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Abstract: Metal additive manufacturing (metal-AM) technology has made significant progress in
the field of biomedicine in recent years. Originally, it was only used as an innovative resource for
prototypes. With the development of technology, custom orthopedic implants could be produced
for different patients. Titanium alloy is non-toxic and harmless in the human body. It has excellent
biocompatibility and can promote the growth and regeneration of bones in its interior. Therefore, it is
widely used in the medical industry. However, in the process of additive manufacturing and printing
titanium alloys, there are often cases where the powder is not completely melted or the powder
adheres to the product structure after printing, which introduces new biological risks. This paper
summarizes the causes of powder adhesion from the perspective of the process involved in additive
manufacturing, expounds the influence of different processes on the powder adhesion of titanium
alloy forming parts, introduces the mainstream methods of powder sticking removal and summarizes
the application of the additive manufacturing of titanium alloy in the medical field, which provides a
theoretical basis for further development of the application of titanium alloy additive manufacturing
technology in the medical industry.

Keywords: additive manufacturing; titanium alloy; orthopedic implants; adhering powder;
powder removal

1. Introduction

Additive manufacturing is a technology based on a digital model, using a digital
technology printer as the carrier and metal powder, plastic and other adhesive materials
through layered processing and superposition forming to increase the material layer by
layer to generate physical items. It is similar to the principle of using ordinary printers to
print computer displays in daily life. The difference is that ordinary printers use ink and
paper. The additive manufacturing printer uses a special “ink” with different materials
such as metal, ceramics, plastics and sand as “printing materials”. Through computer
control, the materials can be superimposed layer by layer according to the instructions.
Then, the plan becomes a real 3D object [1–6]. At present, millions of patients worldwide
need artificial joint replacements every year. More than half of the joint implants used in
China come from European and American countries. Their design is completely based
on the anatomical structure of the western human body, which is quite different from
that of Chinese people. The incidence of osteoporosis, arthritis and other musculoskeletal
disorders has also increased significantly with the aging of society [7]. Therefore, additive
manufacturing is not only in the automotive, aerospace [8] and marine industry [9] areas
of application and research. In particular, there has also been a huge development in
the medical field. Additionally, its influence is growing. Compared with traditional
manufacturing technology, additive manufacturing technology has the advantages of high
forming freedom, high speed and better mechanical properties. In the past, orthopedic
implants used clinically often had only fixed specifications, which caused the implants on
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the market to not be fully applicable to every patient. However, it is now possible to use
additive manufacturing to customize different implants according to different conditions of
patients, which has promoted the development of additive manufacturing technology [10].

Applications in the medical field are mainly divided into pharmaceuticals, orthopedic
implants and medical devices. The most used medical additive manufacturing materials
are metal alloys, mostly titanium alloys, followed by cobalt–chromium–molybdenum alloys
and stainless steel alloys. Due to their low density and association with good mechanical
properties, titanium alloys are considered superior compared with other metallic alloys,
having a strength/density ratio of about 300–400 MPa, which is higher than of that steel
alloys. The common alloying elements in titanium alloys are Mo, Nb, Ta, Sn, Pd, Hf and
Zr, which are highly biocompatible alloying elements. They can improve the mechanical
properties and plasticity of titanium alloys and reduce the elastic modulus [11,12]. Titanium
alloys have the characteristics of high strength, low density, low temperature resistance,
corrosion resistance and are non-magnetic [13–36]. Titanium alloy is a non-toxic and
harmless alloy, it can resist the corrosion of secretions and it can adapt to a variety of
sterilization methods. Therefore, it is widely used in the manufacture of medical devices.
The 3D-printed formed parts made of titanium alloy not only have high strength and
are loose, porous and very light, but they also have excellent biocompatibility, which can
promote the growth and regeneration of bones inside them well, thus greatly improving
the effect of implant surgery. Therefore, it is widely used in the manufacture of orthopedic
implants [37–40]. However, the hardness and stiffness of metal materials are much greater
than those of human bones. Implantation into the human body can easily lead to a
stress shielding effect, which will lead to the loosening of substitutes. In order to avoid
the phenomenon of stress shielding, orthopedic implants with porous structure can be
fabricated by 3D printing technology. On the one hand, the stiffness of bone implants can
be adjusted by adjusting porosity. On the other hand, the porous structure is conducive to
the growth of tissues around the bone implant, and enhances the effective integration of
the bone implant and human tissue through new bone formation, making full use of the
advantages of additive manufacturing technology to form complex structures.

Due to the different degree of rapid melting of titanium alloy powder at high temper-
ature and the settlement of molten pool in the process of using additive manufacturing
technology, there are often cases where the powder is not completely melted or the powder
adheres to the product structure after printing. Many experts [41,42] have found that
there is a large amount of powder adhesion inside the titanium alloy’s porous structure
formed by additive manufacturing. If the products containing these residual powders are
implanted in the human body, the residual powders will fall and flow with the blood over
time, causing potential safety hazards such as inflammation, and thus introducing new
biological risks [43]. There are also many experts [44,45] using different powder removal
technology for porous structures. However, it still has problems such as unsatisfactory
powder removal effects and difficult powder removal. Therefore, the removal of insoluble
particle residues in titanium alloy orthopedic implants by additive manufacturing has
become the focus of research, and it is also a problem that every manufacturing enterprise
and scientific research institution must face [46]. This paper points out the core problems
of additive manufacturing titanium alloy in the development of the medical industry and
summarizes the causes of powder adhesion from the perspective of the process involved
in additive manufacturing. In this paper, the effects of the three different processes of
binder jetting, powder bed fusion and directed energy deposition on titanium alloy form-
ing parts are described. Mainstream methods of powder adhesion removal are introduced,
such as ultrasonic cleaning, chemical cleaning, sandblasting, dry ice jet and so on. This
paper also summarizes the main applications of additive manufacturing titanium alloys
in the medical field, which provides a theoretical basis and reference for the application
of titanium alloy orthopedic implants based on additive manufacturing, and promotes its
further development.
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2. Metal Additive Manufacturing Process Used in Medical Treatment

The problem of powder adhesion in additive manufacturing refers to the insoluble
metal powder particles left on the surface or inside of the formed part after forming. It
mostly occurs in the process of using metal materials and ceramic materials [47]. Cai and
other scholars [48] found that there is a large amount of powder adhesion in titanium
alloys formed by additive manufacturing. According to the current international standard
ASTM F2792-12a [49,50], etc., additive manufacturing can be divided into seven different
categories: binder jetting, directed energy deposition, material extrusion, material injection,
powder bed fusion, sheet lamination and stereo light curing. The standard pointed out
that binder jetting, powder bed fusion and directed energy deposition all produce powder
adhesion. At present, scholars [51–53] have found that the optimization of process parame-
ters can eliminate, or at least significantly reduce, the powder adhesion in metal additive
manufacturing technology, which confirms that different processes and process parameters
are indeed related to powder adhesion. Therefore, I will review the principles and process
parameters of binder jetting, powder bed fusion and directed energy deposition.

