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Abstract: In this paper, the effect of rare earth Ce content on the morphology, composition, type
and size distribution of inclusions in W350 non-oriented silicon steel was investigated by means of
ICP-MS (inductively coupled plasma mass spectrometry), SEM/EDS (scanning electron microscope-
energy Dispersive Spectrometer), and ASPEX (automated SEM/EDS inclusion analysis). The results
showed that with the increase of Ce content in the steel, the modification sequence of inclusions
was CeAlO3→Ce2O2S→CexSy. The type and size distribution of inclusions in the steel obviously
changed with the difference in added Ce content. When the added Ce content in the steel was 10 ppm,
14 ppm, 20 ppm and 30 ppm respectively, the rare earth inclusions were mainly CeAlO3-Ce2O2S.
Furthermore, when the added Ce content increased to 60 ppm, the rare earth inclusions were mainly
Ce2O2S with a small amount of CeAlO3 contained in part inclusions. When the added Ce content
increased continually to 95 ppm, the rare earth inclusions were mainly CexSy-Ce2O2S. The critical
Ce content for the conversion between CeAlO3 and Ce2O2S was 41 ppm. To ensure that inclusions
transform from CeAlO3 to Ce2O2S, the Ce content in the steel should be greater than 41 ppm. Under
the current experimental conditions, it was found that when the Ce content was 20 ppm, the number
density and proportion of inclusions in the steel were lower, and their average size was larger. When
the added Ce content increased to 95 ppm, the number density of inclusions in the steel significantly
increased, which deteriorated the steel cleanliness.

Keywords: rare earth Ce; inclusions; modification; non-oriented silicon steel; rare earth oxysulfides

1. Introduction

High-grade, non-oriented silicon steel, as the functional material for high-end power
equipment [1], is widely applied to the core of large generators and high-efficiency, energy-
saving motors and high-efficiency, energy-saving appliances and electric vehicle man-
ufacturing because of its magnetic characteristics of low iron loss and high magnetic
induction [2–4]. With the implementation and promotion of frequency conversion tech-
nology in the home appliance industry, the rise of the new-energy automobile industry
and the development of energy-saving, high-efficiency motors, there is an increasing de-
mand for the magnetic properties of high-grade, non-oriented silicon steel with low iron
loss and high magnetic induction [5]. The factors affecting the magnetic properties of
high-grade, non-oriented silicon steel are mainly manifested in two aspects: one is the
precise control of the composition and cleanliness of the molten steel that is also the basis
for determining the magnetic properties of high-grade, non-oriented silicon steel [6]; and
the other is a suitable plastic processing and heat treatment process, as there are many
micro-sized inclusions in steel which can have adverse effect on the magnetic domain
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movement, favorable texture formation and recrystallization process in silicon steel [7].
Rare earth elements have attracted the attention of metallurgical workers much more,
because of their unique metallurgical properties. By adding a small amount of rare earth
elements into molten steel, the active oxygen and sulfur in the molten steel can be reduced
to a lower level, and the microstructure of the finished product can be improved by refining
the solidification structure. Meanwhile, rare earth elements can also change the inherent
type and morphology of inclusions, reduce the harm of inclusions in experimental molten
steel, and improve the related properties of steel products [8–14]. Takashima et al. [15,16]
proposed the addition of composite rare earth and Al to non-oriented silicon steel. The
results showed that after adding rare earth alloy and Al, the inclusion size became larger,
the grain growth rate was significantly improved, the residual stress after annealing was
reduced, and the product performance was significantly improved. Wu [17], Liu [18], and
Yuan [19] have investigated the application of rare earth elements in non-oriented silicon
steel. The research content was mainly based on the addition of pure rare earth elements or
rare earth alloy-modified inclusions. Due to their strong deoxidation and desulfurization
ability, it was easy to generate rare earth oxides, rare earth sulfides and rare earth oxysulfide
compounds by adding appropriate amount of rare earth elements after pre-deoxidation
of molten steel. By adding rare earth elements or trace amounts of alloying elements, this
could increase the size of inclusions, weaken the pinning effect of original fine inclusions
on grain boundaries and magnetic domain walls, make the magnetization process easier,
reduce hysteresis loss, and achieve the combination of high magnetic induction and low
iron loss. The dispersion precipitation of rare earth elements in molten steel can refine the
solidification structure and increase the beneficial texture composition, further improving
the magnetic properties of the product. However, it is still unclear whether the mechanism
of high melting point phases, such as rare earth oxides (sulfides) as nucleation particles to
modify inclusions, can change the type, size and distribution of inclusions in non-oriented
silicon steel. Therefore, in this work, efforts have been made to investigate the modification
of rare earth Ce on inclusions in W350 non-oriented silicon steel in the laboratory with ther-
modynamic calculation and experimental analysis, aiming to lay a theoretical foundation
for rare earth Ce to modify inclusions in non-oriented silicon steel and provide guidance
for production.

