideal range. In the second case, when a raw material is insufficient, other raw
materials need to be used instead, so the raw materials that have not been replaced must be
adjusted to finally keep the composition of the sintered ore reasonable. So we can increase
the ratio of one ingredient and adjust the ratio of other ingredients by weight. We use the
np.linspace algorithm to generate the arithmetic sequence of the adjusted raw material
ratio and the np.random.normal normal noise algorithm to generate a wide range of raw
material ratios. We use the above Formula (1) to calculate the composition of the blast
furnace charge, and we finally encapsulate the raw material ratio and sinter composition
in a set of data in a DataFrame. When n is determined as the adjustment step size of the
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main mineral powder, the weighted adjustment formula of the remaining mineral powder
is as follows:

M2 +
nM2

(100−M1)
(9)

Among them, M1 is the proportion of mineral powders that are actively adjusted,
and M2 is the proportion of other mineral powders after weighting. As shown in the
table below, mineral powder 1 was adjusted by −0.3%, and then the remaining mineral
powders were increased accordingly according to their weights. Combined with the trend
of change in sinter raw materials obtained by OLS algorithm fitting analysis, the above
formula is used to calculate the composition of a blast furnace charge and is applied to
multiple decision-making processes. The algorithm of the OLS least squares method is:

(1) We need to use the OLS algorithm to fit the ratio and each component of the sintered
ore one by one. Among them, x is the ore powder to be mainly adjusted, and y is the
composition of sintered ore.

(2) Import the DataFrame data source in Python, specify x and y for fitting, and establish
the mapping relationship between x and y in the program through the fit() method.

(3) Obtain the OLS fitting report through the summary() method, and count the slopes
in all OLS reports. Sintering ore blending should not only consider the influence of
composition but also factors such as price and equipment operation. In the company’s
sintering ore blending process, the items that need to be considered in weight are
listed in Table 1 below:

Table 1. Items for multiple decisions.

First-Level Decision Items Second-Level Decision-Making

Raw material comprehensive composition
and cost

Original main material
accessory material

Fuel and power costs solid fuel
Energy media

cost of production

Fixed equipment damage and environmental
protection costs

Controlled consumables and maintenance costs
Employee compensation affected by

production volume

Powder rate influence Price and performance

The alkali metal, and the negative effects Price and product performance
Equipment carrying capacity

In the decision-making process, there will also be situations where certain raw materi-
als account for an excessively large proportion, which is obviously unreasonable. For ex-
ample, Brazil card powder is high quality and suitable for adding in large quantities, but
its price is about 30% more expensive than other raw materials. Apparently, the addition of
too much Brazil card powder will lead to a substantial increase in the cost of ore blending
and ultimately reduce the cost performance of sintered ore. However, it is reasonable to use
more high-quality ore powder under the condition of ensuring cost performance. We use
the single product price of sinter ore, that is, the price per 1% of TFe, to measure the cost
performance of sinter ore. Therefore, when the cost performance of sintered ore is reduced
by 5%, no more high ore powder will be added.

Taking SiO2 as an example, in fact, because the SiO2 content of dolomite powder and
limestone powder is too different, in order to quickly adjust SiO2 to the target value, it
is necessary to set a large step size adjustment to make the plan quickly approach the
target value and set the standard step size to cover the mineral blending plan close to
the target value, then set a small step size to fine-tune the ore blending plan to meet the
accuracy requirements.
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In order to make the ore blending plan quickly reach the final adjustment accuracy of
sinter composition required by the enterprise within 0.005, the gradient descent method is
adopted, and the adjustment step size of the raw material amount that can reach the target
the fastest is obtained after many experiments and adjustments: the step size is 0.3% The
adjustment ratio for large step size adapts to the change in SiO2 content of different iron
ore powders and optimizes the scheme with 0.18% as the standard step adjustment ratio.
Accompanied by a 0.07% step adjustment ratio for precise adjustment. The model will
adjust the large, medium, and small adjustment steps according to the distance between
the currently judged sinter composition and the target value and use various raw materials
flexibly to quickly make the sinter composition reach the target value together.

In actual production, the sintering ore blending scheme often cannot reach the theoret-
ical value required by the production line. Therefore, when the composition of the mineral
blending plan tends to be stable, the system should stop continuing the mineral blending.