2.1. Binder Jetting

Binder jetting is similar to the composition and process of traditional printers; it was
originally called three-dimensional printing (three-dimensional printing, referred to as
3DP) technology [54]. It was proposed by Professor Sachs of Massachusetts Institute of
Technology (MIT) in 1993. The ASTM Committee of the United States officially named
BJ technology. Since then, China has also paid considerable attention to BJ technology.
Some companies, such as Esquel, Fenghua Zhuoli and Ningxia Share, have successively
launched BJ printers. The characteristics of high efficiency and low cost make binder jetting
technology widely used in the medical field to make denture frames [55] and orthopedic
implants [56].

The process of binder jetting is to spread a certain thickness of powder on the substrate
and then spray the binder to the powder layer. After one layer is sprayed, the printing
platform reduces the height of the layer, and the powder is spread from the powder
supply source to the powder bed by the powder spreading roller [57]. The powder bed is
accumulated layer by layer to obtain a three-dimensional entity. Binder jetting also has
shortcomings; the main ones are as follows: (i) the binder that is added to the metallic
powder can be toxic (not biocompatible material), (ii) the sintering process usually changes
the shape of the model (shrinking it by about 20%), and the accuracy of the implant shape is
essential, (iii) some residual binder can be present (due to the unstable sintering process). If
this section refers to medical treatment, it should have information regarding the materials
that are used for these technologies, such as alloys and recommended powder size. Due to
the above problems, the relevant information such as binder removal and recommended
powder size is particularly important. Binder can be divided into organic and inorganic
binders according to their composition. In the medical field, non-toxic polyethylene is
usually used as a binder. It should be noted that before the post-treatment process of
binder jetting, the binder in the initial billet needs to be removed by degreasing and heat
treatment to avoid introducing new safety hazards [58]. In recent years, binder jetting
printing materials have been continuously expanded from iron-based materials to active
metal materials such as titanium alloys, superalloys and even magnesium. It was found
that 16~25 µm powder samples have the fastest densification rate [59]. In the process of
binder jetting, the interaction between binder and powder bed is very complex. Stevens
et al. [60–62] pointed out that there are two stages to introducing residual powder (Figure 1):
high-speed impact and the diffusion stage. High-speed impact will lead to the fracture of
the powder bed, causing droplets and powder splashing to form adhesive powder, affecting
the forming quality. The diffusion through capillary action may lead to residual powder at
the edge. These adhered excess powders affect roughness and dimensional accuracy.
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Figure 1. Adhesive powder for molded parts printed using binder jetting. Reprinted with permission
from Ref. [62]. Copyright 2015, copyright Jurisch M, Studnitzky T, Andersen O. Comparison of
formed parts based on two different binder: B1(a–c) and B2 (d–f).

It can be seen that the residual powder is usually introduced in the high-speed impact
and diffusion stages during the binder jetting process. Chen and Zhao [63] found that the
degree of defects and surface finish can be improved by adjusting the process parameters in
the binder spray manufacturing process, such as layer thickness, binder saturation, powder
spreading speed and so on. On the one hand, the forming process is carried out on the
powder bed, so the thickness of the powder layer will directly affect the transport and
conduction of the binder, resulting in defects such as uneven bonding of the powder [64].
On the other hand, the amount of binder at low saturation is small, and the powder cannot
be firmly bonded together. The powder may fall off to form a binder, while the binder at
high saturation will cause excessive powder to bond to the surface and increase the surface
roughness [65]. Some scholars [66] have found that when the layer thickness, powder
spreading speed and powder feeding ratio are 100 µm, 6 mm/s and 3:1, respectively, and
there is 70% binder saturation, the adhering powder defect can be effectively improved.
However, there is still a lack of in-depth research on the powder spreading speed, which
needs to be further expanded.

2.2. Powder Bed Fusion

Powder bed fusion technology is one of the popular manufacturing methods under
metal additive manufacturing technology, first developed in 1994 [67]. The characteristics
of flexible design and highly efficient utilization of resources have enabled it to be applied
in the biomedical industry [68]. It was first used in the medical field to manufacture jaws
and teeth [69,70]. The powder bed fusion technology is divided into selective laser melting
(SLM) and electron beam melting (EBM). The forming schematic diagram is shown in
Figures 2 and 3. These two technologies not only have high forming efficiency and accuracy,
but also have a wide range of applications. These advantages also highlight the potential
of SLM and EBM to directly manufacture orthopedic implants [71–73].
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The powder bed fusion technology is to use laser or electron beam to irradiate the
whole powder layer, heat the powder to the melting point of the forming material and
selectively fuse the powder layer. After that, one lowers the forming platform and lays a
new layer of powder in the forming area. The powder layer is continuously heated and
selectively fused layer by layer, and finally the formed part is obtained. The processing
of powder bed fusion includes two steps: firstly, the powder melts after receiving heat;
secondly, the liquid metal solidifies on the substrate or precursor layer. The second step
is the uniform wetting process. Uniform wetting is the main mechanism of melt wetting
on similar material substrates [74]. This is a non-equilibrium process including fluid
flow, heat conduction and solidification [75]. In this process, gravity and capillary force
cause the molten pool to settle, and if the temperature of the molten pool is too high, the
droplets splash and adhere to the unmelted powder, which makes it impossible to avoid
the introduction of residual powder and produce powder adhesion defects.