2. Materials and Methods

The experimental slab of W350 non-oriented silicon steel was produced by a domestic
steel company. The slag was removed cleanly before the hot metal entered the desulfuriza-
tion station, and the slag was removed twice after the deep desulfurization treatment to
[S] ≤ 0.0010%, aiming to minimize the high-sulfur slag entering the converter. The scrap
steel required self-produced, high-quality scrap steel, of which about 50% was silicon steel
scrap. When the converter was tapping, the slide plate and slag stopper were used to stop
the slag, and the thickness of the top slag of the ladle was required to be less than 60 mm.
Lime was added to the top slag treatment during the tapping process, and the argon flow
rate was controlled during the tapping process to prevent the top slag of the ladle from
agglomeration. In the RH refining process, it was forbidden to heat up the molten steel
by adding aluminum, after the molten steel had arrived at the RH refining station. After
the decarburization, the oxygen content of the molten steel was less than 300 ppm before
alloying. Following this, the molten steel was cast into a slab. The raw materials used in
the experiment were from the continuous casting slab. The chemical composition of raw
materials is listed in Table 1.

Table 1. Chemical composition of experimental raw materials (wt.%).

Element C Si Mn P S Als N

Content 0.0020 2.70 0.32 0.015 0.002 0.50 0.0015
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The 150 kg vacuum induction furnace was used for smelting, and the furnace lining
was rebuilt before the experiment. The first furnace used pure iron as the raw material to
wash the furnace. During the experiment, it was necessary to control the vacuum degree
in the furnace, keep the vacuum degree stable; the composition was then adjusted before
tapping and rare earth cerium (purity 99.99%) was added, as shown in Table 2. These rare
earth cerium alloys were purchased from Beijing Dream Material Technology Co., Ltd.
(Beijing, China).

Table 2. Chemical composition of rare earth Ce alloy (wt.%).

Element Fe Mg Ni Si Ca C W Ce/RE

Content <0.050 <0.050 <0.050 0.012 0.023 <0.010 0.035 99.9

The steel composition was detected using inductively coupled plasma mass spectrom-
etry (ICP-MS). Table 3 shows the chemical composition of the experimental steel. The
rare earth Ce content in 1#~6# experimental steels was 10 ppm, 14 ppm, 20 ppm, 30 ppm,
60 ppm, and 95 ppm, respectively. Samples (20 mm × 15 mm × 15 mm) were taken from
the edge of the slab after removing the oxide scale of the slab surface, as shown in Figure 1.
After grinding and polishing, the morphology, size and composition of inclusions in the
steel were detected and analyzed using automated SEM/EDS inclusion analysis (ASPEX),
scanning electron microscope (SEM) and energy dispersive spectrum (EDS) apparatus. The
content of total oxygen (T.O.) and nitrogen in the steel were detected by inert gas fusion
pulse-infrared absorption spectroscopy.

Table 3. Chemical composition of experimental steel (wt.%).

Specimen C Si Mn P S Als N O Ce

1# 0.006 2.65 0.17 0.013 0.002 0.22 0.0017 0.0005 0.0010
2# 0.008 2.30 0.22 0.003 0.002 0.58 0.0018 0.0007 0.0014
3# 0.005 2.67 0.19 0.013 0.002 0.44 0.0020 0.0006 0.0020
4# 0.012 2.30 0.22 0.003 0.002 0.58 0.0020 0.0008 0.0030
5# 0.008 2.71 0.18 0.013 0.002 0.41 0.0025 0.0004 0.0060
6# 0.002 2.31 0.23 0.004 0.002 0.49 0.0025 0.0004 0.0095
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Figure 1. Sampling diagram of the experimental steel.

