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Abstract: Blast furnace ironmaking is one of the most serious carbon dioxide emission processes. To
reduce energy consumption and CO2 emissions, fluidized bed ironmaking technology with hydrogen
as a reducing agent has attracted more and more attention. An inclined agitator was added to the
fluidized bed reactor to address the sticking issue in the conventional fluidized bed ironmaking
process. In this research, numerical simulation was used to examine the impacts of reducing gas
composition and agitation speed on the gas-solid fluidization quality in the cold fluidization of iron
ore powder in the fluidized bed with an inclined agitator. The results indicate that the fluidization
effect of iron ore powder is better when the volume ratios of H2 to CO and H2 to N2 are 1:1. Under
the intensive shear action of the agitator, the standard deviation of pressure drop constantly decreases
with the increase in agitation speed, and the decreasing range is smaller and smaller. The fluidization
state of the iron ore powder particles in the bed stabilized when the agitation speed reached 160 rpm.

Keywords: fluidized bed; gas composition; inclined agitation; agitation speed; pressure characteristic

1. Introduction

Developing iron with fluidized bed technology alludes to the fluidized bed direct
reduction process of producing iron [1]. In 1950, this technology was industrialized. Follow-
ing that, several fluidization methods have been developed, including H−Iron, Nu−Iron,
FIOR, FINMET, CIRCORED, DIOS, HISMELT, CIRCOFER, and FINEX, among others [2–10].
However, only FINMET, CIRCORED, FINEX, and HISMELT have accomplished industrial-
ization in recent years.

The reduction of kinetic conditions such as heat and mass transfer between iron ore
powder and gas is improved with finer iron ore powder particle size in fluidized bed
ironmaking technology, which does not employ pellets or coke [11–13]. In addition, using
hydrogen as the reductant in the reduction of iron ore powder can significantly speed up
the process [14,15], which is of great significance in reducing energy consumption and
carbon dioxide emissions. However, in industrial production, uneven gas-solid distribution
affects the fluidization quality and the effectiveness of heat and mass transfer, and the iron
ore powder particles in the classic fluidized bed are prone to sticking [16–19]. The rate of
iron ore powder reduction is constrained, which has an impact on the process’ ability to
run continuously.

For the reduction process of iron ore powder in the fluidized bed, the most acceptable
reason for the sticking is the bonding effect of iron whiskers and highly active new metal
iron. In the process of fluidization, when iron ore powder particles are bonded together, the
mutual movement resistance between particles increases, which allows the phenomenon
of de−fluidization to occur [20–22]. Many scholars have carried out a series of studies on
how to prevent sticking. First of all, the problem of sticking can be reduced by controlling
the reaction temperature and properly increasing the fluidization gas velocity [23,24], but
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the effect is limited. Secondly, coating or isolation treatment of iron ore powder particles
can reduce the bonding problem between iron ore powder particles in the reduction
process to a certain extent [25,26]. Third, the use of mechanical interference force can act
on the bonded particles in the bed to increase the momentum of particles and prevent
the phenomenon of de−fluidization. The use of mechanical and acoustic vibrations can
promote the uniform distribution of gas and solid [27], but its applicability is limited due
to its low agitating energy. In addition, adding stirring equipment is also a feasible method
to solve the problem of iron ore powder sticking in the reduction process. Han [28] studied
the influence of frame agitators on the fluidization behavior of D−type particles through
numerical simulation and experiment. The results show that stirring can improve the
fluidization quality. However, this method is rarely used in the fluidized bed ironmaking
process. Song [29] added a direct agitator device to the fluidized bed of ultrafine iron oxide
powder. It is concluded that the addition of an agitator device can improve the fluidization
quality of iron oxide powder.

A novel idea was made to use an inclined agitator to prevent particle sticking during
the fluidized ironmaking process, which can further increase the effectiveness of the
agitator device. Li [30] conducted simulation and experimental research on the fluidization
behavior of glass beads using air. It was proven that compared with a vertical agitator, an
inclined agitator can better break bubbles, reduce pressure fluctuations, and improve the
quality of gas-solid fluidization in the fluidized bed. The inclined agitator increases the
bubble’s shear property, drives particles into the bubble, and expands the effect zone in the
axial direction.