It is shown that the powder adhesion defects can be improved by adjusting the energy
density (Figure 4). The results show that for Ti-6Al-4V titanium alloy powder, the surface
of the sample is flat, the forming accuracy is high and the powder adhesion is at its least
when the energy density of forming parts is 150~170 J/mm3 [76–80]. Therefore, the powder
bed fusion process is an important factor affecting the powder bonding performance. Laser
energy density directly affects the viscosity and fluidity of the molten pool, thus directly
affecting the fusion between different powders. When the laser beam hits the powder, a
series of physical and chemical changes occur after the powder particles are heated. The
powder is heated and melted to undergo a phase transition. At this time, the spreading
and solidification of the melt are carried out at the same time. When the spreading speed
of the melt is faster than the solidification speed, a smooth and flat surface is formed. On
the contrary, it causes defects such as adhering powder and spheroidization. Therefore,
mastering the exact laser energy input and controlling the spreading and solidification
process of the melt directly affects the final forming quality. When the laser energy density
of the formed Ti-6Al-4V titanium alloy is too high (170~250 J/mm3), the amount of powder
splashing increases, and a large amount of powder is attached. When the laser energy
density is too low (0~80 J/mm3), the melting is not complete and the spheroidization
increases [81,82]. Non-toxic biocompatible elements and Ti are often added to form titanium
alloys, such as TiNb and NiTi titanium alloys [83]. By studying the NiTi titanium alloy
formed by SLM, it is found that when the laser energy density (55.56–66.67 J/mm3) is
used, the powder particles are fully melted and the solid powder rarely adheres to the
surface of the deposition layer. As shown in Figure 5, there are no cracks and other
defects inside, only spherical pores with dispersed distribution. When a sufficient energy
density (65~80 J/mm3) is input, all NiTi titanium alloy powder particles melt and avoid
spheroidization [84]. In summary, the optimal laser energy density range should be adopted



Metals 2023, 13, 462 6 of 26

for the titanium alloy powder, and the optimal energy density required for different
titanium alloy powders is different. It is necessary to determine the theoretical optimal
temperature through the thermodynamic and kinetic theoretical calculation of the melt
with specific composition so as to control the powder adhesion.

Metals 2023, 13, x FOR PEER REVIEW 7 of 31 
 

 

 

 
(a) (b) 

Figure 3. The EBM equipment and forming schematic diagram: (a) the equipment of EBM; (b) 4-
step process for building one layer. Reprinted with permission from Ref. [81].Copyright 2016, cop-
yright Körner C. 

  

Figure 3. The EBM equipment and forming schematic diagram: (a) the equipment of EBM; (b) 4-step
process for building one layer. Reprinted with permission from Ref. [81]. Copyright 2016, copyright
Körner C.

Metals 2023, 13, x FOR PEER REVIEW 8 of 31 
 

 

 

 
Figure 4. Diagram for defects evolution with laser energy density of 27 J/mm3 (a), 33 J/mm3 (b), 44 
J/mm3 (c), 58 J/mm3 (d), 98 J/mm3 (e), 213 J/mm3 (f), 253 J/mm3 (g) and 333 J/mm3 (h). Reprinted with 
permission from Ref. [71]. Copyright 2021,copyright Zhao C, Li W, Wang Q, Wang Y, Zhao Y, Di S, 
Ren D, Ji H. 

  

Figure 4. Diagram for defects evolution with laser energy density of 27 J/mm3 (a), 33 J/mm3

(b), 44 J/mm3 (c), 58 J/mm3 (d), 98 J/mm3 (e), 213 J/mm3 (f), 253 J/mm3 (g) and 333 J/mm3 (h).
Reprinted with permission from Ref. [71]. Copyright 2021, copyright Zhao C, Li W, Wang Q, Wang Y,
Zhao Y, Di S, Ren D, Ji H.



Metals 2023, 13, 462 7 of 26

Metals 2023, 13, x FOR PEER REVIEW 9 of 31 
 

 

 

 
Figure 5. Three-dimensional reconstruction graphs showing the internal defect distribution within 
the M-VED NiTi sample: (a) selected scanning region, (b) axonometric drawing, (c) side view, (d) 
front view. Reprinted with permission from Ref. [84]. Copyright 2022,copyright Ge J, Yuan B, Zhao 
L. 

2.3 Directed Energy Deposition 
Directed energy deposition technology was invented in 1996 at the Sandia National 

Laboratory in the United States. Its advantages include high forming precision, fast speed 
and small processing size limit [85–87]. In the medical field, it is often used to coat the 
surface of medical implants produced by traditional processes to achieve a porous struc-
ture on the surface of implants, which is conducive to bone growth [88,89]. 

Laser beams, electron beams or plasma are used as high temperature heat sources to 
melt the surface of the substrate to produce a molten pool. The raw materials are synchro-
nously fed into the molten pool through the feeding equipment. The raw materials are 
solidified after rapid melting and cooling and form a metallurgical bond with the matrix 
material. In this process of high temperature and rapid cooling, defects such as incom-
pletely melted powder adhering to the surface of the formed part will inevitably occur, 
resulting in the powder defects of [90–93]. 

The research shows that the optimization of the process parameters of the directed 
energy deposition technology can reduce the surface roughness of the formed parts and 
improve the adhering powder defects. The typical process parameters of the directed en-
ergy deposition technology such as laser power and powder feeding rate affect the pow-
der adhesion in the forming process (Figure 6). Therefore, it is also very important to un-
derstand the process parameters in the directed energy deposition technology. On the one 
hand, the larger the laser power, the wider and higher the cladding layer and the larger 
the molten pool. The reason is that the heat input increases, which leads to the increase in 
the temperature rise in the powder air and the ability of the molten pool to melt the pow-
der. On the other hand, the larger the powder feeding rate, the wider and higher the clad-
ding layer but the smaller the penetration of the substrate. The reason is that the energy 
absorption ratio of the powder substrate increases, which leads to the increase in the pow-
der melting amount, which is beneficial to improve the utilization rate of laser energy and 
reduce the adhering powder [94–97]. 

Figure 5. Three-dimensional reconstruction graphs showing the internal defect distribution within
the M-VED NiTi sample: (a) selected scanning region, (b) axonometric drawing, (c) side view, (d) front
view. Reprinted with permission from Ref. [84]. Copyright 2022, copyright Ge J, Yuan B, Zhao L.

2.3. Directed Energy Deposition

Directed energy deposition technology was invented in 1996 at the Sandia National
Laboratory in the United States. Its advantages include high forming precision, fast speed
and small processing size limit [85–87]. In the medical field, it is often used to coat the
surface of medical implants produced by traditional processes to achieve a porous structure
on the surface of implants, which is conducive to bone growth [88,89].

