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Abstract: In this study, the tensile and shear strengths of aluminum 6061-differently grooved stainless
steel 304 explosive clads are predicted using deep learning algorithms, namely the conventional
neural network (CNN), deep neural network (DNN), and recurrent neural network (RNN). The
explosive cladding process parameters, such as the loading ratio (mass of the explosive/mass of
the flyer plate, R: 0.6–1.0), standoff distance, D (5–9 mm), preset angle, A (0–10◦), and groove in the
base plate, G (V/Dovetail), were varied in 60 explosive cladding trials. The deep learning algorithms
were trained in a Python environment using the tensile and shear strengths acquired from 80% of
the experiments, using trial and previous results. The remaining experimental findings are used to
evaluate the developed models. The DNN model successfully predicts the tensile and shear strengths
with an accuracy of 95% and less than 5% deviation from the experimental result.

Keywords: explosive cladding; deep learning; prediction of strength; CNN; DNN; RNN

1. Introduction

Aluminum-steel bimetallic clads are widely used in engineering applications, such
as ship building, chemical industry, commercial and military aircrafts, due to their ability
to lower the weight of structural components while improving corrosion resistance [1].
However, due to the significant variations in physical and mechanical properties, welding
of aluminum-steel employing traditional fusion welding techniques is unlikely. However,
solid state welding processes, such as friction welding, explosive cladding, and diffusion
bonding, provide reliable options to join this combination [2]. Of the three techniques,
explosive cladding is preferred due to its process time less than 50 µs [3].

The eminence of the explosive clad is dictated by the mechanical properties which
are influenced by process parameters, such as loading ratio, standoff distance, preset
angle, surface finish, collision velocity, flyer plate velocity, and thickness of flyer plate [4].
Recently, Kumar et al. explosively cladded aluminum with magnesium at varied loading
ratios and reported increase in mechanical strength with the loading ratio [5]. The variation
in microstructure and mechanical strength, subjected to varied standoff distance (1 to
10 mm), in cladding titanium-duplex steels was reported by Chen et al. [6]. In their attempt
to enhance the mechanical strength of the Al-steel clad, Li et al. [7] machined a dovetail
groove on the base plate and reported improved mechanical properties. Tamilchelvan et al. [8]
while cladding titanium-stainless steel plates varied the preset angle between 3 and15◦

and recommended a maximum of 10◦. However, expressing the relationship between
process parameters and mechanical strength is intricate as the mechanism of the explosive
cladding process is complicated [9]. In earlier studies, few researchers described the
relationship between interface microstructure and mechanical strength of the dissimilar
explosive clads [10,11].Though the metallurgical approach is effective, the complexity and
time-consuming nature motivate researchers to look for a rapid and reliable solution. In
recent years, the use of software in predicting the mechanical properties of weld joints
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has been increasing. ANN and SVM are the two main techniques employed to predict the
mechanical properties due to their ability to solve complex nonlinear problems.

While predicting the peak temperature developed during dissimilar grade aluminum
friction stir welding, Anandan and Manikandan employed DTR, RFR, LR, PR, and SVR
machine learning techniques and concluded that the DTR and RFR models are superior
owing to their tree type structure [12]. Likewise, five machine learning techniques were
successfully employed by Mishra and Morisetty to predict the impact of process parameters
(tool traverse speed, tool rotational speed, and axial force) on the UTS of the friction stir
welded AA6061 alloys [13]. In this context, Feng et al. proposed a SPDTRS-CS-ANN hybrid
algorithm to predict the fatigue life of EH36 grade steel friction stir weld joints with a
variation below 10% [14]. In a similar attempt, Mongan et al. implemented a hybrid GA-
ANN model that predicted the lap shear strength of ultrasonically welded Al 5754 joints
with a 7.55% deviation from the experimental results [15]. In a novel attempt, Chen et al.
determined the quality of the resistance spot-weld joint via online inspection [16].

Deep learning has lately evolved into a better and more effective technique that is
being adopted by many researchers in the field of materials processing due to its larger
capability to handle raw data with enhanced precision, reliability, and concise analysis [17].
Ma et al. identified the porosities formed during the laser welding of aluminum alloys
using CNN [18]. Wu et al. used a twenty-layer CNN to envisage the weld strength of the
ultrasonic welded joints [19]. To predict the tiny crack patterns in FRP laminates, Ding et al.
successfully designed two DNN models based on regression and classification [20]. Wei et al.
attempted to predict the fracture patterns using an integrated neural network and discrete
simulation models, and they concluded that this technique had a higher computational
efficiency [21]. In order to identify voids in friction stir welded joints, Rabe et al. used LSTM
and BiLSTM approaches and found 93% successful classification [22]. By using the LSTM-
RNN approach, Wu et al. accurately forecasted the mechanical behavior of structural steel
at high temperatures [23]. In the work of Wang et al., one-dimensional CNN outperforms
the LSTM and bidirectional LSTM models in detecting faults in glass-polymer-reinforced
polymers [24].