Many factors affect the sticking of iron ore powder particles in the actual high−temper-
ature reduction process, such as gas composition, agitation speed, gas speed, and other
conditions that have a great impact on the fluidization state of iron ore powder particles.
Therefore, this paper does not consider the change of reduction temperature and gas com-
position and instead researches the influence of reduction gas composition and agitation
speed on gas-solid flow during the fluidization of iron ore powder in a fluidized bed
with an inclined agitator by numerical simulation. The type of agitator used is a three
round blade propelling agitator. Using the Eulerian model, a three−dimensional numerical
simulation of the fluidization process in the fluidized bed with an inclined agitator at room
temperature is conducted to determine the optimal fluidization parameters for uniform
gas-solid distribution in the fluidized bed. In the actual high−temperature reduction
process in the future, the efficiency of heat and mass transfer between the gas-solid phase in
the fluidized bed can be improved, which is of great significance to improve the reduction
efficiency of metallic iron.

2. Simulation Strategy

SOLIDWORKS 2019 and ANSYS ICEM 2019 are applied to the establishment of
geometric models and grid models. ANSYS FLUENT 2019 is applied to the numerical
simulation of the fluidized bed with an inclined agitator in this paper. The Eulerian–Eulerian
two−fluid model, which consists of a set of continuity and momentum equations for gas
and solid phases, is used to simulate the agitated fluidized bed. The kinetic theory of
granular flows is used to determine the solid phase’s properties. The properties of the solid
phase are obtained by applying the kinetic theory of granular flows.

Due to the complex flow state of reducing gas and iron ore powder particles in the
fluidized bed with an inclined agitator, the following model assumptions are made in
this paper.

(1) The slip between the wall and the gas-solid phase is not considered;
(2) The lift between gas and solid is not considered;
(3) Due to the large density difference between gas and solid, the virtual mass force is

not considered;
(4) The dispersion force of turbulence is not considered.
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Figure 1a shows the physical simulation experimental system at room temperature.
The system is used to verify the accuracy of the numerical model. It includes the fluidized
bed, gas supply system, mixing equipment, and optical system. The inner diameter of the
fluidized bed is 70 mm, and the radius of the agitator is 25 mm. An unstructured grid
is applied to build a grid model of the fluidized bed with an inclined agitator, as shown
in Figure 1b. Volume fraction as a function of time and space is introduced, and the sum
of the volume fraction of the phases is equal to 1. The simulation results are obtained
by solving the gas-solid phase’s continuity equation, momentum equation, and closure
equation. The sliding grid method is used to simulate the fluidized bed with an inclined
agitator. The RNG k − ε (Renormalization group k − ε) turbulence model is chosen for
this investigation based on the available computational power and the precision of the
calculation results. The phase−coupled SIMPLE algorithm is used as the pressure–velocity
coupling method and the equation is solved by the unsteady method. The governing
equations are as follows.
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2.1. Governing Equations

Continuity equations:

∂

∂t
(
ρgεg

)
+ div

(
εgρgug

)
= 0, (1)

∂

∂t
(ρsεs) + div(εsρsus) = 0, (2)

Momentum equation:

∂

∂t
(
εgρgug

)
+ div

(
εgρgugug

)
= div

(
τg
)
+ εgρgg− εgdiv(p)− β

(
ug − us

)
, (3)

∂

∂t
(εsρsus) + div(εsρsusus) = div(τs) + εsρsg− εsdiv(p)− div(ps) + β

(
ug − us

)
(4)

where ε is the volume fraction, g is the gravity acceleration, p is the thermodynamic pressure,
β is the interface momentum transfer coefficient, τg is the stress tensor of the gas phase,
ps is the particle pressure caused by the particle−particle interactions, and τs is the stress
tensor of solid, εg + εs = 1.
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Stress tensor of gas phase:

τg = µg

[
div
(
ug
)
+ div

(
ug
)T
]
− 2

3
µgdiv

(
ug
)
I. (5)

Stress tensor of solid:

τs = µs

[(
div(us) + div(us)

T
)
− 2

3
div(us)I

]
+ ξsdiv(us)I. (6)

Particle pressure:
ps = εsρsΘ + 2ρs(1 + es)ε

2
sg0Θ, (7)

where es is the collision recovery coefficient of solid particles, and g0 is the radial
distribution function.

