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Abstract: In crystals, lattice defects, such as dislocations, control mechanical deformation. Similarly,
it is widely believed that even in glasses and liquids some kinds of defects, strongly disordered
regions, play a major role in deformation. To identify defects researchers focused on the nature of the
short-range order (SRO) in the nearest neighbor cage of atoms. However, recent results by experiment,
simulation and theory raise serious questions about this assumption. They suggest that the atomic
medium-range order (MRO) provides resistance against flow at the atomic level. Because the MRO
is a bulk property, it implies that defects play only a limited role. This new insight is supported by
the density wave theory which shows that the MRO is driven by a top-down global force, rather
than being a consequence of the SRO in the bottom-up manner, and the MRO provides stiffness to
resist deformation. We briefly summarize the density wave theory, show that the MRO is related to
ductility of metallic glasses, and discuss the implications on the role of the MRO in the atomic-level
mechanism of deformation.

Keywords: metallic glass; medium-range-order; liquid viscosity; glass deformation

1. Introduction

Elucidating the atomic structures of liquid and glass is a major challenge because
of their strong disorder [1–3]. The conventional approach is to consider an atom and its
nearest neighbor shell, choose some relatively stable configurations, such as icosahedral
clusters, and to use them as building blocks to construct the entire structure [4–8]. This
bottom-up approach, however, does not explain well why well-defined medium-range
order (MRO) is widely observed in the structure even in chemically complex liquids and
glasses [9–13]. The MRO is characterized by the exponential decay of the oscillations in the
pair-distribution function (PDF), g(r), beyond the first peak [14],

|g(r)− 1| ≈ exp(−r/ξs(T))
r

(1)

where ξs(T) is the structural coherence length. The bottom-up approach also fails to explain
the distinct behaviors of the MRO and the short-range order (SRO) represented by the
first peak of the PDF which describes the distribution of near neighbor distances. For
instance, in liquid the average nearest neighbor distance actually decreases with increasing
temperature, whereas the distances to further neighbors increase [15,16]. Also, the MRO
freezes at the glass transition temperature, Tg, whereas the SRO does not [17]. In the
conventional bottom-up approach the MRO is just a consequence of the SRO, as described
by the Ornstein-Zernike theory [14]. Then, both the SRO and the MRO should freeze
simultaneously at Tg. The distinct behaviors of the MRO and the SRO reflect the fact that
they are different in nature. The number of neighbors contributing to the first peak of
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the PDF is of the order of 10, but the higher order peaks represent much larger numbers
of atoms. Therefore, the SRO describes the atom-atom correlations, whereas the MRO
represents the correlation between an atom and coarse-grained density fluctuations [18].
Therefore, it is possible that that are driven by different kinds of driving force.

Recently, we found that the MRO is driven by many-body forces in reciprocal space
to form the density waves in liquid [19,20]. These forces are quite distinct from those in
real space which promote formation of the local SRO. This result was obtained by the
density wave theory with the pseudopotential for interatomic interaction. Here, we briefly
summarize this theory and discuss its implications on the mechanical properties of liquid
and glass. We focus mainly on metallic liquids and glasses which are simplest groups of
liquid and glass.

2. Density Wave Theory

The traditional bottom-up approach may be appropriate in describing the crystal
growth, but liquid does not form in such a way. To consider condensation from gas, it is bet-
ter to start with a model of non-interacting particles and introduce interatomic interaction
to all atoms at once, in a top-down approach. This is done best in reciprocal space, using the
density wave theory. But the Fourier-transform of the interatomic potential is dominated
by the strongly repulsive part of the potential, leading to nonsensical results. However, this
is misleading, because the strongly repulsive part of the potential is irrelevant in evaluating
the total potential energy. Precisely because of the repulsive part of the potential, atoms do
not come very close to each other at temperatures we consider. Therefore, we only need
a moderately repulsive potential, and we can safely ignore the strongly repulsive part of
the potential. In other words, in terms of the potential energy landscape (PEL) [21,22], we
should focus only on the accessible part of the PEL at temperatures we consider, instead of
the entire PEL. Thus, we define the pseudopotential by

φ(r) = φpp(r) + φR(r) (2)

here φ(r) is the full potential, and φpp(r) is the “pseudopotential” in which the strongly
repulsive part of φ(r) is removed and φpp(r) = φ(rc) is assumed for r < rc, as in Figure 1
for the Lennard-Jones potential for argon [23]. The cutoff, rc, is chosen such that the cutoff
temperature, kBTu = φ(rc) is well above the glass transition temperature and no pair of
atoms is found at distances of r < rc. The φR(r) is the strongly repulsive part of the potential
below rc. The total potential energy is given by,

