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Abstract: Obtaining high levels of mechanical properties in steels is directly linked to the use of
special mechanical forming processes and the addition of alloying elements during their manufac-
ture. This work presents a study of a hot-rolled steel strip produced to achieve a yield strength
above 600 MPa, using a niobium microalloyed HSLA steel with non-stoichiometric titanium (ti-
tanium/nitrogen ratio above 3.42), and rolled on a Steckel mill. A major challenge imposed by
rolling on a Steckel mill is that the process is reversible, resulting in long interpass times, which
facilitates recrystallization and grain growth kinetics. Rolling parameters whose aim was to obtain
the maximum degree of microstructural refinement were determined by considering microstructural
evolution simulations performed in MicroSim-SM® software and studying the alloy through physical
simulations to obtain critical temperatures and determine the CCT diagram. Four ranges of coiling
temperatures (525–550 ◦C/550–600 ◦C/600–650 ◦ C/650–700 ◦C) were applied to evaluate their im-
pact on microstructure, precipitation hardening, and mechanical properties, with the results showing
a very refined microstructure, with the highest yield strength observed at coiling temperatures of
600–650 ◦C. This scenario is explained by the maximum precipitation of titanium carbide observed
at this temperature, leading to a greater contribution of precipitation hardening provided by the
presence of a large volume of small-sized precipitates. This paper shows that the combination of
optimized industrial parameters based on metallurgical mechanisms and advanced modeling tech-
niques opens up new possibilities for a robust production of high-strength steels using a Steckel
mill. The microstructural base for a stable production of high-strength hot-rolled products relies on
a consistent grain size refinement provided mainly by the effect of Nb together with appropriate
rolling parameters, and the fine precipitation of TiC during cooling provides the additional increase
to reach the requested yield strength values.

Keywords: controlled rolling; thermomechanical processing; accelerated cooling; high-strength
low-alloy steels; Nb precipitation; TiC precipitation; Steckel mill; non-stoichiometric alloy

1. Introduction

High-Strength Low-Alloy (HSLA) steels are widely used in applications where high
yield strength (YS) and tensile strength (TS) are demanded [1–5]. Load-lifting structures
are examples of applications that require a yield strength above 600 MPa. In this context,
HSLA steels gain relevance due to their low carbon content that improves weldability and
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formability. The lower levels of mechanical properties that result from decreased carbon
contents can be counterbalanced by the addition of alloying elements such as niobium (Nb)
and titanium (Ti), and an appropriate thermomechanical process [6–10].

Recently, special attention has been paid to the significant precipitation harden-
ing obtained by addition of high Ti levels (higher than 0.05 wt%) in low-carbon steels,
due to the formation of a high density of ultrafine precipitates during or after phase
transformation [9,11]. Commonly, high Ti is added in combination with other microalloy-
ing elements, such as Mo [12,13], V [14], or Nb [15–17]. Among the different alloy concepts,
the most investigated one is Ti-Mo steel grade. Several works claim [18,19] that addition of
Mo results in a refinement of the precipitates formed during phase transformation, ensuring
higher fine precipitation strengthening.

The additions of Nb and Ti help the final product to develop a ferrite-pearlite mi-
crostructure with a high level of refinement and, in addition, allow considerable precipi-
tation hardening [20]. When associated with the controlled rolling process, the addition
of 0.030% to 0.060 wt% Nb has the ability to reduce the temperature range in which re-
crystallization occurs between rolling passes, resulting in a refined and homogeneous
microstructure at the rolling end [21–25]. Nb can also provide some hardenability, promot-
ing the formation of non-equilibrium phases [26]. Depending on the Ti and N relation,
the role of titanium can be completely different. For low Ti additions (hypostoichiometric
Ti), titanium can contribute to microstructural refinement by inhibiting austenite grain
growth during hot deformation related to the pinning effect exerted by Ti (C,N) precip-
itates [27–29]. In this case, before phase transformation, there is no Ti in solid solution.
However, for high Ti additions (hyperstoichiometric Ti), the Ti remaining in solid solution
prior to transformation can precipitate as very fine TiC (finer than 10 nm) during cooling,
promoting a significant precipitation hardening. The main contribution of Ti in terms of
strengthening is based on the Orowan mechanism via the formation of TiC nanoprecipitates
during the final cooling strategy (run-out table and coiling) [30–34]. According to Elderman
and Wigman [35], a yield strength above 600 MPa in HSLA steels is directly associated
with an effective titanium value above 0.06 wt%, calculated using Equation (1). Recent
studies have shown that another important prerequisite is the Ti/N ratio present in HSLA
steels, which must be kept above the stoichiometric value—Ti/N > 3.42 [36]. Thus, from the
appropriate chemical composition and forming process, it is possible to obtain high levels
of mechanical properties, thus eliminating the cost associated with subsequent product
heat treatments, retaining low carbon levels in the material and, consequently, improving
formability and weldability.