Solids bulk viscosity:

ξs =
4
3

ε2
sρsdsg0(1 + es)

(
Θ

π

)1/2
. (8)

Solids shear viscosity:

µs =
4
5

ε2
sρsdsg0(1 + es)

(
Θ

π

)1/2
+

10ρsds
√
πΘ

96(1 + es)εsg0

[
1 +

4
5

g0εs(1 + es)

]2
. (9)

Radial distribution function:

g0 =

[
1−

(
εs

εs,max

)1/3
]−1

. (10)

Turbulence kinetic energy k:

∂ρk
∂t

+
∂ρwk

∂z
=

∂

∂z
[αkµeff

∂k
∂z

] + P− ρε. (11)

Turbulent dissipation rate ε:

∂ρε

∂t
+

∂ρwε

∂z
=

∂

∂z

[
αεµeff

∂ε

∂z

]
+ C∗1ε

ε

k
P− C2ερ

ε2

k
, (12)

µeff = µ + ρCuk2/ε, (13)

C∗1ε = C1ε − η(1− η/η0)(1 + βη3), (14)

η = k/ε
√

2Eij · Eij, (15)

Eij =
1
2
( ∂ui

∂xj
+

∂uj
∂xi

), (16)

where µeff is the corrected turbulent viscosity; Cu is the viscosity coefficient, Cu = 0.85;
C1ε* and η are model coefficients; Eij is the time average strain rate; η0 = 4.377, β = 0.012,
αK = αε = 1.39, C1ε = 1.42, and C2ε = 1.68.

Li’s study [30] is based on the Ergun and Wen–Yu drag models, combined with the
Arastoopour model and connected by the smooth function proposed by Lu [31], to obtain a
drag model suitable for B−type particles. The modified drag force model is as follows.

βm = ϕβErgun + (Φ− ϕ)βSyamlal−O′Brien + (1−Φ)βWen−Yu. (17)

Wen–Yu model:

βWen−Yu =
3
4

CD
εsρg

∣∣us − ug
∣∣

ds
ε−2.65

g , (18)
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CD =

{
24
Res

(1 + 0.15Re0.687
s

)
Res < 1000

0.44 Res ≥ 1000
, (19)

Res =
εgρg

∣∣us − ug
∣∣ds

µg
. (20)

Syamlal–O’Brien model:

βSyamlal− O′Brien =
3εg(1− εg)ρg

4V2
rsds

CD1
∣∣us − ug

∣∣, (21)

CD1 =
(

0.63 + 4.8√
Rep/Vrs

)2
, (22)

vr,s = 0.5(A− 0.06Res +

√
(0.06Res)

2 + 0.12Res(2B− A) + A2) (23)

B =

{
0.8εg

1.28 εs ≤ 0.85
ε2.65

g εs > 0.85 , (24)

A = εg
4.14. (25)

Ergun model:

βErgun = 150
ε2

sµg

εgd2
s
+ 1.75

εsρg

ds

∣∣us − ug
∣∣. (26)

Smooth function:

ϕ =
arctan[150× 1.75(εs − 0.4)]

π
+ 0.5, (27)

Φ =
arctan[150× 1.75(εs − 0.1)]

π
+ 0.5. (28)

2.2. Boundary Conditions and Simulation Parameters

The gas composition investigated in this study includes pure hydrogen, H2, and CO
at a volume ratio of 1:1, H2 and N2 at a volume ratio of 1:1, and pure carbon monoxide.
The agitation speeds are 0, 80, 160, 240, and 320 rpm, respectively. The operating pressure
is 101.325 kPa. The wall of the fluidized bed and agitator adopt the non−slip boundary
condition. Other physical parameters and operating parameters are shown in Table 1. The
modified drag model is imported into FLUENT software by UDF (user−defined functions).