U = Upp + UR (3)

where
Upp =

∫
ρ(r)ρ∗

(
r’
)

φpp

(∣∣∣r− r’
∣∣∣)drdr’ (4)

UR =
∫

ρ(r)ρ∗
(

r’
)

φR

(∣∣∣r− r’
∣∣∣)drdr’ = 0 (5)

Note that UR = 0, because no pair of atoms is found at distances of r < rc. Therefore,
in determining the structure we only need to minimize Upp, not the total U.

Interestingly, it was found that the Fourier-transform of φpp(r), φpp(q), has a minimum
at qmin, which is not far from the position of the first peak of the structure function de-
termined by diffraction measurement, S(q), q1 = 2.0−1 in this case, as shown in Figure 2.
This is not an accident, and various potentials show similar results that qmin is close to
q1 [19,20]. It is long known that q1 is related to the position of the first peak of the PDF, r1,
by r1 ∼ 5π/2q1 [9,20]. This is because g(r) is related to S(q) through [24],

g(r) = 1 +
1

2π2ρ0

∫ ∞

0
[S(q)− 1]

sin(qr)
qr

q2dq (6)
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where ρ0 is the atomic number density, and sin(x)/x has the first maximum near x = 5π/2.
For the same reason φpp(q) has a minimum near q1, corresponding to the minimum in φpp(r)
at r = a. It is also possible to explain this result in terms of the general scattering theory [25].
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A minimum in φpp(q) drives the system to form a density wave with qDW ∼ qmin.
Because liquid is macroscopically isotropic, the density waves are excited in all directions,
so that the qDW with a fixed length at qDW = |qDW | forms a sphere. The density function of
such a state is given by,

ρ(r) = ρDW(r) = ρ0 +
∫

ρ(qDW)eiqDW ·rdqDW (7)

where
ρ(qDW) = |ρ(qDW)|eiδDW (qDW ) (8)

The phase factor, δDW(qDW), is added to avoid atom pileups. The phase factor varies
strongly and nearly randomly for the qDW vectors in different directions within the q sphere.
This state, the density wave (DW) state, has long-range periodic order without translational
symmetry. Now, the structure function, S(q), is related to ρ(q), by

S(q) =
V
ρ0
|ρ(q)|2 (9)

where V is the system volume. Thus, S(q) has a δ-function at qDW = |qDW|, and in three-
dimensional q space qDWs form a Bragg sphere. The PDF of the DW state is,



Metals 2023, 13, 442 4 of 12

gDW(r) = 1 +
V

2
3 qDW

2

πρ2
0

〈
|ρ(qDW)|2

〉 sin qDWr
qDWr

(10)

characterized by the MRO-like oscillations. As the δ-function in S(q) suggests this state
has long-range atomic correlations, but because of the incoherent nature of the phase
factors there is no macroscopic periodicity in the structure. Quasicrystal [26] was the first
case of such a state with long-range order without periodicity, characterized by two base
vectors in six-dimensions [27]. The DW state is defined by N vectors in N-dimensional
reciprocal space, where N is the number of atoms in the system. Thus, the DW state is a
crystal in N-dimensions, but there are a large number of ways to project this N-dimensional
state to three-dimensional space. The projection is defined by sets of the phase factors
and amplitudes, denoted by Λ [20]. This degeneracy becomes an issue in real glasses as
discussed below.

In the conventional bottom-up approach we try to minimize the potential, φ(r), in real
space starting with an atom at the center. This leads to better local packing, for instance
by forming icosahedral clusters [4,6,7]. But, at the next step the existing cluster becomes
a strong constraint [8], often expressed as geometrical frustration [5]. Our top-down
approach is totally orthogonal; we start with the non-interacting gas state and introduce
the interaction in reciprocal space. This top-down approach leads to the density wave state
given by Equation (7).