3. Results

Figure 2 shows the typical morphology and energy spectrum of inclusions in the steel
with 10 ppm Ce content. It can be seen that the type of inclusions in the steel was mainly
CeAlO3-Ce2O2S-(AlN), where CeAlO3-Ce2O2S are light gray, and AlN in some inclusions
was coated with CeAlO3-Ce2O2S. The main morphology of CeAlO3-Ce2O2S-(AlN) inclu-
sions was spherical or ellipsoidal. The elemental mapping of a typical inclusion is shown
in Figure 3.
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Figure 3. Elemental mapping of a typical inclusion in the steel with 10 ppm Ce content.

Figure 4 presents the typical morphology and energy spectrum results of inclusions
in the steel with 14 ppm Ce content. The inclusions were composite phases, mainly with
CeAlO3-Ce2O2S as the core, and the outer layer was wrapped with AlN. The core of some
inclusions was CexSy-CeAlO3 and its morphology was spherical. The outer layer was
wrapped with sharp-angled Al2O3-SiO2. The elemental mapping of a typical inclusion is
shown in Figure 5.
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Figure 5. Elemental mapping of a typical inclusion in the steel with 14 ppm Ce content.

Figure 6 shows the typical morphology and energy spectrum results of inclusions
in the steel with 20 ppm Ce content. The inclusions in the steel were mainly composite
phases, with CeAlO3-Ce2O2S as the core. The morphology of inclusions was spherical or
ellipsoidal, and the outer layer was wrapped with AlN. The elemental mapping of a typical
inclusion is shown in Figure 7.
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Figure 7. Elemental mapping of a typical inclusion in the steel with 20 ppm Ce content.

Figure 8 shows the typical morphology and energy spectrum results of inclusions in
the steel with 30 ppm Ce content. It can be seen that the main types of inclusions in the
steel were CeAlO3-Ce2O2S-AlN. The inner layer was wrapped with CeAlO3-Ce2O2S and
its morphology was spherical. The outer layer was wrapped with irregularly shaped AlN.
The elemental mapping of a typical inclusion is shown in Figure 9.
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Figure 9. Elemental mapping of a typical inclusion in the steel with 30 ppm Ce content.

Figure 10 shows the typical morphology and energy spectrum results of inclusions
in the steel with 60 ppm Ce content. It was found that when the Ce content increased to
60 ppm, the types of inclusions in the steel were mainly CeAlO3-Ce2O2S-AlN and Ce2O2S-
AlN. The morphology of Ce2O2S inclusions was approximately spherical. As shown in
Figure 11, the core of the inclusion was CexSy-Ce2O2S and the outer layer was wrapped
with MgO·Al2O3 phase.
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Figure 11. Elemental mapping of a typical inclusion in the steel with 60 ppm Ce content.

Figure 12 presents the typical morphology and composition of inclusions in the steel
with 95 ppm Ce content. When the Ce content increased to 95 ppm, the core of inclusions
in the steel was CexSy-Ce2O2S and its morphology was spherical or ellipsoidal. The outer
layer of some inclusions was wrapped with AlN or MgO·Al2O3 phase. The elemental
mapping of a typical inclusion is shown in Figure 13.
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Figure 13. Elemental mapping of a typical inclusion in the steel with 95 ppm Ce content.

4. Discussion
4.1. Effects of Rare Earth Ce Content on Inclusion Type

The type of inclusions in W350 non-oriented silicon steel was mainly Al2O3 without
rare earth Ce. With the addition of Ce, reactions with O and S in molten steel would occur
to form a variety of oxides, sulfides and oxysulfides. The possible reactions involved are as
follows [20–24]:

2[Al] + 3[O] = (Al 2O3 ) ∆Gθ = −1202000 + 386.3T J/mol (1)

[Ce] + 2[O] = (CeO 2 ) ∆Gθ = −852720 + 249.96T J/mol (2)