Table 1. Relevant simulation parameters.

Parameters Values

The density of iron ore powder, ρp (kg/m3) 3300.40
The particle size of iron ore powder, ds (µm) 400.00

The volume fraction of initial iron ore powder powder particles 0.62
Gas velocity, ug (m/s) 0.50

Initial Bed Height, H0 (m) 0.21
Particle collision coefficient, ess 0.90

Time step, ∆t (s) 0.0001
Inlet boundary Velocity−inlet

Outlet boundary Pressure−outlet
Operating temperature (K) 293.15

2.3. Verification of Simulation Results

Through the verification of grid independence, a certain grid density is selected to use
relatively small computing resources to obtain better computing accuracy. Under certain
conditions (pure hydrogen, gas velocity 0.5 m/s, agitation speed 160 rpm), the fluidiza-
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tion of iron ore powder in a fluidized bed with an inclined agitator under different grid
number conditions is simulated. The number of grids is 353 thousand, 460 thousand, and
571 thousand. Figure 2a shows the volume fraction distribution of axial iron ore powder
particles in the bed at 1 s for various grid numbers. The simulation results of the three cases
are comparable. In this study, 353 thousand grids are chosen to conserve computational
resources and guarantee the precision of simulation results.
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Figure 2. Grid independence verification and experimental verification. (a) Grid independence
verification; (b) experimental verification.

To ensure the accuracy of the numerical model, the simulation results of the gas-
solid flow numerical model in a fluidized bed with an inclined agitator are verified by
physical simulation in this paper. In the numerical simulation, carbon monoxide gas is
used to fluidize iron ore powder particles. Because the density, viscosity, and other physical
parameters of carbon monoxide at room temperature are very different from air, and to
ensure the safety of the experiment, air is used to fluidize iron ore powder in physical
simulation. Because the density, viscosity, and other physical parameters of air at normal
temperature are similar to carbon monoxide, and to ensure the safety of the experiment, air
is used to fluidize iron ore powder particles in physical simulation. The geometric model
and operating parameters of the fluidized bed with an inclined agitator are consistent with
the numerical simulation process. The particle size of iron ore powder is 400 µm. The gas
velocity is 0.5 m/s. A high−speed camera is used to record the pressure drop changes
of the bed at different agitation speeds. The bed pressure drop is calculated every 0.2 s
after fluidization. A total of 50 groups of data are recorded. The average value of bed
pressure drop is calculated and three repeated experiments are carried out. The results
are shown in Figure 2b. The results of the physical simulation are in good agreement with
those of the numerical simulation. In addition, the standard deviation of bed pressure
drop effectively reflects the fluctuation of bed pressure as an important influence index
in the research of the fluidized bed. To further verify the numerical model, the standard
deviation of bed pressure drop under different agitation speeds in the physical simulation
is calculated (Figure 2b), and the obtained results are the same as the distribution model of
the numerical simulation, which is in good agreement.

The main reason for the deviation is that in the simulation process, the particle size
of iron ore powder is assumed to be a single particle size, while in the actual physical
simulation process, the particles are irregular spheres, and the particle size distribution is a
range. Another reason is that some forces with little bearing on the particle fluidization
process will be disregarded to simplify the computation model. The general feasibility
of numerical simulation is demonstrated by the simulation results obtained using the
numerical model, which is in good agreement with the experimental results.
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3. Results and Discussion
3.1. Standard Deviation of Pressure Drop