3. Origin of the MRO
3.1. Structurally Coherent Ideal Glass State

The ξs(T) follows the Curie-Weiss law in its temperature dependence,

ξs(T)
a

= C
Tg

T − TIG

(
T > Tg

)
(11)

where a is the average near neighbor distance, Tg is the glass transition temperature and
TIG is the ideal glass temperature where ξs(T) diverges in extrapolation [11]. We call this
state the structurally coherent ideal glass (IG) state. This state cannot be physically reached
because ξs(T) freezes at Tg and becomes constant in the glassy state, and also because the
value of TIG is negative for all metallic liquids we studied. Nevertheless, this state is very
useful as the reference state to discuss the origin of the MRO. The structure of the IG state
can be estimated from the glass structure with a finite ξs. From Equation (1) we can write,

G(r) = 4πrρ0[g(r)− 1] = G0(r) exp(−r/ξs(T)) (12)

The state represented by

G0(r) = G(r) exp(r/ξs(T)) (13)

is an imaginary state obtained by extrapolating ξs(T) to infinity. This state approximately
represents the IG state, if we assume only ξs(T) changes with temperature. Indeed, the
temperature dependence by Equation (11) is explained in terms of random local density
fluctuations away from the IG state, justifying this assumption [28]. The state represented
by G0(r) has no attenuation in the density waves, and thus S(q) has a δ-function as the first
peak, just as the DW state. However, the first peak of g(r) of this state is taller than that of
gDW(r), resulting in the oscillation at high q in S(q) [11]. Thus, the IG state is very similar to
the DW state, but it is slightly closer to the real glass state.

It was possible to create a model structure which approximately reproduces the G0(r).
We obtained G0(r) from the G(r) determined experimentally for Pd42.5Ni7.5Cu30P20 alloy
liquid, and created a model by using the reverse Monte-Carlo (RMC) method [29] with
a condition of some minimum atomic separation [11]. The PDF of the model shows the
oscillations very similar to those in Equation (10). Visually the model appears totally
random and liquid-like, even though it has positional correlation over long-range [11].
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3.2. Compromise between DW State and the SRO

The SRO of the model defined by Equation (13) was found to be quite diverse and
poorly ordered. For instance, the fraction of the icosahedral local order is only 0.7%, while
the glass state obtained by molecular dynamics (MD) simulation with the same potential
has the icosahedral local order population of nearly 10% [11]. Apparently, placing the
priority on long-range order by assuming the density waves produced poor SRO. In other
words, the top-down approach to minimize the potential energy in q space, resulting in the
density wave state, is incompatible with the bottom-up approach to minimize the potential
energy in real space to produce good SRO.

As shown in Figure 3 the MRO oscillation can be described well by

g(r)− 1 ≈ AMRO
a
r

sin(QMROr + δMRO) exp
(
− r

ξs

)
, r > rcuto f f (14)

where AMRO is the amplitude of the MRO oscillation, δMRO is the phase factor which is
small, and rcutoff is the position of the first minimum of the PDF beyond the first peak. Thus,
the MRO oscillation is very similar to the PDF of the DW state except for the exponential
attenuation. For this reason, we propose that the attenuation of the density waves by an
exponential function is the origin of the MRO. To mitigate the conflict between the density
wave state and the SRO, density waves are exponentially attenuated resulting in the MRO,
given by Equation (14).
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Then, in real glass the IG state by Equation (7) is limited to locality, of which size
is defined by ξs(T). As we noted above even though the DW state is a uniquely defined
crystal in N-dimensions, there are a large number of ways to project it to three-dimensional
space, defined by the sets of phase factors and amplitudes, Λ. So, the DW state associated
with the local IG state changes with position and Λ varies in space as Λ(r) [20]. The limited
range of the DW order makes the first peak of S(q) broader, with the width reciprocally
proportional to ξs. In the case of pure exponential decay, the peak shape is Lorentzian.
Indeed, glasses with long ξs have more Lorentzian first peak of S(q). We use this as the
measure of ideality [12].

Therefore, the real glass state does not have long-range order, and ξs(T) describes the
spatial extension of local DW order. The value of ξs(Tg) reflects the consequence of the
competition between the density wave and the SRO. The strength of the SRO depends on
the nature of the atomic bonds. Metallic bonds are not directional, and are more compatible
with the density waves, resulting in longer ξs(Tg). Covalent bonds are directional, and are
less compatible with the density waves, resulting in shorter ξs(Tg). Indeed, ξs(Tg) is closely
related to liquid fragility [13], which reflects covalency [30].
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This combined top-down/bottom-up approach makes it clear that the MRO is not a
direct consequence of the SRO as has long been assumed, but it is a distinct property of
liquid determined by the competition between the driving forces for the density waves and
the SRO.