In order to express more intuitively the 1.2 OLS analysis-based multiple decision-
making ore allocation algorithm, the main solution steps are as follows:

(1) Maintain the raw material warehouse and update information such as available raw
materials, storage volume, raw material composition, and price.

(2) Set the ratio of raw materials used in the current production line and the ratio of blast
furnace charge as a benchmark for the ore blending plan.

(3) Set the target element target value of the blast furnace charge.
(4) Start by solving the decision and getting the result.

4. Case of Multiple Decision Ore Blending Algorithm Based on OLS Analysis
4.1. Evaluation Criteria for Experimental Data Sets and Protocol Feasibility

A company has 1634 records of external ore composition and cost data from 2019
to 2022, including the characteristics of iron ore powder and other auxiliary materials
in metallurgy; 129 evaluations of the amount of ore powder used in production; and a
material change plan. On the basis of data fitting, multiple decision-making is used to plan
the sintering scheme, and the final scheme will be compared with the actual production
line implementation scheme. Considering the allowable error of the equipment on the
production line, when judging whether the sintering scheme is feasible, we believe that an
error within 1% is acceptable.

4.2. Performance Test

All simulation experiments are carried out on a computer with a Windows operating
system, an Intel(R) Xeon(SkyLake) CPU, and 16 GB of memory, and the software environ-
ment is Python 3.9. The OLS algorithm is based on the statsmodels library of the Python
language and has good execution efficiency. It takes about 0.8–0.9 s to complete the fitting
of each mineral powder in the sintering scheme using 12 raw materials, and the calculation
performance meets the actual production requirements. The experimental simulation on
the machine shows that when the number of training samples is large and the set step size
threshold is small (such as less than 0.01), the OLS and decision-making algorithm run
very slowly and do not run at the expected speed, and “oscillation” occurs Phenomenon.”
However, using the step size provided above, you can get relatively satisfactory results
quickly. Although the ore blending scheme obtained by using the algorithm model does
not significantly improve the accuracy, the running time is significantly reduced, and the
effect is better than the traditional ore blending method.

In order to further verify the operating efficiency of the model algorithm, this paper
screens out samples whose repeated decision-making times are multiples of 5 from all data
samples and counts their running time. It can be seen that when the number of times is 20
or less, as the number of decisions increases, the time required also increases synchronously,
while outside of 20 times, as the number of decisions increases, the time required gradually
tends to stabilize.



Metals 2023, 13, 548 9 of 14

4.3. Model Application

In order to further verify the effectiveness of the multiple decision-making ore blending
algorithm based on OLS analysis, 30 ore blending and material change records were
randomly selected from the material change adjustment records from 2019 to 2022 to verify
the feasibility of the model. Figure 3 below shows the company’s sintering raw material
mixing equipment. Engineers adjust the hopper feeding speed and belt speed through the
remote-control system to achieve batching control.
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The company’s sintering process aims to fix the composition of sinter ore. While
keeping it unchanged, it replaces and adjusts the proportion of iron ore powder, supple-
mented by adjusting the proportion of flux, so that the sinter ore can reach the specified
composition. Therefore, the process of ore blending needs to adjust the ratio of at least
multiple raw materials at the same time. Since the amount of raw materials is always 100%,
the total amount of the three raw materials after adjustment must remain the same as before
the adjustment, while the amounts of other unadjusted raw materials remain unchanged.
In fact, the operation of adjusting the ratio of multiple raw materials at the same time is
very complicated, and it is also very difficult to implement the simultaneous adjustment
of the ratio of multiple raw materials. At present, enterprises rely entirely on experienced
ore blending engineers to operate. In this paper, the automatic ore blending model follows
the above principles for raw material blending. First, analyze each raw material in the
ore blending plan, and use the OLS algorithm to fit the raw materials one by one. Taking
Mineral Powder 1 as an example, take the interval between plus and minus 2 and use the
random normal noise method to generate 30 random ratios close to the current ratio, and
then adjust the other raw materials according to the proportion weight. In the end, the final
total ratio after adjustment is still 100%, thus creating 30 corresponding mineral blending
schemes. Table 2 below shows the proportioning situation of each main raw material before
and after the batching adjustment.
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Table 2. Proportioning of main raw materials before and after ingredient adjustment.