The gas volume fraction changes due to the interaction between gas and solid particles
in the fluidized bed. The bed vibration is caused by the collision between particles and
agitator or particles and wall, which can make the bed pressure fluctuate in different
amplitude. The standard deviation of bed pressure drop is an important parameter which
can effectively reflect the fluctuation of bed pressure. Therefore, the standard deviation of
bed pressure drop can judge the stability of a fluidized bed. Figure 3a shows the standard
deviation of pressure drop in the fluidized bed with different gas compositions when
the agitator speed is 160 rpm. Figure 3b shows the standard deviation of pressure drop
of the fluidized bed at different agitator speeds when the volume ratio of hydrogen to
carbon monoxide is 1:1. Although the standard deviation of pressure drop during the
fluidization of pure hydrogen is the smallest, a large number of particles in the bed are
in an aggregated state, which reduces the contact area between gas and solid, and will
affect the reduction of iron ore fines. In the other three cases, the standard deviation of
pressure drop in the atmosphere with the volume ratio of hydrogen to carbon monoxide of
1:1 is the smallest. Additionally, as the agitator speed increases from 0 rpm to 160 rpm, the
standard deviation of pressure drop decreases rapidly. However, when the agitator speed
continues to increase, the decrease in the standard deviation of pressure drop becomes
smaller and smaller. This shows that the fluidized state of iron ore powder particles in
the bed is relatively stable when the agitator speed reaches 160 rpm in the atmosphere
with the volume ratio of hydrogen to carbon monoxide of 1:1 and the standard deviation
of pressure drop in the fluidized bed is 210.92. However, increasing the agitator speed
has little effect on the fluidization quality of iron ore powder particles and will increase
energy consumption.
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3.2. Distribution of Iron Ore Powder

Figure 4a–d illustrates the gas-solid two−phase distribution in the fluidized bed under
various gas composition conditions when the agitation speed is 160 rpm. The figure depicts
that when the gas composition is pure hydrogen, the bed expansion rate is the smallest,
the majority of the particles are aggregated, and the iron ore powder is more likely to stick
when reduced at high temperatures. During this process, the bubbles continue to expand.
At 10.1 s, the bubbles reach the bottom of the agitator, and at 10.2 s, the bubbles are broken
and continue to rise under the powerful shear of the agitator. Therefore, higher operating
pressure and gas velocity are required when pure hydrogen is used. Similar distribution
states are displayed in Figure 4b–d. The fluidization state in the lower part of the fluidized
bed is relatively excellent, and the bubbles are broken under the action of the agitator,
which improves the uniformity of gas-solid mixing. When the bubble leaves the agitator
and continues to rise, the bubble size becomes larger and larger, and finally, the bubble
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breaks with the falling of iron ore powder particles. Among them, in Figure 4d, the lower
part of the fluidized bed has a low solid holdup, and more obvious bubbles are generated.
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Figure 4e depicts the distribution of gas-solid two−phase volume fraction in the
fluidized bed when the volume ratio of H2 to CO is 1:1 and the agitation speed is 0, 80, 160,
240, and 320 rpm, respectively. It can be seen from the figure that there is no shear effect of
the agitator paddle when the agitation speed is 0 rpm. From the bottom of the bed to the
upper part of the bed, the bubbles keep growing during the rising process. Compared with
the stirring conditions, there are more bubbles in the bed at 0 rpm, and the bubble size is
larger. Again, the quality of gas-solid fluidization is effectively improved under the action
of the agitator. With the increase in agitation speed, the size of bubbles in the bed above the
agitator paddle decreases, and the uniformity of gas-solid two−phase mixing improves.
When the speed is higher than 160 rpm, the gas−solid distribution is closer.

Figure 5a,b shows the radial volume fraction distribution of iron ore powder particles
at the bed height of 0.07 m and 0.21 m under different gas composition conditions with
an agitation speed of 160 rpm at 10.2 s. Figure 5c,d shows the radial volume fraction
distribution of iron ore powder particles at the bed height of 0.07 m and 0.21 m under
different agitation speeds in an atmosphere with a volume ratio of H2 to CO of 1:1. The
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figure shows that, under the various aforementioned conditions, the volume fraction of
iron ore powder particles drops within the range of 0.01 m from the fluidized bed’s side
wall. In a pure CO atmosphere, the radial volume fraction distribution of iron ore powder
particles at 0.07 m in the bed fluctuates greatly, while particles gather at 0.21 of the bed
height. The average radial volume fraction of iron ore powder is high when the volume
ratio of H2 to CO is 1:1, the agitation speed is 0 rpm, and the bed height is 0.07 m. At
different agitation speeds, the mean radial volume fraction of iron ore powder particle
decreases, which is due to the disturbing effect of the propelling agitator on the lower part
of the bed. Large bubbles are produced in the bed, and the radial volume fraction of iron
ore powder fluctuates significantly when the agitation speed is 0 rpm and the bed height
is 0.021 m. Under the action of the agitator, the fluctuation of the radial volume fraction
of iron ore powder particles in the bed is significantly reduced. In addition, it is seen that
some iron ore powder particles are still accumulating in the bed above the agitator paddle.