3.3. Topological MRO and MRO by Density Fluctuations

The term MRO is used also in describing the atomic structure just beyond the nearest
neighbor atom shell [31–33]. It is a topological MRO, describing atom-atom correlation
beyond the nearest neighbors. It is very difficult to detect it in the PDF, but it can be more
clearly observed by fluctuation electron microscopy [34]. We consider it as an extension of
the SRO [7,8,35], different from the MRO formed by density fluctuations discussed here
which extends beyond the second peak of the PDF. As shown in Figure 3 the bulk of the
second peak of the PDF is explained well as a part of the MRO oscillations by Equation (14).
However, the split of the second peak of the PDF reflects the topological MRO [7,8]. Indeed,
the position of the second peak in the PDF decreases as temperature is raised just as the
first peak does [15,16], and the height of the second peak shows weaker freezing at Tg [17].
Thus, the second peak in the PDF reflects both the SRO (topological MRO) and the MRO by
density waves. It represents the interface between the SRO and the MRO by density waves.

4. Changes in the SRO and MRO by Shear Stress

When a shear or uniaxial stress is applied to a glass the relative changes in atomic
positions can be observed in terms of the anisotropic PDF expressed by the spherical
harmonics expansion [36,37]. For affine (uniform) compressive uniaxial deformation the
l = 2, m = 0 term is,

g0
2,a f f ine(r) = −ε

(
1
5

)1/2 2(1 + ν)

3
r

d
dr

g0
0(r) (15)

where ε is affine strain, ν is the Poisson’s ratio and g0
0(r) is the isotropic PDF. In reality, the

strain is not affine, so the anisotropic PDF can be expressed by

g0
2(r) = −ε(r)

(
1
5

)1/2 2(1 + ν)

3
r

d
dr

g0
0(r) (16)

where the strain, ε(r), is a function of distance. The macroscopic strain in metallic glasses is
linear up to the elastic limit, so they are macroscopically elastic. At large distances the local
strain becomes identical to the macroscopic strain, so that ε(∞) is equal to the macroscopic
strain and ε(r)− ε(∞) describes the extent of deviation from affine deformation. Even
though metallic glasses are macroscopically elastic up to the elastic limit, simulations
suggest that at the atomic level, the nearest neighbor atoms show non-affine, non-elastic
behavior [38].

As shown in Figure 4 [39] the part of the ε(r) beyond the first peak (MRO) is constant at
ε(∞), indicating elastic behavior. However, at the first peak (SRO) ε(r) is appreciably below
ε(∞), indicating that atomic rearrangements occur to relax local strain and deformation
is not elastic in the nearest neighbor shell. This result is consistent with our observation
that the MRO freezes at Tg, but the SRO does not and keeps increasing even below Tg [17].
In other words, a part of the atomic correlations expressed by the MRO behaves like an
elastic body, but the immediate neighborhood of an atom described by the SRO is still
partially liquid-like even in the glass state, and atoms are rearranged when stress is applied.
This picture is consistent also with the theory of the glass transition [40], which assumes
that about 20% of atoms are still liquid-like at the glass transition, and the glass transition
occurs because of the loss of percolation of liquid-like atoms. On the other hand, when
anelastic (creep) deformation occurs by applying stress at an elevated temperature below
Tg, non-affine deformation occurs even for the MRO beyond the nearest neighbors as shown
in Figure 4. This confirms the hypothesis that the macroscopic deformation is underpinned
by the MRO.
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5. Resistance to Deformation by MRO

The results shown in Figure 4 suggest that elasticity is maintained by the MRO, and
not by the SRO. This statement, however, may sound preposterous. If the local environment
cannot resist the applied stress, how can the whole body resist? The answers are the following:

1 Only less than 20% of atoms are liquid-like below Tg [40]. Because this is below the
percolation limit, atomic rearrangements at the liquid-like sites remain local, and do
not lead to macroscopic deformation.

2 The PDF first peak (SRO) and the peaks beyond (MRO) are different in nature [17–20].
The first peak describes the atom-atom correlation, whereas the MRO describes the
atom-density correlation. The higher order peaks in the PDF include a large number
of atoms. Thus, they describe coarse-grained density fluctuations rather than each
atomic position. Therefore, the behavior of the MRO is closer to that of the bulk.