Tieff% = Titotal %− (3.4×N %)− (1.5× S %) (1)

This paper describes the production of a HSLA steel in a thermomechanical rolling
route, microalloyed with Nb and Ti, with the titanium addition above the stoichiometric
ratio with nitrogen (Ti/N > 3.4), with a view to obtaining a minimum yield strength
of 600 MPa and minimum tensile strength of 680 MPa. When high Ti levels are added
(above the stoichiometric ratio), considerable variability in fine precipitation strengthening
occurs, resulting in a large dispersion in tensile properties [1]. Industrially large strength
differences can be found from coil to coil, as well as along the strip length and width,
due to the instability of the formation of Ti carbides during cooling. TiC precipitation
(size and density of precipitates) seems to be very sensitive to small variations in strain,
coiling temperature, and cooling profile. The optimum coiling strategy may depend on the
alloy-design, rolling parameters and cooling conditions. Therefore, to meet the increasing
material demands in terms of tensile properties, for the current Nb-Ti hyperstoichiometric
steel, the definition of an optimum coiling temperature window becomes crucial.

Steckel mill rolling presents some singularities when compared to continuous conven-
tional hot strip mills as well as reversible plate mills. The main differences can be defined
in the finishing stands. The Steckel mill applies reversal passes with longer interstand
times and with much more limited temperature drops between passes due to the two
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coiler furnaces located at each side of the roll. The rolling process in the finishing step
is usually conducted by applying tension between the mandrel of the input and output
furnaces, called the drum, with the rolling mill to ensure the strip alignment during the
rolling process. Depending on the applied tension, stretching in the strip can occur, causing
a loss in the strip width. This tension is continuously controlled by the mill, minimizing
product width deviations. The tensional status of the strip does not imply any metallurgical
effect in the material [37]. The process design that offered microstructural refinement to
the final product was modeled by MicroSim-SM®, a software capable of simulating the
microstructural evolution of austenite during rolling using equations that are based on
the grain size distribution evolution of austenite and on forming process parameters [38].
The non-recrystallization temperature of the alloy was experimentally obtained by hot
torsion tests, while phase transformation was also analyzed using dilatometry tests and
CCT diagrams were determined under different austenite conditions (recrystallized and
pancaked). Strips were produced in Gerdau Ouro Branco’s Steckel mill and four different
coiling temperature ranges (525–550 ◦C/550–600 ◦C/600–650 ◦C/650–700 ◦C) were used
in order to identify the best condition under which to obtain the greatest precipitation
hardening contribution encouraged by the presence of TiC. Recent studies have shown that,
in the case of similar alloys, the coiling temperature that potentiates the largest volume of
TiC precipitation is within the range of 600–650 ◦C [39].

Mechanical properties were measured in tensile tests and the contribution made by
the different strengthening mechanisms, such as grain size refinement, secondary phases,
precipitation hardening, solid solution, and dislocation strengthening, were calculated
using quantitative data from microstructural characterization and predictability equations
available in the literature [4,40–42]. A detailed characterization of the microstructure is
described using mainly the electron backscattered diffraction technique (EBSD), as well as
transmission electron microscopy (TEM).

2. Materials and Methods

The chemical composition of the alloy was a HSLA low carbon, microalloyed with Nb
(0.056 wt%) and hyperstoichiometric Ti (0.101 wt%), with composition ranges shown in
Table 1.

Table 1. Chemical composition of the alloy subject to study (in weight %).

C Mn Nb Ti N

0.08–0.1 1.40–1.60 0.05–0.06 0.08–0.12 <0.007

The effective titanium value, calculated based on Equation (1), was 0.07%, and the
Ti/N ratio was approximately 16, above the stoichiometric value of 3.42.