The need for quick and accurate error detection and prediction algorithms is war-
ranted in order to predict the mechanical properties of various explosive clads. In this
context, though the deep learning approaches, e.g., recurrent neural networks (RNN),
convolutional neural networks (CNN), and deep neural network (DNN), have proven
their capabilities, they have not been implemented for the prediction of the mechanical
strength of explosive cladding so far. Hence, single, multiple convolutional layer, deep
neural network, and recurrent neural network learning models are developed to predict
the mechanical properties of Al 6061-SS 304 explosive clad and the deviation with the
experimental results is reported.

2. Materials and Methods

In an inclined explosive cladding configuration (Figure 1a) detailed elsewhere [25],
aluminum 6061 (wt.% Cr-0.23, Si-0.5, Cu-0.28, Fe-0.45, Mg-1.1, Mn-0.15, Zn-0.25, Al-Bal)
sheets and stainless steel 304 (Cr-18.9, Ni-8.4, C-0.015, Si-0.48, Cu-0.043, Mn-1.8, Fe-Bal)
plates of uniform dimensions (110 mm × 50 mm) were employed as flyer (3 mm thick) and
base (8 mm thick) plates, respectively. Prior to cladding, the mating surface of the base
plates (SS 304) was machined along the transverse direction to create a dovetail (2 mm
wide, 1 mm deep) and V-groove (2 mm wide, 1 mm deep), as illustrated in Figure 1b. The
standoff distance, S, between the flyer and base plates, was varied from 5 mm to 9 mm, and
the preset angle, A, between participant alloys, was varied from 0◦ to 10◦. The chemical
explosive (density: 1.2 g/cm3, detonation velocity: 4200 m/s) was packed above the flyer
plate and initiated by an electrical detonator, for an explosive loading ratio, R (mass of the
explosive/mass of the flyer plate), varying from 0.6 to 1.0. The range of parameters for the
experimental conditions attempted (Table 1) are determined based on trial experiments.
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Figure 1. Work plan (a) Explosive cladding arrangement (b) Grooved base plates (c) Explosive clad
(d,e) interface microstructure (f) Shear test sample (g) tensile specimen.

The explosive clad specimens are shown in Figure 1c, and the characteristic undulating
interface microstructures are shown in Figure 1d. When the preset angle, A is set at 10◦,
for the loading ratio, R, of 0.6 and a standoff distance, D, of 5 mm the Al 6061-grooveless
SS 304 clad exhibits wavy morphology with a streak of molten layer (10 µm thick) at
the interface. The formation of molten layer reduces the strength of the clad (Table 1),
consistent with the previous study [4]. For the similar condition, the Al 6061-‘V’grooved SS
304 interface microstructure (Figure 1e) shows an undulated continuous bonding at the
interface.

Three tensile test specimens were prepared for each condition in the detonation
direction (Figure 1g: ASTM E8-16 sub-size standard) and tested in an automated UNITEK-
94100 UTM. In a similar way, three shear test specimens (Figure 1f; ASTM B 898 standard)
were prepared for each condition and tested by applying a compressive force.
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Table 1. Experimental parameters and strengths.

No. R D (mm) A (degrees) Groove TS (MPa) Sh. S (MPa)