Laser beams, electron beams or plasma are used as high temperature heat sources
to melt the surface of the substrate to produce a molten pool. The raw materials are
synchronously fed into the molten pool through the feeding equipment. The raw materials
are solidified after rapid melting and cooling and form a metallurgical bond with the
matrix material. In this process of high temperature and rapid cooling, defects such as
incompletely melted powder adhering to the surface of the formed part will inevitably
occur, resulting in the powder defects of [90–93].

The research shows that the optimization of the process parameters of the directed
energy deposition technology can reduce the surface roughness of the formed parts and
improve the adhering powder defects. The typical process parameters of the directed
energy deposition technology such as laser power and powder feeding rate affect the
powder adhesion in the forming process (Figure 6). Therefore, it is also very important
to understand the process parameters in the directed energy deposition technology. On
the one hand, the larger the laser power, the wider and higher the cladding layer and
the larger the molten pool. The reason is that the heat input increases, which leads to the
increase in the temperature rise in the powder air and the ability of the molten pool to melt
the powder. On the other hand, the larger the powder feeding rate, the wider and higher
the cladding layer but the smaller the penetration of the substrate. The reason is that the
energy absorption ratio of the powder substrate increases, which leads to the increase in
the powder melting amount, which is beneficial to improve the utilization rate of laser
energy and reduce the adhering powder [94–97].
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3. Key Issues of Titanium Alloys in Medical Additive Manufacturing
3.1. Cause of Powder Adhesion

The application of additive manufacturing technology in the medical field has realized
the complex structural design of orthopedic implant devices, such as porous structure
and anatomical site matching, which provides a new choice for the production process
of orthopedic implant devices [98,99]. It must have mechanical properties that meet the
requirements of natural human bone parameters, including compressive strength, strain
and elastic modulus [100]. For example, most of the mechanical properties of solid metals
are higher than those of natural human bone. At the same time, it will lead to mismatched
parameters and the problem of stress shielding [101]. Later, experts found that the me-
chanical properties of orthopedic implants can be reduced by changing the structure and
adjusting the relative density, so as to meet the requirements for implantation in the hu-
man body [102–105]. Secondly, it should have good bio-functionality. Considering the
adaptability of the implant to bone after implantation, the metal material of the implant
should have sufficient biocompatibility to ensure no rejection after implantation. Surface
polishing can not only reduce the surface roughness of orthopedic implants and reduce
friction, but also improve cell adhesion and osteogenic ability [106]. The common methods
of orthopedic implants include mechanical polishing [107], chemical polishing [108] and
fluid polishing [109]. In addition, the final cleaning process of the implant is to ensure the
safety of the implant. As mentioned above, three different processes in additive manu-
facturing technology produce adhering powder. This directly affects the bio-functionality.
The high-speed impact and diffusion in the binder jetting process, the increase or settle-
ment of the molten pool in the powder bed fusion process and the rapid heat input in
the directed energy deposition process are all causes of powder adhesion. In additive
manufacturing, a thin powder layer is laid and selectively melted or bonded layer by
layer to construct a component. In this process, a reaction of high temperature and rapid
cooling occurs, or laser high-speed impact and so on [110]. The metal powder diffuses to
form a uniform layer before selective melting using a melting or suitable liquid binder.
Due to the small size of the powder near the melting zone and the capillary action of the
adhesive liquid, the adhesion of fine powder to the contour of the component is inevitable.
In the process of layer-by-layer construction, the heat dissipation part of the laser source
melts the powder around the contour edge, resulting in the phenomenon of the adhering
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powder [111]. This disadvantage caused by additive manufacturing technology also affects
the bio-functionality of orthopedic implants. By implanting the SLM-formed titanium alloy
bone scaffold into the femur of the knee joint of the small Xiang pig’s hind leg for 30 days,
Fan found that the scaffold with no residual powder after post-processing and conforming
to the bionic bone structure had good biocompatibility, and there was no inflammation and
infection in the surrounding tissue after implantation. In contrast, inflammation was found
in the wound of the piglet 3 days after implantation in the bone scaffold control group
with residual powder [112]. Therefore, the residual powder causes low forming quality
and large surface porosity, which is not conducive to cell adhesion. The bad thing is that
once the adhering powder falls off after implantation, it has an adverse effect on the human
body. After processing, it is necessary to remove the residual powder to ensure the forming
quality of the implant and avoid adverse reactions after implantation [113].

Residual powder refers to the insoluble metal powder particles left in the manu-
facturing parts after the forming is completed. The adhesion of residual powder is the
key problem in the medical additive manufacturing of titanium alloy. For the removal
of residual powder, scholars [114] have found that the use of ultrasonic and sandblast-
ing methods can remove and improve the forming quality of the implant. For example,
Zebrowski et al. [115] used sandblasting to modify the surface of the implant and explored
the modification effect under different working pressures. The results showed that sand-
blasting can remove the residual powder of the implant, promote osseointegration and
reduce the risk of bacterial infection and surgical complications. In addition, as a new
surface modification technology, acoustic surface modification technology is safe, simple
and effective. It can improve surface quality and reduce surface porosity without con-
tact [116]. In medical additive manufacturing, any loose powder trapped in the pores of
orthopedic implants and powder adhered to the surface may be discharged into the body,
causing inflammation or blocking blood vessels. It is very important to master the method
of removing adhering powder.

3.2. Adhering Powder Removal Method
3.2.1. Ultrasonic Cleaning

Ultrasonic cleaning is the use of ultrasonic cavitation in the liquid, accelerating the
effect and the role of direct flow, in order to overcome the adhesion of particles. Ultrasonic
cleaning can disperse and peel the residual metal powder from the surface of the sample and
the interior of the pore structure so as to achieve the purpose of cleaning. As summarized
in Table 1, the advantages and disadvantages of ultrasonic cleaning are that the ultrasonic
wave has high frequency, short wavelength, strong directional propagation and can be
aggregated into a directionally narrow wire harness. It has strong reflection ability, high
power, concentrated energy and is much larger than the general acoustic wave. It has
diffraction, projection and other characteristics. The wire harness makes the bubble surface
have a certain velocity gradient, which can destroy the adhesion of the particles and thus
break away from the surface of the cleaned object. It is often used for cleaning workpieces
with complex surface shapes, fine holes and slits. Ultrasonic cleaning can be used not
only to clean medical devices but also for post-processing in additive manufacturing [117].
Changing the process parameters of ultrasonic cleaning can effectively remove the adhesive
powder. For example, Tan [118] studied the influence of cavitation intensity on it, and
proposed a high-strength ultrasonic cleaning process. It was found that by increasing the
cavitation intensity of ultrasonic cleaning, some of the melted adhesive powder that is
difficult to remove in additive manufacturing can be removed, which improves the cleaning
efficiency and the cleanliness of additive manufacturing samples. In addition, ultrasonic
cleaning can also clean the lattice structure. For example, Lyczkowska et al. [119] used
ultrasonic cleaning to clean the lattice structure, which verified that ultrasonic cleaning
can effectively remove loose and unmelted powder. Wang et al. [120] added ultrasonic
cleaning in the post-processing cleaning process, and the removal rate of loose particles
exceeded 90%.
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Table 1. The advantages and disadvantages of ultrasonic cleaning.