Multipass torsion tests were performed to determine the non-recrystallization tem-
perature (Tnr). Before deformation, the specimens were preheated for 15 min at 1180 ◦C,
and were then deformed in multipass torsion tests performed at decreasing temperature in
the range of 1150–670 ◦C. The decrease in temperature between passes was 20 ◦C, while a
constant strain per pass (ε) of 0.2 and strain rate of 3 s−1 were applied, with the interpass
time (tip) being 10 s. The geometry of torsion specimens took the form of a reduced central
gauge section, 15.5 mm in length and 7.5 mm in diameter.

To determine the CCT diagram, different thermomechanical cycles were applied in a
Bähr 805D deformation dilatometer, as shown in Figure 1, and cylindrical specimens of
10 mm in length and 5 mm in diameter were machined. The dilatometry specimens were
reheated at 1180 ◦C for 15 min and quenched to ensure a full solution of microalloying
elements, especially Nb. After further austenitization at 1080 ◦C for 5 min, a true strain of
0.3 at a constant rate of 1 s−1 was then applied. This first deformation pass was performed
with the purpose of ensuring a fine recrystallized austenitic structure. In Cycle A, the
samples were cooled down slowly to 900 ◦C, followed by controlled cooling at constant
rates in the range between 5 ◦C/s and 100 ◦C/s (5, 10, 20, 25, 30, 35, 40, 60, 80, and
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100 ◦C/s). In Cycle B, a second deformation pass of 0.4 (εacc = 0.4) was applied at 900 ◦C in
the non-recrystallization region (below Tnr), in order to accumulate strain in the austenite
prior to transformation. In Cycle C, the austenite strain accumulation was intensified
before transformation by applying two strain passes below Tnr (εacc = 0.8), and following
the last deformation, the samples were then cooled down at 5, 10, 20, 25, 30, 35, 40, 60,
80, and 100 ◦C/s to room temperature. From the dilatometry tests, dilation curves were
obtained, as well as the evolution of the transformed fraction as a function of temperature,
and transformation starting and finishing temperatures were determined as 5 and 95%
transformed fractions, respectively. The lever rule was used for calculating the evolution
of the transformed fraction from dilation curves. This rule involves extrapolating linear
expansion behavior from the temperature regions where no transformation occurs, and
subsequently assuming proportionality between the fraction of decomposed austenite and
the change in length observed [43–45].
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Figure 1. Thermomechanical cycle performed to determine the CCT diagram.

Microstructural evolution simulations of the alloy during the rolling process were
performed using the MicroSim-SM® model customized for Steckel mill rolling conditions,
with the characteristics of austenitic microstructure evolution for each rolling pass be-
ing predicted by the model. These calculations are based on metallurgical mechanisms
(recrystallization, grain growth, and strain-induced precipitation), which are modeled
by equations that consider grain size distribution of the austenitic grains, and on the
parameters of the rolling process [46].

Results obtained in the physical and computer simulations allow process parameters
to be determined that maximize microstructural refinement of the final product, and,
consequently, encourage the hardening mechanism by grain refining.

The strips were produced using thermomechanical processing (controlled rolling)
followed by accelerated cooling in an industrial Steckel mill, while the coils were cooled at
four different coiling temperature ranges: (525–550 ◦C/550–600 ◦C/600–650 ◦C/650–700 ◦C),
referred to as Sample 1, Sample 2, Sample 3, and Sample 4, respectively. Representative
samples were taken from the strips transversely to rolling direction, and tensile tests were
carried out in accordance with the ABNT NBR 6673 standard [47]. The total length of the
specimen was 480 mm, with a thickness of 8.00 mm. The effective testing length (l0) was
approximately 71.5 mm.

An evaluation of the ferritic grain size distribution was carried out using SEM—EBSD.
In order to prepare EBSD specimens, the samples were polished down to 1 µm, with final
polishing being undertaken using a 50 nm colloidal silica suspension. Orientation imaging
microscopy was carried out on the Philips XL 30CP SEM with a W-filament, using TSL
(TexSEM Laboratories, Salt Lake City, UT, USA) equipment, and EBSD mapping performed
using a step size of 0.6 µm and accelerating voltage of 20 kV, over a total scanned area
of 200 µm × 200 µm. In the current analysis, the minimum pixel per grain was defined
as 3 pixels. According to Wilkinson [48], the angular resolution of the EBSD technique is
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approximately 0.5◦. The scans were then analyzed using TSL OIM™ Analysis 5.31 software
(TSL OIM Analysis 5.31 software (EDAX, Mahwah, NJ, USA)).