1 0.8 7 0 No 371 252
2 0.8 7 5 No 377 259
3 0.8 7 5 No 377 259
4 0.6 5 10 Dovetail 352 229
5 1 9 10 ‘V’ 379 253
6 0.8 9 5 No 373 251
7 0.8 7 5 Dovetail 387 261
8 0.6 5 0 ‘V’ 354 227
9 0.6 9 10 No 350 229
10 1 5 10 Dovetail 368 242
11 1 5 10 No 359 246
12 0.6 9 10 Dovetail 356 230
13 0.8 7 10 No 375 254
14 1 7 5 Dovetail 374 250
15 0.8 9 5 Dovetail 381 254
16 0.6 9 10 ‘V’ 364 235
17 0.8 7 10 ‘V’ 384 261
18 1 5 0 Dovetail 365 241
19 0.8 7 5 Dovetail 387 261
20 0.8 7 5 No 377 259
21 0.8 7 5 Dovetail 387 261
22 1 5 0 No 356 242
23 0.8 9 5 ‘V’ 385 257
24 0.6 7 5 Dovetail 358 232
25 0.8 7 5 Dovetail 387 261
26 1 9 0 No 360 244
27 0.8 7 5 ‘V’ 392 262
28 1 9 0 Dovetail 370 243
29 0.6 9 0 No 346 222
30 1 9 10 Dovetail 372 249
31 0.8 7 5 ‘V’ 392 262
32 0.6 5 10 No 349 227
33 0.6 9 0 ‘V’ 362 232
34 1 5 10 ‘V’ 371 248
35 0.6 5 10 ‘V’ 360 234
36 1 9 0 ‘V’ 377 252
37 0.8 7 0 Dovetail 375 253
38 0.8 5 5 ‘V’ 380 255
39 1 9 10 No 362 247
40 0.8 7 5 Dovetail 387 261
41 0.6 7 5 No 351 231
42 0.8 7 5 ‘V’ 392 262
43 0.8 5 5 No 364 245
44 0.8 7 5 ‘V’ 392 262
45 0.8 7 5 No 377 259
46 1 5 0 ‘V’ 367 247
47 0.6 5 0 Dovetail 349 225
48 0.6 5 0 No 344 220
49 0.8 7 5 ‘V’ 392 262
50 0.8 7 5 No 377 259
51 0.6 9 0 Dovetail 354 227
52 1 7 5 ‘V’ 381 255
53 0.8 7 5 No 377 259
54 0.6 7 5 ‘V’ 369 237
55 0.8 5 5 Dovetail 369 247
56 0.8 7 0 ‘V’ 382 261
57 0.8 7 5 Dovetail 387 261
58 1 7 5 No 364 250
59 0.8 7 5 ‘V’ 392 262
60 0.8 7 10 Dovetail 379 256

The proposed deep learning models have four inputs (R, D, A, and G) and three
outputs (TS, Sh.S, and IS), and were trained by the standardized data obtained from the
experimental and trial experiments. Data processing, modeling, and validation are the
three essential phases of deep learning [17]. The data acquired from the mechanical tests,
described above, are utilized for the first phase i.e., data processing. Post processing,
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a model is constructed to analyze the data. The selection of algorithms, training, and
developing predictions are the phases involved in modeling. Supervised deep learning
models, such as CNN, DNN, and RNN, are chosen for modeling, owing to their superiority
over competing algorithms. Since the demand is to predict the mechanical strength of the
explosive clads, regression algorithms of the above techniques are chosen to build, train
and test the proposed models. The prediction performance and accuracy of the developed
models are evaluated in the final stage of the deep learning, i.e., validation. The systematic
steps in the analysis are schematically illustrated in Figure 2.
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Training and testing sets are performed usingthe original data for deep learning. The
training is computed by utilizing 80% of the experimental data (3 specimens for each of
the 48 conditions; 48 × 3 = 144 conditions), trial experiments, and previous results. The
model is trained, in a python environment, using the training set (800) of data, and then
validated using the test set (200), followed by validation with data not utilized for training
and testing. During training, the values of the process parameters (R, A, and D) were fed in
the existing form while the groove (G) wasmapped into numerical numbers (No-grove: 1,
V-groove: 2, Dovetail-groove: 3). The deep learning models attempted are described below.

3. Deep Learning Models
3.1. Convolutional Neural Network

The mathematical operation of convolution, which recognizes particular features in
pattern recognition tasks, such as image pixels, is the fundamental idea behind a convo-
lutional neural network. A kernel matrix is slid across the input image matrix to provide
feature mappings for the subsequent layer [17]. The indices of the resulting row and column
are represented by q and r whereas an image is represented by f, the kernel by h, and i and j
are the relative positions, given by [17]

( f × h)[q, r] = ∑
i

∑
j

h[i, j]. f [q − i, r − j] (1)

The activation function (ReLU) is overlapped to produce non-linear transformation
after the convolution operation, and the max-pooling layers are then applied. Max-pooling
layers are used to down sample the output of the feature map in order to make the
representation generally stable or sensitive to slight changes. The nodes following the
pooling layers are flattened into a fully connected layer to produce predictions. To minimize
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error and the vanishing point, rectified linear units (ReLU), nonlinear activation functions,
are applied in each layer [26]. ReLU is written in the following mathematical notation [26]:

f (x) = max(0, x) (2)

3.2. Deep Neural Network

DNN is a more sophisticated ANN that has more hidden layers [27]. A single or more
neurons are used in each input, hidden, and output layer of the DNN. The number of
hidden layers and neurons in a DNN are determined via hyperparameter tuning [28]. Each
neuron in the layer is fully connected via the weight vectors. In deep neural networks
(DNN), each node’s output is routed through a non-linear activation function (ReLU) in
fully connected layers. In other words, each node in a layer receives input from the prior
layer via a dense network of connections to make predictions.