Advantages Disadvantages

Low cost Very time consuming
Can be cleaned in batches May cause damage

Comprehensive cleaning range There is noise
Wide applicability

Environmental safety

3.2.2. Solid Medium Spray

The impact of high-speed solid medium flow is used to treat the surface of the sample
and the interior of the pore structure to achieve the purpose of cleaning up the residual
metal powder. More used are sandblasting [41,121] and dry ice spray [122]. The advantages
and disadvantages are shown in Tables 2 and 3.

Table 2. The advantages and disadvantages of sandblasting.

Advantages Disadvantages

Simple operation High cost
Thorough effect Will introduce sand particles

Environmental pollution-free Maintenance of machinery equipment
High efficiency

Wide application range

Table 3. The advantages and disadvantages of dry ice jetting.

Advantages Disadvantages

Fast process speed Operational difficulties
Low abrasiveness Raw materials difficult to store

No secondary waste generated There are security risks

Sandblasting technology uses compressed air as the power to form a high-speed
jet beam, and the abrasive is sprayed onto the sample to be processed at high speed.
Due to the impact and cutting effect of the abrasive on the sample, the loose or adhered
powder is peeled off from the sample so that the sample can obtain a certain degree of
cleanliness and a different roughness, and improve the mechanical properties. The main
parameters affecting the blasting effect are jet angle, compressed air pressure and abrasive
clock. Abrasive is divided into metal abrasives and non-metallic abrasives. Common
sandblasting abrasives include quartz sand, brown corundum, steel sand, etc. Initially,
sandblasting was used as a post-treatment process for mechanical parts to clean up dirt and
impurities on the formed surface of additive manufactured mechanical parts, and later was
also specifically used to treat adhering powder. Adam and Zimmer’s [123] research shows
that sandblasting successfully removes residual powder from the channels of specimens
produced by additive manufacturing with a diameter-to-length ratio of less than 1: 200.
Moon et al. [124] successfully removed the adhering powder inside the sample by using
compressed air to accelerate the injection of 120 particles the size of alumina particles by
the blast nozzle. Their study found that when the jet angle is 60◦ and the compressed air
pressure is 0.5 MPa, the effect of sandblasting to remove adhering powder is the best.

Dry ice jetting has been industrially tested since the 1980s and is the latest clean
technology established in many industries, and there is growing interest in this technol-
ogy [125]. The process is based on pneumatic injection and uses dry ice particles as a
one-way injection medium. Dry ice particles are composed of solid carbon dioxide with a
temperature of −78.5Â ◦C [126]. Hoenig et al. [127] proved that a cleaning system using
soft matter flowing through the surface can be used to remove smaller particles. Carbon
dioxide is the best soft material, and there is no secondary pollution after cleaning because
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dry ice will eventually sublimate under indoor conditions. Sherman et al. [128] found that
dry ice injection is a gas–solid two-phase jet operation of gaseous carbon dioxide and dry
ice particles, which has very good performance in removing particulate impurities. Toscano
and Ahmadi [129] studied the mechanism of dry ice jetting to remove powder particles by
introducing a torque balance model (rolling separation model) and force balance model
(sliding separation model). Liu et al. [130] described the process of removing powder
particles by impinging dry ice jet, quantitatively analyzed the particle removal efficiency
and the influence of process parameters of dry ice injection on removal efficiency was
discussed. The main parameters affecting the removal effect of dry ice jet are compressed
air pressure, jet angle and dry ice mass. The research shows that the powder removal effect
of dry ice jet is the best when the compressed air pressure is 0.4~1.2 Mpa, the dry ice mass
is between 125 and 135 kg/h and the jet angle is between 60◦ and 90◦.

3.2.3. Chemical Cleaning

Chemical cleaning refers to the use of chemical reagents to treat the surface of the
sample and the interior of the pore structure to achieve the purpose of cleaning the residual
metal powder. Chemical cleaning is a promising process [131] for parts with complex set
shapes; the advantages and disadvantages are shown in Table 4. For the sample of titanium
alloy as raw material in medical additive manufacturing, HF or HNO3 mixture is mostly
used for chemical cleaning. Surmeneva et al. [132] fabricated a porous Ti6Al4V titanium
alloy bone scaffold by using EBM technology, found a large amount of powder adhesion
and used HF/HNO3 to perform graded chemical etching on the sample. The results
clearly show that the grading of etching time can promote the removal of powder particles
attached to the surface and remove the powder inside the structure without seriously
reducing the mechanical properties. Lyczkowska et al. [119] used a mixture of 80% H2O,
6% HF and 14% HNO3, followed by a mixture of 99% H2O and 1% HF, to chemically polish
SLM-printed bone scaffolds to improve surface quality and remove loose powder particles
in porous structures. Brecht et al. [113] successfully removed residual powder particles in
bone scaffolds produced by additive manufacturing using chemical etching agents based
on HCl and H2O2.

Table 4. The advantages and disadvantages of chemical cleaning.

Advantages Disadvantages

Good cleaning effect Will produce wastewater
Efficient Complex operation

Cost is lower

3.2.4. Acoustic Dry Cleaning

The surface of the sample and the interior of the pore structure are treated by the oscil-
lation effect of the acoustic wave to achieve the purpose of cleaning up the residual metal
powder. The advantages and disadvantages are shown in Table 5. Buhl et al. [133] used high-
intensity low-frequency sound to remove and collect residual powder. Gibbs et al. [134]
found that the residual powder of metal materials can be cleaned by low-frequency acoustic
waves. Seiffer et al. [135] explored the relationship between powder detachment rate and
acoustic frequency when removing powder by acoustic waves. A frequency between 28 khz
and 40 khz works best.