Precipitation analysis was carried out using a Transmission Electron Microscope (TEM,
JEOL 2100, JEOL Ltd., Tokyo, Japan) with a 200 kV voltage and LaB6 thermionic filament.
To characterize precipitation, carbon extraction replicas were employed, and nickel grids
were used to support these. Mean precipitate diameters were reported as an average of
over 200 measurements and precipitates with diameters smaller than 10 nm were also
considered. A total of 15 fields (over 4000 × 4000 nm2) were also measured to quantify
precipitate size under each condition.

3. Results and Discussion
3.1. Determining the Tnr and CCT Diagram

Figure 2a shows the stress–strain curves measured using the multipass torsion test.
The Mean Flow Stress (MFS), defined as the area under the stress–strain curve divided by
the pass strain [49], was calculated for each deformation pass by numerical integration
and plotted as a function of temperature in Figure 2b. Three different regions can be
distinguished in these figures: Region I, where complete recrystallization between passes
takes place and the stress increase from pass to pass is only due to the temperature drop;
Region II, where strain accumulation in austenite occurs; Region III, where some degree of
softening due to austenite-to-ferrite transformation occurs. Following the standard proce-
dure [50], the non-recrystallization temperature (Tnr) was determined as the intersection
between the regression lines of points corresponding to Regions I and II in Figure 2b, at
992 ◦C. The austenite-to-ferrite phase transformation starting (Ar3) and finishing (Ar1)
temperatures were also determined from MFS data (770 ◦C and 730 ◦C, respectively).
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Figure 2. (a) Stress–strain curves obtained using the multipass torsion test (ε = 0.2, tip = 10 s). (b) Mean
flow stress curve versus temperature.

With the aim of plotting the CCT diagram, the sample austenitizing temperature was
determined as being 1180 ◦C, which should be sufficient for complete dissolution of the
microalloying elements present, according to Irvine [51]. CCT diagrams corresponding to
each thermomechanical schedule are shown in Figure 3. Regarding the austenite condition
effect, no considerable differences were observed in terms of phase stability regions. In the
current paper, the ISIJ Bainite Committee notation has been adopted for naming the different
phases [52,53]. In all cases, at the lowest cooling rates of 5 and 10 ◦C/s, the microstructure
was composed of polygonal ferrite (PF), degenerated pearlite (DP), and granular ferrite
(GF). At cooling rates higher than 30 ◦C/s, more bainitic structures (combinations between
quasi-polygonal ferrite (QF) and granular ferrite) can be distinguished, while the formation
of bainitic ferrite (BF) was noted at cooling rates higher than 30 ◦C/s.
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and (c) Cycle C. Black lines represent the cooling profile followed at each cooling rate and blue lines
determine the stability region of the different phases.

In cycle B, the transformation starting temperatures were slightly higher, especially at
cooling rates between 10 and 35 ◦C/s. The presence of polygonal ferrite can be identified
in a large area in the diagram, having been observed even in regions of application of
high cooling rates. In comparative terms, while in cycle A (recrystallized austenite), the
formation of polygonal ferrite occurred only at cooling rates below 25 ◦C/s, in cycle B
(deformed austenite), the occurrence of polygonal ferrite at rates of up to 35 ◦C/s was
observed. The accumulation of deformed austenite obtained in cycle B encourages an
increase in preferential sites of ferrite nucleation [54] and, consequently, an increase in
transformation temperature.

In addition, microstructural refinement and increases in hardness values were ob-
served when transformation occurred from a deformed austenite (finer microstructure
in Cycle B and Cycle C than in Cycle A), mainly at the lowest cooling rates of 5, 10, and
20 ◦C/s. A higher accumulation of deformation in the austenite prior to transformation
encourages the increase in ferrite nucleation sites and ensures the formation of finer mi-
crostructures. Similar characteristics for CCT diagrams of HSLA steels are also reported in
literature [22].

3.2. Microstructural Evolution Predictions Using Microsim-SM®

The MicroSim-SM® Steckel mill model allows the evolution of austenite conditioning
to be predicted and can be a very useful tool in designing the optimum combination of
rolling schedule and alloy composition [38,46]. In the present study, MicroSim-SM® v1.0



Metals 2023, 13, 405 7 of 19

software was used to predict the microstructural evolution of austenite in terms of average
values and homogeneity during Steckel hot rolling simulation. This analysis supports the
understanding of the mechanisms involved and the interaction between precipitation and
recrystallization in each alloy composition. MicroSim-SM® requires the initial austenite
grain size distribution as an input and outputs the size distribution for recrystallized and
unrecrystallized fractions at the onset of subsequent rolling passes. For such purpose, the
model assumes the interaction between different mechanisms acting during the interpass
time, such as static and metadynamic recrystallization, grain growth, and Nb (C,N) strain-
induced precipitation. The equations implemented in the model were developed from
industrially produced sheets for plain CMn and microalloyed grades with Nb, Ti, and/or
Mo, and adapted for a wide range of initial austenite grain sizes and rolling conditions [38].