[Ce]+
3
2
[O] =

1
2
(Ce 2O3 ) ∆Gθ = −714380 + 179.74T J/mol (3)

[Ce] + [S] = (CeS) ∆Gθ = −422100 + 120.38T J/mol (4)

[Ce] +
3
2
[S] =

1
2
(Ce 2S3 ) ∆Gθ = −536420 + 163.86T J/mol (5)

[Ce] +
4
3
[S] =

1
3
(Ce 3S4 ) ∆Gθ = −497670 + 146.30T J/mol (6)

[Ce] + [O] +
1
2
[S] =

1
2
(Ce 2O2S ) ∆Gθ = −675700 + 165.5T J/mol (7)
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[Ce] + [Al]+3[O] = (CeAlO3) ∆Gθ = −1366460 + 364.3T J/mol (8)

[Ce] + (Al2O3) = (CeAlO3) + [Al] ∆Gθ = −162837− 22.4T J/mol (9)

[Ce] + [S] + (CeAlO3) = (Ce2O2S) + [Al] + [O] ∆Gθ = 12870− 32.3T J/mol (10)

2[Al]+3[O] + (Ce2O3)= 2(CeAlO3) ∆Gθ = −1301800 + 368.6T J/mol (11)

(Ce2O3) + [S] = (Ce2O2S) + [O] ∆Gθ = 77530− 28T J/mol (12)

When the rare earth Ce is fed into molten steel, it not only reacts easily with Al2O3
to form CeAlO3, but also converts the generated Ce-containing inclusions. The possible
reactions involved are as follows:

2(CeAlO3)+2[Al]+3[S]= 2(Al2O3) + (Ce2S3) ∆Gθ = −743920 + 371.72T J/mol (13)

3(Ce2O2S)+2[Al]+3[S]= 2(CeAlO3)+2(Ce2S3) ∆Gθ = −824400 + 391.04T J/mol (14)

3(Ce2O2S)+4[Al]+6[S]= 2(Al2O3)+3(Ce2S3) ∆Gθ = −1568320 + 762.76T J/mol (15)

2(CeS) + [S] = (Ce2S3) ∆Gθ = −228640 + 86.96T J/mol (16)

The general expression of Gibbs free energy is:

∆G = ∆Gθ + RT ln J (17)

where J is the ratio of the activity product of the resultant and the activity product
of the reactant.

Assuming that the molten steel is an ideal dilute solution, and the solute follows
Henry’s law, one can satisfy the following formula for calculating activity and
activity coefficient [25]:

ai = fi · w[i] (18)

where ai is the activity of component i, fi is the activity coefficient of component i, and w[i]
is the mass percentage of the element i. Thus:

lg fi =
n

∑
j=1

ej
i · w[j] (19)

where ej
i is the interaction coefficient between j element and component i in molten steel. The

first-order interaction coefficient of each element in molten steel is listed in Table 4 [26–28].

Table 4. The first-order interaction coefficient of each element in molten steel.

ej
i

C Si Mn P S Al O Ce N

S 0.11 0.063 −0.026 0.029 −0.028 0.035 −0.27 −0.856 0.01
Al 0.091 0.0056 0.012 0.05 0.03 0.045 −6.6 −0.43 −0.058
O −0.45 −0.131 −0.021 0.07 −0.133 −3.9 −0.2 −0.57 0.057
Ce −0.077 - 0.13 1.77 −39.8 −2.25 −5.03 −0.003 -

Figure 14 shows the stability diagram of Al2O3-CeAlO3-Ce2O2S-CexSy in non-oriented
electrical steel. Obviously, with the increase in Ce content in the steel, the evolution
sequence of inclusions was CeAlO3→Ce2O2S→CexSy. Based on the experimental results,
the types of inclusions in the steel were mainly CeAlO3-Ce2O2S-(AlN) when the Ce content
was 10 ppm. When the Ce content was 14 ppm, the inclusions were composed of composite
phases. The core was mainly CeAlO3-Ce2O2S and the outer layer was wrapped with AlN.
Meanwhile, the core of some inclusions was CexSy-CeAlO3. When the Ce content was
20 ppm, the composition of inclusions was also composite phases with CeAlO3-Ce2O2S as
the core. When the Ce content was increased to 30 ppm, the main types of inclusions in the
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steel were CeAlO3-Ce2O2S-AlN. The above results showed that the rare earth inclusions in
the steel were mainly CeAlO3 + Ce2O2S when the added Ce content was 10~30 ppm.
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Furthermore, when the Ce content was increased to 60 ppm, the composition of
inclusions in the steel was mainly Ce2O2S and some inclusions contained a small amount of
CeAlO3. The inclusions were changed to CexSy-Ce2O2S when the Ce content was 95 ppm.
As shown in Figure 14, when the added Ce content is 95 ppm, the composition of the
inclusions is located near the boundary between CexSy and Ce2O2S, which was consistent
with the experimental results.