In the theory of the glass transition in metallic glasses [40] it was shown that the loss
of percolation of liquid-like sites results in the glass transition. Here the liquid-like site is
defined as atoms with the local atomic-level volume strain exceeding εT,crit

v = ± 0.11 [40].
If the atomic-level volume strain, εT

v , exceeds εT,crit
v , the local coordination shell becomes

unstable, because increasing or decreasing the coordination number becomes energetically
preferred [41]. The εT

v has Gaussian distribution, and the atoms with
∣∣εT

v
∣∣ exceeding

0.11 are the liquid-like sites. Because the potential energy associated with the atomic-level
volume fluctuations depend linearly on temperature [42], the standard deviation of εT

v is
proportional to

√
T, and when the fraction of the liquid-like sites reaches the percolation

limit the glass transition occurs. At the glass transition the atomic-level strains are frozen,
so a glass below Tg retains liquid-like sites of which density is at the percolation limit, or
about 20%. These sites will undergo local atomic rearrangement when stress is applied.
But deformation remains local, because the density of the liquid-like sites is below the
percolation limit.

Another evidence of locally liquid-like nature of metallic glass is found in the data for
internal friction. Mechanical relaxation of glasses and liquids is characterized by at least two
kinds of relaxation, the α-relaxation and the β-relaxation [43]. The α-relaxation describes
the collective relaxation which leads to the glass transition, whereas the β-relaxation is
due to local activation events and occurs even below Tg. In polymers the α-relaxation
originates from the activation dynamics of main polymer chains, whereas the β-relaxation
occurs due to the localized motion of side chains. In metallic glasses the α-relaxation
describes the relaxation dynamics of the MRO [44]. The origin of the β-relaxation in
metallic glasses is unclear, but it is most likely that it reflects short-range local cooperative
atomic dynamics [45,46]. The β-relaxation in metallic glasses extend to low temperatures,
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with the strength almost independent of temperature [47,48]. This also explains the strong
temperature dependence of the shear modulus compared to that of the bulk modulus [49].

The magnitude of the non-affine deformation, the drop in ε(r) at the first neighbor,
∆εR/ε∞ = 1− ε(r1)/ε∞, in Figure 4, is related to the ductility of the glass as shown in
Figure 5 [50]. When it is larger than ∆εR/ε∞ = 0.24 the glass is ductile, whereas when it
is less than 0.21 it is brittle. We found that this behavior is directly related to the strength
of the MRO. As shown in Figure 6 the normalized MRO coherence length in the glass,
ξs(Tg)/a, is related to the plastic strain and the non-affine strain ratio (∆εR/ε∞). As we
discussed above the value of ξs(Tg)/a reflects the competition between the density waves
and the SRO. The results in Figure 6 show that a stronger MRO, thus a larger ξs(Tg)/a,
promotes ductility, and a stronger SRO, thus a smaller ξs(Tg)/a, results in a brittle behavior.
Because a strong SRO is a product of covalent bonding, this result is totally consistent with
the intuition that covalency is responsible for brittleness. In Ref. [13] we showed that liquid
fragility is linearly related to the number of atoms in the coherence volume, ns =0 (ξs)

3. In
Figure 6 (ξs/a)3, which is proportional to ns, is compared to plastic strain and to ∆εR/ε∞.
Thus, when (ξs/a)3 is greater than 4.2, therefore when ξs/a is greater than 1.62, glasses
are ductile, whereas when ξs/a is less than 1.62 they are brittle, although at present no
theory explains this specific value. Thus, ductility is related also to fragility; fragile liquid
produces ductile glass.
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Now, the ratio ∆εR/ε∞ describes the extent of local strain relaxation in the nearest
neighbor shell. Thus, we can write,

∆εR = γRε∞ pR (17)

where pR is the density of relaxing atoms and γR is the local strain relaxation factor for
each relaxation event. Note that γR = 1 if a single relaxation event fully relaxes the local
atomic-level stress imposed by the applied stress, ε∞ = σa/G, where σa is the applied
stress and G is the shear modulus. As pR it is reasonable to assume that it is the density
of liquid-like sites, pR = 0.24 [40]. Interestingly, the critical value of the non-affine strain
ratio is ∆εR/ε∞ = 0.24. This means γR = 1 at the critical condition for ductile/brittle
transition. In other words, a glass is ductile when γR > 1, and a relaxation event relaxes
the stress beyond the nearest neighbor shell. This will cause relaxation on the neighbor
atoms and start a cascade action of local relaxation on more than one atom. That is exactly
the mechanism of ductile flow suggested by simulation [51].