Scheme Mineral
Powder 1

Mineral
Powder 2

Mineral
Powder 3

Mineral
Powder 4

Mining
Powder 5

Mining
Powder 6

Mineral
Powder 7

Mineral
Powder 8

Mine
Powder 9

Mineral
Powder 10

The
Others

Before the
dressing 22.48 3.88 20.15 4.65 6.98 6.98 9.30 1.80 3.20 3.10 17.50

After the
dressing 22.18 3.89 20.23 4.67 7.00 7.00 9.34 1.81 3.21 3.11 17.57

When the weight of the ratio that needs to change increases, using the above calculation
model, the corresponding sinter composition also changes. Table 3 below shows the changes
in the sinter composition (the main elements in the table retain 2 decimal places, and the
rare elements retain 4 decimal places).

Table 3. Changes of sinter composition.

Scheme TFe CaO MgO SiO2 TiO2 Al2O3 P Mn Na2O K2O Zn S V2O5

Before the dressing 53.25 11.43 2.92 6.29 0.41 2.75 0.0649 0.4879 0.0820 0.0775 0.0092 0.060 0.090
After the dressing 53.10 11.46 2.93 6.29 0.41 2.74 0.0650 0.4852 0.0821 0.0775 0.0092 0.060 0.101

We obtained the slope of the single composition of each powder. Table 4 below shows
the slope of the change of various elements in sinter after the proportion of various powders
used increases. The unit of each value is the change in the proportion of elements in the
sinter whenever the raw material rises by 1%.

Table 4. The change of sinter composition caused by the adjustment of different mineral powder.

CaO MgO SiO2 TiO2 Al2O3 P Mn Na2O K2O Zn S V2O5

Mineral
powder 1 −0.97066 −0.89448 −0.95274 −0.27248 −0.89135 3.61644 −0.38733 2.65449 2.86947 0.00001 0.011 0.011

Mineral
powder 2 −0.97121 −0.89494 −0.95444 −0.27235 −0.89041 3.62297 −0.38502 2.65344 2.86396 0.00001 0.006 0.008

Mineral
powder 3 −0.97066 −0.89444 −0.95174 −0.27229 −0.89173 3.63016 −0.38410 2.65397 2.86303 0.00001 0.008 0.012

Mineral
powder 4 −0.97116 −0.89493 −0.95347 −0.27246 −0.89074 3.61664 −0.38696 2.65616 2.86936 0.00001 0.006 0.014

Mining
powder 5 −0.97098 −0.89521 −0.95142 −0.27479 −0.88956 3.60947 −0.38392 2.66428 2.88015 0.00001 0.007 0.007

Mining
powder 6 −0.97466 −0.89761 −0.95258 −0.27330 −0.89081 3.62086 −0.38469 2.66288 2.87497 0.00001 0.004 0.010

Mineral
powder 7 −0.99654 −0.89364 −0.95040 −0.27203 −0.88708 3.60594 −0.38412 2.64744 2.85967 0.00001 0.006 0.012

Mineral
powder 8 −0.96999 −0.94617 −0.95161 −0.27280 −0.88879 3.61330 −0.38440 2.65255 2.86519 0.00001 0.009 0.008

Mine
powder 9 −0.97904 −0.91616 −0.95155 −0.27275 −0.89069 3.61259 −0.38432 2.65205 2.86463 0.00001 0.010 0.009

Mineral
powder 10 −0.98394 −0.89454 −0.95165 −0.27254 −0.88873 3.61269 −0.38438 2.65233 2.86501 0.00001 0.005 0.013

According to the slope, for example, we need to change the content of SiO2, and we
expect to determine the plan of raw material adjustment. We can adjust the raw material
with the largest absolute value of SiO2 in the table and continue to use this method to
balance the changes of other elements, finally getting a mineral blending plan that meets
the requirements.

Another situation is when a certain raw material is assumed to be insufficient in stock
and needs to be replaced with other raw materials. We can set a desired ratio of new raw
materials, specify the composition of sintered ore, and finally use this method to fine-tune
the raw materials so that the composition of sintered ore meets the production requirements.