Metals 2023, 13, x FOR PEER REVIEW 10 of 16 
 

 

  
(a) (b) 

  
(c) (d) 

Figure 5. Radial volume fraction distribution of iron ore powder particles at the height of 0.07 and 
0.21 m. (a) Different gas compositions at 0.07m; (b) Different gas compositions at 0.21m; (c) Differ-
ent agitation speeds at 0.07m; (d) Different agitation speeds at 0.21m. 

3.3. Axial Average Gas Holdup 
Figure 6a,b shows the axial average gas holdup in the fluidized bed at the time of 

10.2 s for various gas compositions with an agitation speed of 160 rpm and the axial aver-
age gas holdup in the fluidized bed at various agitation speeds in the atmosphere with a 
volume ratio of 1:1 for H2 to CO. It can be seen from Figure 6a that the average gas holdup 
in the axial direction of the fluidized bed presents an “S” type distribution. A large num-
ber of iron ore particles are accumulated in the bed when pure hydrogen is present, which 
results in a low level of the axial average gas holdup. Under the other three conditions, 
the fluctuation of average gas holdup in the lower part of the fluidized bed is lower than 
that in the upper part of the fluidized bed due to the continuous rise and growth of bub-
bles in the bed. The average gas holdup of pure CO gas at the inlet is the largest. It can be 
seen from Figure 6b that the average gas holdup in the bed below 0.1 m is generally steady 
in the atmosphere with a volume ratio of H2 to CO of 1:1. Still, the average gas holdup in 
the bed above 0.1 m fluctuates more than that in the lower section. The axial average gas 
holdup in the bed varies significantly when the agitation speed is 0 rpm, reaching a max-
imum value of 0.80. This results from the bubbles in the bed frequently forming and float-
ing while also growing and breaking. Because of the unequal distribution of the gas and 
solid in this situation, the operation is unstable. The gas usage rate will also decrease con-
currently with the reduction process for iron ore powder. The axial average gas holdup’s 
fluctuation amplitude decreases when the agitation speed is 80 rpm. When the agitation 
speed is 160 rpm, the axial average gas holdup fluctuation of the bed increases slightly, 
yet its maximum value is 0.71. The axial average gas holdup on the bed above 0.1 m in 
height fluctuates less when the agitation speed is increased, indicating that the 

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

10

20

30

40

50

60

70

V
ol

um
e 

fra
ct

io
n/

%

Position/m

 H2

 H2+CO
 H2+N2

 CO
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

10

20

30

40

50

60

70

V
ol

um
e 

fra
ct

io
n/

%

Position/m

 H2

 H2+CO
 H2+N2

 CO

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03
10

20

30

40

50

60

V
ol

um
e 

fra
ct

io
n/

%

Position/m

 0 rpm
 80 rpm
 160 rpm
 240 rpm
 320 rpm

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

0

10

20

30

40

50

60

70

V
ol

um
e 

fra
ct

io
n/

%

Position/m

 0 rpm
 80 rpm
 160 rpm
 240 rpm
 320 rpm

Figure 5. Radial volume fraction distribution of iron ore powder particles at the height of
0.07 and 0.21 m. (a) Different gas compositions at 0.07 m; (b) Different gas compositions at 0.21 m;
(c) Different agitation speeds at 0.07 m; (d) Different agitation speeds at 0.21 m.