These results show that when the shear stress below the yield stress is applied to
metallic glass atoms in the nearest neighbor shell become rearranged and the stress is
relaxed, but the MRO behaves elastically without relaxation. Therefore, applied shear stress
is resisted by the MRO, not the SRO, and macroscopic mechanical deformation is controlled
by the cooperative MRO represented by local density waves. A solid-like behavior of
glass is usually explained in terms of atomic caging [42]. For a long time, caging has been
thought to occur due to the tightened shell of the nearest neighbor atoms [43,52], but the
new results discussed here suggest that the caging is achieved by the MRO, not by the
SRO. The immediate atomic environment, SRO, still retains partially liquid-like in nature.
However, the liquid-like sites do not percolate [37,39], resulting in a rigid MRO which
provides resistance to deformation.

6. Defects vs. Bulk

Crystalline solids mechanically fail through the motion of defects, such as dislocations.
In association there have been extensive efforts to find defects in metallic glasses as a
mechanism of plastic deformation [53–58]. However, our results discussed above suggest
that mechanical deformation in metallic glasses is controlled by the MRO, which is a bulk
property, in thermal equilibrium in the liquid just above Tg [28]. How can these opposing
approaches be reconciled? Our view is that defect may locally start deformation, but the
ultimate resistance is provided by the MRO.

In crystalline solids defects maintain their identities after motion, because they are
topologically protected by lattice periodicity. But in glasses they are not, and their structure
changes quite substantially upon movement because of extensive atomic rearrangements.
In fact, by going through the saddle point of the potential energy landscape (PEL) the
system loses thermal memory [59] because the local structure topologically melts [60]. It
is well known in mathematics that the saddle point is a generator of chaos [61,62]. Thus,
deformation may start from local defective sites, but by the time it reaches the saddle point
it does not matter where it came from. The overall resistance is determined by the average
structure represented by the MRO.

Conversely, focusing on particular local topology, such as icosahedral clusters, as a
mechanism of structural stability may be misguided, because the MRO represents coarse
grained density fluctuations, independent of details of the local structure. The variations in
the local structure are controlled by the distribution in the volume strain frozen in at the
glass transition [28,40]. Formation of icosahedron, which has relatively small atomic-level
volume strain, is just a consequence of such distributions. Specific topologies of the local
structure depend on composition through relative atomic sizes and the nature of atomic
bonding, and they are almost irrelevant to the stability of the average structure.

It is interesting to note that a recent work [63] to model glasses with cooling rates
comparable to those by experiments, achieved by a combination of molecular dynamics
(MD) and Monte-Carlo (MC) simulation, suggests that much of the low-density defects
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observed by many MD simulations are likely to be artifacts of unrealistically high cooling
rates in the simulation. According to Ref. [63] in real glass the region of cooperativity [64]
is much smaller in size than previously assumed, involving only about 10 atoms. This
size is close to those of bulk simulation and theory without assuming defects, which are
about 5 atoms [65,66]. Our view is that deformation of metallic glasses at the atomic level is
controlled not by defective weak spots as is usually assumed, but by the strong resistance
due to the MRO. If the strength is controlled by defects, it should show strong structure-
sensitivity as in crystalline solids. However, the strength of metallic glasses is universally
dependent only on elastic modulus and is rather insensitive to structural details [67,68].
This observation strongly supports our view that the bulk properties, such as the MRO,
rather than defects, control mechanical properties of metallic glasses.

7. Conclusions

The conventional view on the stability of the glass structure and its mechanical re-
sponse has been to focus on local structure of the nearest neighbors, particularly on well-
ordered structures, such as icosahedral clusters, and consider them as the building blocks to
construct the structure. However, the local structures vary with composition and chemistry,
and this bottom-up approach does not lead to a holistic general view on the structure.
Instead, we focused on the MRO which appears quite generally and persistently. Tradition-
ally the MRO has been regarded as a direct consequence of the SRO [14]. However, the SRO
and the MRO are fundamentally different in nature [18,38] and behave differently with
temperature [15–17]. In our top-down approach with the density wave theory the MRO is
a product of compromise between the density wave and the SRO. The MRO provides the
main resistance to deformation, whereas the SRO is partially liquid-like and does not offer
overall resistance. We have to conclude that, unlike in crystalline solids, largely mechanical
properties of metallic glasses are controlled not by structural defects, but by the MRO.
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