In this study, different rolling strategies were evaluated, varying the percentual thick-
ness reductions in each pass, both in the roughing and finishing stages. The main result that
reflects microstructural refinement in the final product is the austenitic grain size through-
out rolling and the value observed in the last rolling pass, before austenite decomposition.
The lower the average value observed in this step (last pass), the lower the average value
in the final product [55].

Figure 4a–d show the results of the optimized simulation, i.e., the one that evidenced
the best conditions for maximum microstructural refinement at the end of rolling. The
evolution of the average austenitic grain size and the Dc0.1 value throughout rolling is
shown in Figure 4a, with the Dc0.1 parameter corresponding to grain size relative to 10%
of the coarsest grains in the tail of the distribution, and this can be considered as a way of
measuring the degree of heterogeneity [56].
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Figure 4. Microstructural evolution predictions using MicroSim-SM® for: (a) average austenite grain
size and Dc0.1 values; (b) recrystallized fraction evolution; (c) austenite grain size distribution at the
end of roughing; (d) austenite grain size distribution at the end of finishing.
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Optimized rolling conditions indicate rolling with 11 deformation passes. The average
austenitic grain size at the end of rolling was 8 µm, with a Dc0.1 value of 14.1 µm and
maximum austenitic grain size of 35 µm, as shown in Figure 4a. This level of refinement is
a consequence of the high percentage of reduction observed in roughing passes (passes 1
to 8), where the rolling temperature is above the non-recrystallization temperature, which
represents the best strategy for a high level of microstructural refinement at the end of
rolling [55]. Figure 4b shows the evolution of recrystallized fraction during the rolling
sequence, while Figure 4c and d show the grain size distribution at the end of roughing
and at the end of finishing passes, respectively.

The non-recrystallization temperature of 992 ◦C reported in Figure 2b was selected
as the one to set as the industrial reference for the roughing-to-finishing transition. The
reduction percentage applied above Tnr (roughing passes) was 80.5%, and the recrystal-
lization process was complete after each applied pass within this temperature change.
The microstructural refinement in this phase derives from the solute drag mechanism. A
total reduction of 73.2% was observed in the case of the region below the experimentally
defined Tnr, while reductions applied at temperatures below Tnr resulted in a more refined
final microstructure, deriving from the pancake austenitic structure [57]. According to
the simulation results obtained, the last three rolling passes (finishing passes) must be
performed below Tnr, and these were the best conditions verified among those evaluated
in the thermomechanical simulator.

Mean Flow Stress (MFS) analysis shown in Figure 5 shows the MicroSim-SM® plot
for validation of model predictions. In this chart, the comparison is plotted between
the Mechanical MFS, calculated using rolling mill load data [58], and MicroSim model
predictions based on the metallurgical calculations of flow stress using a modified model,
according to the method proposed by Misaka [59,60]. The sharp change in slope between
the roughing and finishing passes clearly reflects the strain accumulation during the last
passes. The agreement in terms of MFS calculations using both methods validates the
microstructural model predictions in this case.
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3.3. Mechanical and Microstructural Characterization of Hot-Rolled Products

The physical and computational simulations provided the rolling process parameters
for the production of strips in the Steckel rolling mill. In order to evaluate the impact of
coiling temperature in terms of the contribution to precipitation, four different scenarios
were proposed: 525–550 ◦C/550–600 ◦C/600–650 ◦C/650–700 ◦C.
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Table 2 shows the results of mechanical properties obtained in the tensile test. The
highest values obtained were associated with coiling temperatures of 600–650 ◦C, and yield
strength values of 586, 605, 657, and 586 MPa were measured for coiling temperatures of
525–550 ◦C/550–600 ◦C/600–650 ◦C/650–700 ◦C, respectively. There is a narrow range
of coiling temperatures that maximize the precipitation of TiC during and/or after this
stage, allowing for an increase in properties. This temperature range was identified as
being between 600 ◦C and 650 ◦C in continuous rolling mills [61], and similar behavior
was observed in this study, in which the production process was carried out in a Steckel
reversible rolling mill.