After obtaining several sinter ratios that conform to the sinter composition, the ratio
of the blast furnace charge is calculated in the order of TFe, CaO, MgO, SiO2, TiO2, Al2O3,
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P, Mn, Na2O, K2O, and Zn. After obtaining the proportion of the blast furnace charge, the
decision on the availability of the charge in the blast furnace is made in the order of Table 1,
and finally the ore blending plan according to the set demand is obtained.

4.4. Accuracy of Decision-Making

In order to verify the accuracy of the multiple decision-making ore blending algorithm
analyzed by OLS in this paper and to further compare it with the situation of historical
material change schemes, we analyzed the feasibility of 100 schemes in the test set.

We randomly take a certain sinter material change plan in October 2022 as an example
and simulate the model accuracy rate according to the raw material ratio, sinter composition,
and lump ore pellet ratio and composition during this period. The engineer noted the
requirements and reasons for this material change as follows:
1© According to the recent iron powder purchase situation, the ore powder 8 in the

warehouse is about to be used up. It is expected that the cost of molten iron will
increase after the material change, and the subsequent adjustment of the blast furnace
charge structure and the increase in the proportion of pellets will reduce the cost of
molten iron;

2© It is estimated that after reducing the proportion of ore powder 8, the alkali load of
the sintering blast furnace will decrease;

3© In addition, due to the influence of limestone powder procurement, the lime ratio
is increased, the daily consumption of limestone powder is controlled to be about
700 t/day, the daily consumption of limestone is controlled to be 1650 t/t, and the
coke powder is calculated based on 55.8 Kg/t of sintered ore;

4© MgO in sinter is controlled according to the 2.6–2.7 midline, and it is estimated that
the pre-mixing will start to change at 6 o’clock after 8 days;

Therefore, we replace the mineral powder 8 in the raw material with the new raw
material mineral powder 5 and set the ratio of lime to only increase. The reduction of K
and Na elements in the final sinter composition is taken as the target; the MgO is controlled
within the range of 2.6–2.7; and the sinter basicity (CaO/SiO2) and magnesium-aluminum
ratio (MgO/Al2O3) are kept stable. After setting the target for ore blending adjustment,
input the sinter raw material data into the model, in which the initial test ratio of mineral
powder 5 is the same as that of mineral powder 8, and perform OLS fitting and analysis on
the new mineral powder 5. After 48 rounds of adjustment and decision-making and after
consuming 41.7 s, the multiple decision-making ore blending algorithm of OLS analysis
obtained the raw material ratio in Table 5 below (the main elements in the table retain
2 decimal places, and the rare elements retain 4 decimal places). Wherein the slag powder 8
is replaced by the new raw material slag powder 5, with the increase of lime, the proportion
of limestone decreases.

Table 5. Change of sinter raw materials ratio.

Scheme
Mineral
Powder

1

Mineral
Powder

2

Mineral
Powder

3

Mineral
Powder

4

Mining
Powder

5

Mining
Powder

6

Mineral
Powder

7

Mineral
Powder

8

Mine
Powder

9

Mineral
Powder

10

Mineral
Powder

11

Mineral
Powder

12

The
Others

Before the
dressing 3.94 11.81 14.17 22.82 0 3.94 5.51 3.94 8.66 5.00 3.70 6.80 9.71

After the
dressing 4.01 12.02 14.42 23.23 5.61 4.01 4.01 0 8.81 7.30 3.70 3.20 9.68

Due to the change in raw material ratio, the composition of sinter is shown in Table 6
below. The K and Na elements in the final sinter composition decreased significantly, with
MgO within the range of 2.6–2.7. The alkalinity of sinter decreased from 1.8325 to 1.8199,
and the ratio of magnesium to aluminum decreased from 1.0715 to 1.0723, which met the
requirements for sinter quality.
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Table 6. Changes of sinter composition.