Table 5. The advantages and disadvantages of acoustic dry cleaning.

Advantages Disadvantages

Comprehensive cleaning Inefficiency
Pollution free Expensive equipment

Simplicity of operation
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In the early days, there were some methods to remove the residual powder, such as
microwave boiling [136] and vacuum pumping. However, because the metal reflects the
microwave, the microwave cannot be vibrated to the metal material, so it was gradually
replaced by other technologies.

4. General Characterization Method
4.1. Optical Inspection Method

The optical inspection method can determine the presence of residual insoluble par-
ticles in the porous structure of the repeated unit lattice under the premise that the unit
lattice arrangement of the product structure allows full thickness light transmission. Firstly,
the conventional open space of the unit is aligned with the light source and imaging equip-
ment; the light source can be a lamp or fiber optic lamp. Secondly, the microscope focusing
function is used to ensure clear visualization of the open space. Blocked or closed pores
are shielded and may indicate that residual material is trapped within the lattice structure;
finally, the visible area of the blocked pores can be measured to obtain semi-quantitative
results, so as to confirm whether there are residual insoluble particles [137].

4.2. Microscopy

Use one or more suitable equipment such as X-ray microscope (XRM), optical micro-
scope or scanning electron microscope to observe the sample, clear photos are recorded
and retained (with or without residual metal powder, residue particle count) with different
magnifications (n ≥ 2) that can explain the cleaning effect [137]. Thin porous structures
(two apertures and less thickness) can be observed non-destructively. The residual insolu-
ble particles can be directly observed by X-ray microscope (XRM), optical microscope or
scanning electron microscope (Figure 7); the thicker porous structure can be embedded
with a transparent embedding medium to realize the fixation of internal particles, cut by
the standard metallographic analysis method and the residual particles can be quanti-
fied by metallographic microscope or SEM image. Inlay should be confirmed to ensure
that loose insoluble particles of the inlay medium are not introduced during the cutting
process. The inspection plane is cut out with a toothless saw or wire cutting along the
specified position to observe whether the residual insoluble particles attached to the device.
Schllephake et al. [138] studied the morphology of the released titanium particles; trans-
mission electron microscopy was used to observe the ultrastructure and metal particles
on the titanium plate for the treatment of jaw fractures. Hasib et al. [139] used abrasive
cutting to divide the Ti-6Al-4V honeycomb structure into two parts parallel to the build
direction. Next, the parting surface is polished to obtain the best surface for microscopic
examination. The areas with and without powder in the mesh can be clearly distinguished
by a digital microscope, and the amount of residual powder is measured by a surface
area measurement.
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4.3. Micro-CT Examination

Micro-CT (micro computed tomography), is a non-destructive 3D imaging technique
that allows a clear understanding of the internal microstructure of a sample without
damaging it. Micro-CT can provide complete geometric and structural information. The
former includes the size, volume and spatial coordinates of each point of the sample, and
the latter includes material information such as attenuation value, density and porosity of
the sample. In addition, the finite element analysis function of SCANCO can also provide
mechanical parameters such as elastic modulus and Poisson’s ratio of the tested material,
and analyze the stress and strain of the sample. Therefore, the presence of residual insoluble
particles in highly complex instruments can be assessed by micro-CT, which indirectly
evaluates the residual amount of the powder in the open space of the part and the level of
particle residue by calculation. James Robert [141] found that micro-CT is relatively mature
in additive manufacturing. As a method to determine the porosity and geometry of printed
samples, in some cases, the presence of inclusions or contaminants can also be determined.
Hunter et al. [142] used micro-CT to observe powder adhesion inside porous structures
formed by additive manufacturing.

4.4. Sample Weighing Method—Codification

After cleaning and verification, the sample was dried to constant weight and weighed
with a balance with an accuracy of no less than 0.0001 g, denoted as m0. After processing,
the sample was dried to constant weight and weighed, denoted as m1, and the mass change
before and after processing was calculated as ∆m1 = m0 −m1, which is the residual amount
of metal powder; after another cleaning, the sample was dried to constant weight, weighed,
denoted as m2, and the cleaning effect was characterized by m1 − m2.

4.5. Surface Roughness Measurement

The surface roughness is a microscopic geometric error that has an important influence
on the service life and reliability of mechanical products. The roughness of the formed part
was measured by surface roughness measuring instruments such as automatic stereo zoom
microscope, and then the defect degree of the formed part was analyzed by combining
the data of surface morphology and surface roughness [143,144]. Shi et al. [70] analyzed
the influence of surface roughness by changing laser parameters, and found that process
parameters affected the generation of surface defects. Defects are usually powder sticking,
spheroidization and splashing, and these defects affect the flatness of the surface, which is
also the main reason for the surface roughness. It was found that if the process parameters
are not adjusted well, some of the powder will not melt in time, splash out from the
molten pool, and then bond the unmelted powder to form sticky powder, resulting in
significant surface defects and higher surface roughness [76]. The complex structure can
be embedded with a transparent medium to realize the fixation of internal particles. The
standard metallographic analysis method was used to cut, and the surface roughness was
measured after cutting.

5. Application of Additive Manufacturing Titanium Alloy in Medical Field

The drugs produced by additive manufacturing generally do not use titanium alloys
and use polycaprolactone (PCL) materials with the advantages of biodegradability, drug
permeability and biocompatibility. Medical titanium alloys based on additive manufac-
turing are mainly used in orthopedic implants and medical devices. Orthopedic implants
include artificial prostheses, bone joints, interbody fusion cages, bone plates, artificial bone
trabeculae, etc. Medical devices include prostheses and orthopedic instruments, etc.

5.1. Orthopedic Implants

Titanium alloy is widely used in the production of orthopedic implants due to its
good properties. Bone is mainly composed of outer cortical bone and inner cancellous
bone, and the elastic modulus is about 0.5 GPa and 10–20 GPa [145]. The elastic modulus
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of dense titanium alloy is about 110 GPa. The elastic modulus of titanium alloy printed
by additive manufacturing is lower than that of ordinary titanium alloy and is closer to
the physiological structure of bone [146]. Titanium alloy has good biocompatibility, is
conducive to bone ingrowth and osseointegration and is suitable for the preparation of
orthopedic implants [147]. Titanium alloy not only has rigidity, but also has outstanding
flexibility and good fatigue resistance. It is suitable as a joint support and can replace other
metal materials. Titanium alloy is insoluble in strong acid and alkali and has high specific
strength at 500 ◦C. It is non-toxic to the human body and has good chemical stability, which
is suitable for implantation in the human body [148]. Titanium alloy has good corrosion
resistance, fatigue resistance and stability. Compared with other metal materials, its elastic
modulus is closer to bone and is suitable for orthopedic applications.