Table 2. Mechanical properties obtained from tensile test.

Sample Coiling
Temperature (◦C)

Yield Strength
(MPa)

Tensile
Strength (MPa) Elongation (%)

1 500–550 586 ± 4.4 666 ± 1.5 20 ± 1.0
2 550–600 605 ± 1.5 685 ± 4.6 24 ± 1.5
3 600–650 657 ± 6.5 740 ± 4.0 21 ± 0.4
4 650–700 586 ± 2.9 675 ± 4.0 21 ± 1.0

Representative samples of the four coiling conditions were taken for the purpose of
microstructural analysis, and EBSD scans were performed in the center and quarter position
of the thickness in order to quantify different microstructural parameters such as unit size
distribution. In addition, hardening due to dislocation density was evaluated from the
Kernel Average Misorientation obtained in EBSD results. For their part, different imaging
options, such as Grain Boundary and Kernel maps, were analyzed and crystallographic unit
sizes measured in accordance with different misorientation criteria. The microstructural
characterization methodology by EBSD has been successfully applied when the objective is
to understand the most active strengthening mechanisms in thermomechanically rolled
products [6].

Figure 6a–d show grain boundary maps obtained through SEM-EBSD analysis for
the entire range of coiling temperatures. Low and high angle boundaries were drawn,
represented in red and black, while the boundaries located between 4◦ < ϑ < 15◦ (in red)
and ϑ > 15◦ (in black) were considered as low and high angle boundaries, respectively. Low-
angle-misorientation grains are assumed to contribute to strength properties due to their
opposition to dislocation movement, whilst high angle boundaries are considered effective
in controlling crack propagation [6]. In all cases, fine microstructures were observed, taking
both misorientation criteria into consideration. When considering low-angle-misorientation
criteria, mean grain sizes varied between 2.7 µm (for coiling temperature of 550–600 ◦C)
and 3.4 µm (coiling temperature of 500–550 ◦C), while values ranged between 3.2 µm and
4.1 µm in the case of high angle boundaries.

Figure 7a,b show the grain size distribution corresponding to Sample 2 (coiling temper-
ature of 550–600 ◦C), taking low-angle-misorientation criteria and both center and quarter
positions through thickness into consideration. A similar unit size distribution was quanti-
fied for both locations, reflecting the formation of a homogeneous microstructure through
thickness. The same analysis could be extended to the other specimens by also comparing
samples taken from the central region and closer to the sample surfaces. Figure 8a,b show
the grain size distribution corresponding to the center and quarter, both misorientation
threshold criteria, and all coiling temperatures. No significant differences were noted at dif-
ferent locations along the thickness and a similar grain size distribution was measured for
the different coiling temperatures. Therefore, the differences detected in tensile properties
cannot only be explained by the strengthening mechanism related to unit size refinement.
Furthermore, coiling temperature had no significant influence on the grain size distribution
of the rolled products.
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Figure 7. Grain size distribution obtained in Sample 2 (coiling temperature of 550–600 ◦C) at different
locations along the thickness: (a) quarter and (b) center of the thickness.
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Figure 8. Comparison between the grain size distribution obtained in the different samples and both
positions of thickness (quarter and center): (a) low-angle- and (b) high-angle-misorientation criteria.

The presence of Nb in HSLA steel produced in a thermomechanical process encourages
austenite conditioning during deformation. Niobium interferes considerably in recrystal-
lization kinetics in hot rolling, as its presence delays the recovery and recrystallization
processes of austenite, in addition to inhibiting the growth of recrystallized grains. As a
result, the formation of fine ferritic grains occurs after phase transformation. Nb contents
higher than 0.05 wt% are enough to anchor the recrystallization fronts, leading to “pancak-
ing” (elongated grains) of the austenitic microstructure and the formation of deformation
bands and subgrains. Additionally, Nb also provides precipitation hardening. A similar
effect can be attributed to the presence of titanium, which, at contents close to 0.1 wt%,
also retards austenite recrystallization kinetics of HSLA steels, albeit in this case due to the
formation of TiN and TiC [62–64].