Scheme TFe CaO MgO SiO2 TiO2 Al2O3 P Mn Na2O K2O Zn S V2O5

Before the dressing 53.61 11.23 2.66 6.15 0.3536 2.48 0.0625 0.4054 0.0671 0.0931 0.0115 0.078 0.100
After the dressing 53.60 11.23 2.61 6.17 0.2948 2.50 0.0668 0.4083 0.0592 0.0844 0.0101 0.071 0.093

Compared with the company’s traditional ore blending process, when the ore blending
model is not used, it is necessary to refer to the reports of the silo, batching production line,
sintering machine, and other links, and it will take 10–20 min for experienced engineers to
formulate the plan. It is also necessary to hand the plan over to the leadership and discuss
the feasibility of the plan. The whole process is very tedious and takes at least 1 h. However,
after adopting the multiple decision-making ore blending algorithm of OLS analysis, the
time of the ore blending process is shortened. Since the decision is made by the algorithm,
there are fewer links in the feasibility discussion process. In summary, the multiple decision-
making ore blending algorithm analyzed by OLS greatly improves the efficiency while
ensuring the accuracy of sintering ingredients and can meet the requirements of real-time
material change.

Figure 4 shows the feasibility of the final results obtained by the model, in which the
resulting solutions are divided into three categories, namely: feasible solutions, feasible
proportioning but infeasible production decisions, and infeasible solutions. It can be seen
from Figure 4 that there is a certain degree of error in the judgment of the actual production
availability by the multiple decision-making ore blending algorithm based on OLS analysis,
especially when the cost rises and the warning threshold is reached. The graph also shows
situations where blending is not available, where mistakes are made in forming feasible
blends, and where iron grades are often reduced too low. The model mainly considers
the actual production availability when it goes through multiple decision-making steps.
Therefore, it can be seen from the results in Figure 4 that 96% of the ore blending schemes
can meet the production demand of sinter ore, but 4% cannot meet the actual production
demand. In fact, the success rate of formulating the ore blending plan in the production
environment is very high, and this method can show better performance advantages, but
when the predictive ore blending plan is formulated, the sinter ratio itself does not fully
consider the actual application scenarios, so there will be varying degrees of situations
that do not meet production requirements. The figure shows the results of the multiple
decision-making ore blending algorithm proposed by the OLS analysis proposed in this
paper. Among them, the feasible schemes account for 96% of the total, but 2% of the
schemes are not feasible in production. The final ore blending results are better than the
traditional ones. The speed and precision of manual ore blending.
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It can be seen from the above comparison results that the model proposed in this paper
shows good ore blending performance and high accuracy. In the case of limited production
conditions, the feasible ore blending scheme can be generated quickly online, resulting in
fast and accurate sintering ore blending materials.
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4.5. Model Improvement and Practical Application

We hope to reduce the number of OLS operations through conditional restrictions.
It is necessary to set restrictive conditions to screen out a series of raw materials that are
not conducive to sinter production. When the composition of a certain ore powder is
obviously harmful to sintering, it will no longer be counted. On the other hand, according
to the actual production situation, it is also necessary to revise the conditions required for
decision-making, which will help select the appropriate scheme. Engineers still use the
traditional method, where the work is done using the model for calculations, which are then
validated and revised. That is to say, the engineer needs to carry out two kinds of blending
work to adjust the model to be consistent with the actual situation. In the near future,
model accuracy will improve to a reliable level and be able to replace traditional methods.

5. Conclusions

According to the calculation process of the blast furnace charge, combined with the
composition of process components and cost-effective constraints, a multi-decision sinter
ore blending model based on the OLS algorithm was established. The model realizes the
automatic ore blending of available raw materials and finally enables the sinter composition
to meet the requirements of the production line and the cost performance requirements of
the enterprise.

According to the calculation process of blast furnace charging, combined with the
composition of process components and economic constraints, a multi-decision sintering
blending model based on the OLS algorithm was established. The model realizes the
automatic blending of available raw materials and finally makes the sinter composition
meet the requirements of the production line and the cost performance requirements of
the enterprise.

This model can achieve the following effects:

(1) The model realizes the calculation of the composition of sinter and blast furnace
charge. On this basis, there are 15 decision-making items to evaluate the sintering
scheme to get the optimal scheme.

(2) By simulating the real production situation for ore blending, a solution that meets the
requirements can be calculated within 0.9s.

(3) According to the experimental results, 96% of the final schemes are feasible, 4% are
not suitable for practical application, and the comprehensive effect is better.

(4) Engineers continuously revise the model according to the production situation, and
the model will become more accurate until it can replace the traditional method.
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