3.3. Axial Average Gas Holdup

Figure 6a,b shows the axial average gas holdup in the fluidized bed at the time of
10.2 s for various gas compositions with an agitation speed of 160 rpm and the axial average
gas holdup in the fluidized bed at various agitation speeds in the atmosphere with a volume
ratio of 1:1 for H2 to CO. It can be seen from Figure 6a that the average gas holdup in
the axial direction of the fluidized bed presents an “S” type distribution. A large number
of iron ore particles are accumulated in the bed when pure hydrogen is present, which
results in a low level of the axial average gas holdup. Under the other three conditions, the
fluctuation of average gas holdup in the lower part of the fluidized bed is lower than that in
the upper part of the fluidized bed due to the continuous rise and growth of bubbles in the
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bed. The average gas holdup of pure CO gas at the inlet is the largest. It can be seen from
Figure 6b that the average gas holdup in the bed below 0.1 m is generally steady in the
atmosphere with a volume ratio of H2 to CO of 1:1. Still, the average gas holdup in the bed
above 0.1 m fluctuates more than that in the lower section. The axial average gas holdup in
the bed varies significantly when the agitation speed is 0 rpm, reaching a maximum value
of 0.80. This results from the bubbles in the bed frequently forming and floating while
also growing and breaking. Because of the unequal distribution of the gas and solid in
this situation, the operation is unstable. The gas usage rate will also decrease concurrently
with the reduction process for iron ore powder. The axial average gas holdup’s fluctuation
amplitude decreases when the agitation speed is 80 rpm. When the agitation speed is
160 rpm, the axial average gas holdup fluctuation of the bed increases slightly, yet its
maximum value is 0.71. The axial average gas holdup on the bed above 0.1 m in height
fluctuates less when the agitation speed is increased, indicating that the distribution of
gas-solid two−phase in the bed is influenced by agitation speed, and the strong shear force
will assist in ensuring that the two phases are distributed uniformly in the bed.
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3.4. Velocity Distribution

Figure 7 shows the velocity vector cloud diagram of iron ore powder particles with an
agitation speed of 160 rpm at 10.2 s. The particle velocity vector distribution under different
gas composition conditions is shown in Figure 7a. In the pure hydrogen atmosphere, most
of the iron ore powder particles in the bed have low velocity due to their aggregation, and
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the particle velocity is higher only near the agitator. Combined with the volume fraction
distribution cloud diagram of iron ore powder in Figure 4, circulation is formed above
and below the agitator paddle in the other three cases driven by the reducing gas, and the
velocity of iron ore powder particles in the circulation is higher than that in other positions.
In a pure CO atmosphere, the maximum particle velocity of iron ore powder particles in
circulation can reach 0.87 m/s.
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The particle velocity vector distribution under different agitation speeds in an atmo-
sphere with a volume ratio of H2 to CO of 1:1 is shown in Figure 7b. When the agitation
speed is 0 rpm, due to the existence of the agitator paddle, some iron ore powder par-
ticles will disperse around the agitator paddle in the process of upward movement. In
combination with Figure 4e, many large−sized bubbles are generated in the bed, which
will drive the iron ore powder particles to accelerate their movement, so some particles in
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the bed have a large speed. However, under the condition of the agitator, the bubble size
is significantly reduced under the action of the shear force of the agitator paddle, which
forms an irregular circulation around the paddle, improves the movement speed of iron
ore particles near the paddle, and promotes the mixing of gas and solid phases in the bed.

When the bed height is 0.07 m and 0.21 m at 10.2 s, Figure 8 displays the axial velocity
distribution of iron ore powder particles in the diameter direction under various conditions.
The rising and falling states of the iron powder particles can be represented by the positive
and negative axial velocities. According to Figure 7a, in a pure CO atmosphere, circulation
is generated at 0.07 m of the bed height, and the bubbles in the middle drive the rise of
iron ore powder particles and fall on both sides. In the atmosphere with a volume ratio
of H2 to CO of 1:1, the distribution of gas and solid is relatively uniform at the height of
0.07 m, and the absolute value of the axial velocity of iron ore powder particles is relatively
small. Under the condition of no stirring, the maximum axial velocity of iron ore powder
particles at the bed height of 0.21 m reaches 0.48 m/s, and the particles are rapidly falling
back. Combined with Figure 4e, it can be seen that when the large bubble overflow bed
breaks, iron ore powder particles will fall back and produce a large axial velocity. With the
increase in agitation speed, the strong shear force reduces the size of the bubble and makes
the absolute value of the axial velocity of the iron ore powder particles gradually decrease.
To some extent, it shows that the fluidization of iron ore powder particles tends to be stable
under the action of stirring.
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Figure 8. Axial velocity distribution of iron ore powder particles in diameter direction at 0.07 and
0.21 m height. (a) Different gas compositions at 0.07 m; (b) Different gas compositions at 0.21 m;
(c) Different agitation speeds at 0.07 m; (d) Different agitation speeds at 0.21 m.