Figure 14 also shows that the critical Ce content for the conversion between CeAlO3
and Ce2O2S was 41 ppm. To ensure the inclusions transformed from CeAlO3 to Ce2O2S, the
Ce content in the steel had to be greater than 41 ppm. Due to the addition of rare earth Ce
elements, the formation of rare earth aluminates, rare earth oxygen sulfides and rare earth
sulfides with high melting point can occur in molten steel. These large-sized composite
inclusions can be used as heterogeneous nucleation particles and it is beneficial to control
the modification and precipitation of Al2O3, MnS, TiN, and AlN, thereby improving the
magnetic properties of the product.

4.2. Effects of Rare Earth Ce on Size and Distribution of Inclusions

Figure 15 shows the size distribution and the average size of inclusions in steel of
different heats. It shows that when the added Ce content in the steel was 10 ppm, the size of
inclusions in the steel was concentrated in the range of 2.0~4.5 µm and the corresponding
proportion was 10.3~21.4%. When the added Ce content was 20 ppm and 60 ppm, the
number density of inclusions in the steel was relatively low (11.11 #/mm2 and 15.14 #/mm2,
respectively). Addition of Ce decreased the amount of harmful inclusions (such as Al2O3,
MnS) in the steel, which is beneficial for improving the steel cleanliness and the magnetic
properties of the product. Moreover, the number density of >5.0 µm inclusions significantly
increased (6.9 #/mm2 and 6.5 #/mm2 with Ce content of 20 ppm and 60 ppm, respectively),
indicating that rare earth treatment can promote the generation of large-sized inclusions in
the steel. When the Ce content was 20 ppm, the average size of inclusions in the steel was
at its largest, at 6.9 µm. When the Ce content in the steel increased to 95 ppm, the number
density of inclusions of all size ranges obviously increased and the total number density



Metals 2023, 13, 453 12 of 14

was 130.1 #/mm2. It was larger than that of other Ce content levels, especially for inclusions
with size range of 1.0~1.5 µm and >5.0 µm. Their number densities were 33.17 #/mm2 and
33.54 #/mm2, respectively, and the corresponding proportion was about 25%, which would
deteriorate the steel cleanliness and the magnetic properties of the product.
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Figure 15. Size distribution and average size of inclusions in the steel of different heats. (a) Inclusion
size distribution, (b) ratio of different size inclusions, (c) average size of inclusions.

5. Conclusions

(1) With the increase in the Ce content in the steel, the modification sequence of inclusions
was CeAlO3→Ce2O2S→CexSy. When the added Ce content in the steel was 10 ppm,
14 ppm, 20 ppm and 30 ppm respectively, the rare earth inclusions were mainly
CeAlO3-Ce2O2S. When the added Ce content increased to 60 ppm, the rare earth
inclusions were mainly Ce2O2S and a small amount of CeAlO3 contained in part
inclusions. When the added Ce content increased continually to 95 ppm, the rare
earth inclusions were mainly CexSy + Ce2O2S.

(2) When the added Ce content was 95 ppm, the composition was located near the
boundary between rare earth sulfide and rare earth oxysulfide. The critical Ce content
for the conversion between CeAlO3 and Ce2O2S was 41 ppm.

(3) The difference in the Ce content significantly affected the number density and size
distribution of inclusions in the steel. When the added Ce content was 20 ppm, the
number density and proportion of inclusions in the steel were lower, and its average
size was larger. When the added Ce content increased to 95 ppm, the number density
of inclusions in the steel significantly increased.
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