It is estimated that more than 2 million bone transplants, 280,000 hip fractures, 700,000
spinal fractures, 250,000 wrist fractures and 700,000 skull repairs are performed worldwide
each year [149]. Due to the complex shape of human bones, bone defect reconstruction is
one of the most difficult challenges faced by surgeons. With the increase in traffic accidents
and tumors, bone defects increase sharply, thus increasing the demand for orthopedic
implants. In these cases, some experts have proposed medical titanium alloy custom
orthopedic implants based on additive manufacturing.

5.1.1. Skull Implants

There are situations where implants are not subjected to significant and rather continu-
ous bearing or other stresses, and can serve as bone replacement. This is especially true for
skull-bone-related implants, as illustrated in Figure 8. Murr reported a reticular skull im-
plant made by EBM technology [150]. Wadea Ameen et al. [151] successfully manufactured
thin titanium alloy skull implants for skull defect reconstruction by using EBM technology;
the porosity is 49.81% and the pore size is 700 µm. Alida Mazzoli et al. [152] realized the
cooperation of CT imaging, computer modeling and additive manufacturing technology,
and formed a titanium alloy skull implant with biocompatibility by additive manufacturing.
Zhao et al. [153] found that personalized titanium alloy skull prostheses based on additive
manufacturing printing have better impact resistance, but also can effectively repair skull
defects and protect intracranial brain tissue.

Metals 2023, 13, x FOR PEER REVIEW 17 of 31 
 

 

 
Figure 8. Rhombic dodecahedral element reticulated Ti-6Al-4V mesh skull replacement prototype 
fabricated by EBM. Reprinted with permission from Ref. [150]. Copyright 2017,copyright Murr L E. 

5.1.2. Jaw Implants 
Tian Kaiyue et al. [154] used porous scaffolds of titanium alloy made by laser selec-

tive melting technology to repair jaw defects. The study found that jaw implants made of 
titanium alloy based on additive manufacturing were feasible as substitute materials for 
bone defects. Yan et al. [155] used Ti-6Al-4V titanium alloy to fabricate a mandibular pros-
thesis with a 3D mesh porosity of 81.38% and a strut size of 0.7 mm by EBM, which meets 
the requirements for implantation in a human body (Figure 9). Moiduddin et al. [156] used 
Ti-6Al-4V titanium alloy powder to obtain titanium cheekbone implants by EBM technol-
ogy and verified its feasibility. Mommaerts [157] fabricated titanium periosteal mandibu-
lar implants using additive manufacturing technology, which provides another solution 
for patients with extreme jaw atrophy. At the same time, the International Working Group 
on Additive Manufacturing of Mandibular Implants conducted multiple studies. After 
one year, 15 patients with permanent mandibular implants were followed up. All patients 
had normal lives and no complications. It is proved that additive manufacturing is a 
promising tool for patients with extreme jaw atrophy and meets the high expectations of 
patients without complications [158]. 

Figure 8. Rhombic dodecahedral element reticulated Ti-6Al-4V mesh skull replacement prototype
fabricated by EBM. Reprinted with permission from Ref. [150]. Copyright 2017, copyright Murr L E.

5.1.2. Jaw Implants

Tian Kaiyue et al. [154] used porous scaffolds of titanium alloy made by laser selective
melting technology to repair jaw defects. The study found that jaw implants made of
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titanium alloy based on additive manufacturing were feasible as substitute materials for
bone defects. Yan et al. [155] used Ti-6Al-4V titanium alloy to fabricate a mandibular
prosthesis with a 3D mesh porosity of 81.38% and a strut size of 0.7 mm by EBM, which
meets the requirements for implantation in a human body (Figure 9). Moiduddin et al. [156]
used Ti-6Al-4V titanium alloy powder to obtain titanium cheekbone implants by EBM
technology and verified its feasibility. Mommaerts [157] fabricated titanium periosteal
mandibular implants using additive manufacturing technology, which provides another
solution for patients with extreme jaw atrophy. At the same time, the International Working
Group on Additive Manufacturing of Mandibular Implants conducted multiple studies.
After one year, 15 patients with permanent mandibular implants were followed up. All
patients had normal lives and no complications. It is proved that additive manufacturing is
a promising tool for patients with extreme jaw atrophy and meets the high expectations of
patients without complications [158].
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5.1.3. Dental Implant

Tooth defect or tooth loss seriously affects people’s health. With the acceleration of
population aging, the number of edentulous patients in China has reached 15 million, and
the number of patients with tooth defects has exceeded 300 million [159]. It is an urgent task
to provide comfortable and safe denture restoration methods with high chewing efficiency.
With the development of the social economy and the progression of science and technology,
people’s requirements for quality of life continue to improve, and the preparation of
personalized dental implants has become the first choice for oral rehabilitation. As a routine
procedure for replacing missing teeth, implanted dentures demonstrated significant oral
functional rehabilitation and excellent long-term prognosis [160]. Wang et al. [161] used
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MTT colorimetric experiments to verify that the titanium alloy dental implant printed
by additive manufacturing technology has a cytotoxicity level that meets the clinical
application requirements of oral implant materials. The titanium dental implant formed by
Tolochko et al. [162] using additive manufacturing technology meets the requirements of
medical dental implants. Koike et al. [163] compared the fatigue life of different titanium
alloy dental implants based on additive manufacturing. Gonzalez and Rosca [164] proved
the passivation and corrosion resistance of titanium alloy dental implants by additive
manufacturing. New Zealand rabbits are widely used to evaluate the function of dental
implants. Therefore, Hamza et al. carried out animal experiments with titanium alloy
dental implants formed by SLM. The results showed that the dental implants formed by
titanium alloy powder did not cause rejection in animals, and the osseointegration effect
was the best [165]. Zhou et al. [166] fabricated titanium alloy dental implants as shown in
Figure 10 by SLM technology.
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5.1.4. Spinal Implants