Hardening due to dislocation density has to be considered, and the Kernel Average
Misorientation measured by EBSD was estimated for such purpose. The Kernel maps
obtained at each coiling temperature can be compared in Figure 9, and it can be observed
that Sample 4 (coiling temperature of 650–700 ◦C) showed a slightly lower Kernel Aver-
age Misorientation value in both locations, confirming the formation of a more ferritic
microstructure with slightly lower dislocation density. However, no significant differences
were observed among the microstructures analyzed.

The yield strength of low-carbon microalloyed steels can be described as a combi-
nation of different strengthening contributions [65–67]. Although the most widely used
approach is based on a linear summation of such contributions [63,68,69], several non-
linear relationships, which consider the interaction of different strengthening mechanisms,
have also been reported in the literature [70,71]. In the present study, a linear approach
based on the sum of contributions (solid solution [40], grain size [41], dislocations [42], and
fine precipitation [32]) was the one considered (see Equation (2)). To estimate individual
contributions, equations previously reported in the literature were employed and are listed
in Equations (3) to (6), while a more detailed description of the expressions can be found
in [26]. For estimating the contribution of grain size refinement, low-angle-misorientation
unit sizes were assumed. It is widely known that low angle boundaries (4◦) provide an
effective barrier to dislocation movement, controlling the tensile properties. Nevertheless,
the high-angle-misorientation unit sizes are considered effective at controlling crack propa-
gation and are related to toughness properties. The contribution of fine precipitation (σppt)
was estimated for the purpose of this study by subtracting the strengthening associated
with all other contributions from the experimental yield strength, due to the lack of any
accurate measurement of precipitate volume fraction.
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General: σy = σ0 + σss + σgs + σρ + σMA + σppt (2)

Solid solution: σss = σ0 + 32.3Mn + 83.2Si + 11Mo + 354(%N f ree)
0.5 (3)

Grain size: σgs = 17.4D4
−0.5 (4)

Dislocations: σρ = αMµb
√

ρ, where ρ =
2ϑ

ub
(5)

Precipitation: σppt = 10.8
fv

0.5

x
ln(

x
6.125 · 10−4

)
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The results shown in Figure 10 indicate that the most relevant contribution was
associated with unit size refinement and its value varied from 313 (600–650 ◦C) to 341 MPa
(550–600 ◦C). No considerable difference in strengthening due to dislocation density was
identified in the different samples (72 MPa in the case of Sample 4 and 77 MPa in those of
the rest of the coils). As for hardening due to fine precipitation, it was observed that the
highest contribution was obtained in Sample 3 (161 MPa) in which a coiling temperature
range of 600–650 ◦C was applied. In the case of Samples 1, 2, and 4, lower precipitation
hardening was quantified of 81, 68, and 79 MPa, respectively. Therefore, the highest yield
strength of 657 MPa reached in Sample 3 can be justified by the formation of fine and
abundant precipitation.
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Figure 10. Contributions of different strengthening mechanisms to material yield strength.

Samples 2, 3, and 4 were selected to analyze fine precipitation in the transmission
electron microscope (TEM). TEM micrographs corresponding to Sample 3 (coiling temper-
ature of 600–650 ◦C) are shown in Figure 11, in which different precipitate populations
can be distinguished deriving from different steps in the process. The coarsest precipitates
(coarser than 30 nm) are usually associated with the lack of complete dissolution of Nb-rich
particles during initial soaking. Precipitates ranging between 10 and 20 nm can be related to
the strain-induced precipitation taking place in the austenite during finishing deformation
passes (below Tnr). In addition, in Sample 3, very fine precipitates smaller below 10 nm
were also detected, and these, which formed during cooling (run-out table or coiling), are
effective in encouraging a hardening effect. The microanalysis performed in the different
types of precipitates suggest that they were mainly Nb- and Ti-rich ones (see an example in
Figure 11d).

The presence of TiC can be evidenced in all samples analyzed, albeit with a higher
fraction in the sample submitted at the coiling temperature of 600–650 ◦C, as can be
observed in Figure 12, which provides a comparison between the three samples analyzed.
In Sample 3, a higher fraction of fine precipitates was observed compared to Sample 2 and
Sample 4.
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Precipitates below 10 nm contribute to the increase in mechanical properties, as they
are the most effective in anchoring dislocations [30]. Table 3 shows the precipitate average
diameters for each evaluated coiling temperature, and Sample 3 provided an average
particle size of 3.9 nm, while Sample 2 (5 nm) and Sample 4 (6.3 nm) evidenced higher
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precipitate diameter values. The value obtained for coils within a coiling temperature
range of 600–650 ◦C was 22% lower than that found at a temperature range of 550–600 ◦C
and 38% lower than that observed at a temperature of 650–700 ◦C. Figure 13 shows the
distribution of precipitates below 10 nm. It can be verified that Sample 3, referring to a
coiling temperature of 600–650 ◦C, had a normal distribution with a peak around 3 nm,
showing that under this condition, the precipitates were finer than in the others, thus
justifying the higher yield strength observed.