Figure 9 depicts the radial gas velocity distribution under various circumstances at
10.2 s with a bed height of 0.07 m and 0.21 m. When the agitation speed is 160 rpm in
a pure CO atmosphere, the maximum gas velocity in the middle of the bed at 0.07 m
height reaches 3.18 m/s, which also indicates that the accelerated rise of bubbles drives the
upward movement of iron ore powder particles. The radial velocity distribution of the gas
phase in the atmosphere with a volume ratio of H2 to CO of 1:1 is relatively uniform. At
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0.21 m, the radial velocity distribution of the gas phase fluctuates greatly in pure hydrogen
and the atmosphere with a volume ratio of H2 to N2 of 1:1. When the volume ratio of
H2 to CO is 1:1, at 0.07 m, the radial velocity distribution of gas is similar under different
agitation speeds, while at 0.21 m, when the agitation speed is 0 rpm, the gas velocity on the
right side of the bed is larger, reaching 3.23 m/s, where large bubbles are generated.
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Figure 9. Radial gas velocity distribution at heights 0.07 and 0.21 m. (a) Different gas compositions at
0.07 m; (b) Different gas compositions at 0.21 m; (c) Different agitation speeds at 0.07 m; (d) Different
agitation speeds at 0.21 m.

4. Conclusions

In this paper, the flow of iron ore powder particles in the fluidized bed with an inclined
agitator at room temperature was simulated by numerical simulation. The accuracy of the
numerical model was verified by the pressure drop and the standard deviation of the pres-
sure drop obtained by physical simulation experiments. The pressure fluctuations, particle
volume fraction distribution, axial average gas holdup, and particle velocity distribution
in the fluidized bed with an inclined agitator under different operating conditions were
researched in depth. The main conclusions were withdrawn as follows:

(1) When the gas composition is pure hydrogen, due to its special properties, the bed
expansion rate is the smallest. At this time, a large number of iron ore powder particles
in the fluidized bed are in a state of aggregation. Therefore, higher working pressure
and gas velocity are required under pure hydrogen conditions.

(2) Adding a certain amount of carbon monoxide or nitrogen into the hydrogen and
matching the appropriate gas velocity can reduce the vibration caused by the genera-
tion and breaking of bubbles in the bed and promote the uniform mixing of gas and
solid. The fluidization quality is improved to a certain extent.
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(3) The standard deviation of pressure drop decreases with the increase in mixing speed.
When the agitation speed reaches 160 rpm, the fluidization state of iron ore powder
particles in the bed tends to be stable. At this time, the intensive shear force of the
agitator significantly reduces the number of bubbles in the bed and achieves a good
fluidization effect.

(4) The increase in agitation speed increases the collision frequency between iron ore
powder particles, especially the particles around the agitator. At the same time, the
increase in particle velocity makes it easier to enter the bubble and promotes the
uniform mixing between gas and solid phases.

In this paper, the best operating parameters were obtained by numerical simulation at
room temperature to make the distribution of iron ore powder in the fluidized bed more
uniform. This was of great significance to strengthen the gas-solid heat and mass transfer
in the actual reduction process and improve the reduction efficiency of iron. However,
the reduction in temperature and the change in gas-solid two−phase composition had a
great impact on the fluidization of iron ore powder particles and the adhesion between
particles. In future work, the crushing effect of the inclined agitator on the non−uniform
structure in the bed during the actual reduction process will be further researched through
high−temperature experiments and numerical simulation methods so as to solve the
sticking of reduced iron ore powder particles in the traditional fluidized bed.
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