Scholars believe that through the use of AM, it is possible to manufacture porous
titanium cages with better loadbearing characteristics, less micromotion, high compressive
strength, osteoconductivity and bone-bonding ability, eliminating the need for autograft-
ing, and possessing interconnected pores for easy fluid flow [167,168]. China’s Huaxiang
Group’s spinal implants of titanium alloy with lattice shapes, printed by selective laser
melting, have been recognized by the National Medical Products Administration (NMPA).
In 2017, the US Food and Drug Administration (FDA) approved two additive manu-
facturing titanium alloy spinal implants. One is a 3D-printed titanium vertebral body
implant HAWKEYE Ti and the other is a NEXXT MATRIXX 3D-printed spinal implant.
Hollander et al. [169] fabricated porous spinal implants with different pore sizes using
additive manufacturing technology and verified that the surface of the implant allowed
the growth of human osteoblasts. Lin et al. [170] obtained a porosity of 55% using SLM,
exhibiting a compressive elastic modulus comparable to that of natural bone (2.97 GPa)
and achieving higher bone growth efficiency compared with a traditional PEEK cage. A
case of C2 spondylectomy and reconstruction was recorded by Xu et al. A 12-year-old boy
with Ewing’s sarcoma was implanted with an AM vertebral implant. Xu et al. fabricated
vertebral implants with Ti-6Al-4V titanium alloy [171]. Shunsuke et al. [172] verified the
effectiveness and safety of the porous active titanium spinal fusion device fabricated by
additive manufacturing (Figure 11).
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5.1.5. Chest Implants

In 2013, Turna et al. reported the first 3D-printed chest implant. It consisted of a
plate for the sternum and ribs [173]. Alvarez et al. [174] fabricated titanium alloy chest
implants using additive manufacturing technology to reconstruct large chest wall resection
and maintain thoracic integrity. Additionally, the implant provided excellent aesthetic and
functional effects. The virtual planning and production of preoperative implants reduces
the operation time and uncertainty, and improves the safety and accuracy. Six months
after implantation, there were no complications such as pain, infection, dislocation or
abnormal movement related to implantation. Goldsmith et al. [175] reconstructed bone
defects in patients with titanium alloy ribs and hemisternal implants by using powder
bed fusion technology. The patient was also reviewed 18 months after the procedure and
was found to have no symptoms and did not describe pain, local tenderness or dyspnea.
Goldsmith et al. made the titanium alloy chest implant shown in Figure 12. Liu et al. [176]
used titanium alloy artificial ribs made by additive manufacturing to apply to patients
with partial resection of ribs and sternoclavicular bones. As a result, four operations were
successful and no surgical complications occurred.
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5.1.6. Pelvic Implants

In trauma patients, pelvic injury is not uncommon, mainly due to impact, rolling,
extrusion, high fall and other damage. In the past, additive manufacturing technology
was mainly used to assist in preoperative diagnosis and simulated surgery of pelvic
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fractures. Later, more and more studies have proved the feasibility of additive manu-
facturing of titanium alloy pelvic implants [177,178]. Wong et al. [179] used titanium
alloy to manufacture pelvic special implants and then implanted them and verified the
effect. Broekhuis et al. [180] customized and designed titanium alloy pelvic implants for
acetabular reconstruction after tumor resection using additive manufacturing technology.
Park et al. [181] used EBM technology to make a pelvic implant with less pore defects
(Figure 13), which was successfully applied to a 35-year-old woman with Ewing’s sarcoma
of the left pelvis. In order to enhance the inward growth of the bone, the connection
between the bone and the implant was designed as a lattice structure.
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In addition to the above major organ implants, there are also titanium alloy bone
scaffolds (Figure 14) [182], bone plates [183], hollow screws [184], hip joints [185], knee
joints [186], etc.
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5.2. Medical Devices

Medical devices are mainly concentrated in prostheses and orthopedic instruments.
Loss of a limb is a traumatic event; whether as a result of an accident, a fight or a decision to
tackle a growing tumor or other worsening disease, amputation can have a lasting impact
on a patient’s quality of life and can cause distress to the patient’s family and friends.
Therefore, it is necessary to have a prosthetic leg or arm that can meet the mechanical
requirements for a long time, so that the patient can fully restore motor functions such as
standing and walking. However, the use of modern additive manufacturing technology can
improve artificial arms and legs. Based on these technologies, low-cost and fully functional
prostheses can be produced for amputees. For example, Herbert et al. [187] used an efficient,
simple additive manufacturing technology to develop a simple titanium alloy prosthetic
foot that can be used comfortably by patients. Zuniga et al. [188] prepared a low-cost 3D-
printed hand for children with upper limb dislocation. The results of the subsequent survey
showed that prosthetic hands can have a positive impact on the quality of life of children
in a variety of activities at home and school. The ability of foot orthoses [189], ankle–foot
orthoses [190] and wrist splints customized by additive manufacturing technology has
been proved to have good adaptability and sufficient strength in limited clinical evaluation.

6. Summary and Outlook

In this paper, the phenomenon and causes of powder adhesion are reviewed from the
perspective of the process involved in additive manufacturing. The influence of different
processes on the powder adhesion of titanium alloy forming parts is expounded. The
mainstream powder adhesion removal methods are introduced, and the application of
additive manufacturing titanium alloy in the medical field is reviewed. In summary, com-
pared with traditional manufacturing technology, additive manufacturing has unparalleled
advantages. With the rapid development of society and the improvement of people’s living
standards in recent years, people pay more and more attention to their own health and have
higher requirements for quality of life. Therefore, medical devices customized according to
individuals have become a trend, which has promoted the application of additive manufac-
turing technology in the medical field. More and more extensively, the use of titanium alloy
as raw material for additive manufacturing technology has especially become a research
hotspot. The application prospect of titanium alloy additive manufacturing technology in
the medical field is very broad.

However, in the medical field, the key problem restricting the application of tita-
nium alloy additive manufacturing technology is still the problem of adhesion powder.
The domestic and foreign scholars for titanium alloy additive manufacturing technology
research mostly focused on mechanical properties and biological properties, etc. The re-
moval and characterization of internal adhering powder is a relatively small degree of
research. Therefore, it is necessary to develop new and better medical titanium alloy addi-
tive manufacturing internal and surface powder removal technology that is suitable for the
complex structure of titanium alloy and forms a perfect, nondestructive and testing-efficient
cleaning method.
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