Table 3. Mean precipitate diameters for the different coiling temperatures.

Coiling Temperature (◦C) Precipitate Diameter (nm)

Sample 2 550–600 5.0 ± 0.1
Sample 3 600–650 3.9 ± 0.2
Sample 4 650–700 6.3 ± 0.3
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Figure 13. Effect of coiling temperature on precipitate size distribution (below 10 nm).

Regarding estimation of the contribution of the different hardening mechanisms shown
in Figure 10, the value assigned to precipitation was corroborated by precipitate analysis. It
was evidenced that reaching a yield strength above 600 MPa in this alloy is associated with
strict coiling temperature control, while the use of non-stoichiometric titanium was another
relevant point in the development of this work.

According to the Ashby–Orowan model (Equation (6)), an increase in 30 MPa in
precipitation strengthening could be obtained in the case of a constant precipitate volume
fraction of 0.001 involving reducing the precipitate size from 6 nm to 4 nm, as shown in
Figure 14. One of the greatest limitations in evaluating the contribution of precipitation
hardening is how to obtain an accurate calculation of the precipitate volume fraction, but
although this cannot be accurately quantified, it could be stated that small differences in
precipitate size might exert relevant differences in terms of their hardening effect.

Based on Equation (6) and considering the estimated hardening due to fine precipita-
tion together with the previously measured precipitate sizes, the corresponding precipitate
volume fraction could then be calculated. In the case of Sample 1, a precipitate volume
fraction of fv = 0.00025 was estimated, fv = 0.00039 in that of Sample 4, and fv = 0.00124 in
that of Sample 3. These volume fractions are within the range previously reported in the
literature for similar chemistries. According to Thermocalc calculations, the equilibrium
precipitate volume fraction was about 0.0013 (estimated fv values are below this value).
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Figure 14. Contribution of precipitate size to precipitation strengthening according to the Ashby–
Orowan model.

4. Conclusions

The combination of advanced modeling techniques with the industrial know-how
in defining optimum rolling strategies provided an interesting approach to obtaining the
mechanical properties requested in high-strength coils of non-stoichiometric Nb-Ti HSLA
steel. Furthermore, the application of systematic characterization techniques helps under-
stand the metallurgical mechanisms behind strengthening contributions, thus supporting
further improvements in alloy design/processing route optimization.

In this study, the industrially hot-rolled product showed a high level of microstructural
refinement, with average values of ferritic grain size within the range of 2.4 µm to 3 µm,
and good homogeneity was also observed along the thickness in all samples analyzed. The
results show that, despite the long rolling times typical of the Steckel reversing mill, the
addition of niobium and non-stoichiometric titanium constituted a suitable approach to
obtaining refined and homogeneous microstructure in the final product.

Coiling temperature had no impact on dislocation hardening and grain size hardening
mechanisms. However, there was a major influence on precipitation hardening. For their
part, yield strength values above 650 MPa and tensile strength values above 700 MPa
were obtained for rolled strips within a coiling temperature range of 600–650 ◦C. Analysis
of TiC precipitates via transmission electron microscopy showed that this temperature
range potentialized precipitation hardening, thus encouraging a greater volume of fine
precipitates, which was maximized by the presence of non-stoichiometric titanium. As
a result, the yield strength observed was 50 MPa above that obtained within the coiling
temperature range of 550–600 ◦C and 70 MPa above ranges of 525–550 ◦C and 650–700 ◦C.
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Nomenclature

σy Yield Strength
σ0 Lattice friction stress
σss Strengthening contribution due to solid solution
σgs Strengthening contribution due to grain size
σρ Strengthening contribution due to dislocations
σppt Strengthening contribution due to precipitation
A Numerical factor
M Taylor factor
µ Shear modulus
b Burgers vector magnitude
ρ Dislocation density
ϑ Kernel average misorientation
u Unit length related to Kernel
fv Volume fraction of precipitates
x Radius of precipitates
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