3.3. Recurrent Neural Network

RNNs are frequently employed to solve issues with temporal correlations and those
that display temporal dynamic behavior [29]. They create a circle that joins the hidden
layer to the earlier ones. These recurrent units are ideal for issues whose output depends
on the prior values since they have the capacity to save the historical information from the
sequence [29]. In contrast to conventional ANNs, overfitting difficulties can be avoided
by arbitrarily excluding or dropping out a specific percentage of neurons from the neural
network when associated weights are not updated during the forward or backward pass of
the training phase [30].

In neural networks, feedback connections are incorporated in two different ways,
feedback on activation and feedback on output. These plans have nothing in common with
neural network state space representations. A neuron in a network employing activation
feedback produces the following output [31]:

v(k) =
M

∑
i=0

wu,i(k)u(k − i) +
N

∑
j=1

Wv,j(k)v(k − j) (3)

y(k) = φ(v(k)) (4)

In a network with an output feedback system, the transfer function of a neutron can
be written as [31]:

v(k) =
M

∑
i=0

wu,i(k)u(k − i) +
N

∑
j=1

Wy,j(k)v(k − j) (5)

y(k) = φ(v(k)) (6)

4. Performance Metric

In this study, the prediction effectiveness of the attempted models was determined
using three different statistical measurement parameters. In plainer terms, the evalua-
tion parameters calculate the total amount of predicted data that is off by actual obser-
vations [32]. Coefficient of determination (R2), mean absolute error (MAE), and mean
absolute percentage error (MAPE) are the statistical metrics, represented mathematically
by Equations (7)–(9). The value of the R2 ranges from 0 to 1, and the closer they are to 1
the better the model fits its data. To estimate modeling error, the MAE and MAPE values
are utilized; the smaller the value, the less the discrepancy between the predicted and
measured values [33].

MAE =

n
∑

j=1
(Yk − yk)

n
(7)
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MAE =

n
∑

j=1
(Yk − yk)× 100

Yk
(8)

R2 = 1 −

n
∑

k=1
(YK − yK)

2

∑ (YK,YK_mean)2
(9)

5. Results and Discussion
5.1. Mechanical Strength of the Dissimilar Explosive Clads

The highest tensile (392 MPa) and shear (262 MPa) strengths of the dissimilar explosive
clads were obtained for the experimental condition R: 0.8, D: 7 mm, A: 5◦, G: V, whereas
the lowest strength was attained for the parametric condition R: 0.6, D: 5 mm, A: 0◦, G:
grooveless (TS: 344 MPa, Sh.S: 220 MPa). The lowest strength is attributed to the lower
kinetic energy available and the absence of grooves as consistent with the earlier reports [34].
Saravanan et al. opined that the minimum strength of the clad should be higher than the
weaker parent alloy, which is in agreement with this study [35]. On the other hand, for the
middle range of process parameters, a ‘V’ grooved base plate produces the highest strength
(14% more). The augment in strength while employing grooved base plate is due to the
increase in kinetic energy utilization and bonding region.

5.2. Prediction Using Convolutional Neural Networks
5.2.1. Conventional Neural Network with Single Convolutional Layer (CNN1)

The performance of the CNN prediction model is significantly influenced by its
structure. The CNN having minimum filters provides better results similar to the models
having a higher number of filters, thereby improving the generalization abilities. In
addition, the usage of a smaller number of filters demands fewerparameters for efficient
prediction [36]. In this study, the prediction model employs 1 × 1 convolutional kernels
and 2 × 1 pooling fields. Subsequently, the tensile and shear strengths of the dissimilar
explosive clads with and without grooves are predicted by a CNN1, as shown in Figure 3a.
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Table 2 shows the various hyperparameters (blocks, convolutional layers, dense layers,
filters, and units) for CNN1 employing three optimizers viz., Adam, RMSprop, and SGD.
The hyperparameters for the three optimizers arepresented in Table 3. To determine
the optimal level, the Optuna optimizer framework was employed, as recommended by
Kumararaja et al. [33]. Based on the Optuna framework, Adam optimizer performs better
than the other two optimizers, whose values are summarized in Table 4.

Table 2. Hyperparameters for CNN1.

Parameters Range Optimal Value

No. of convolution blocks 1 to 4 1
No. of filters in layer 1 4 to 1024 421
No. of dense layers 1 to 4 2
No. of units in layer 1 4 to 1024 722
No. of units in layer 2 4 to 1024 233

Table 3. Hyperparameters for CNN1with different optimizers.

Optimizer Parameters Range

RMSprop
Learning rate 1 × 105 to 1 × 10−1

Decay 0.85 to 0.99
Momentum 1 × 105 to 1 × 10−1

Adam
Learning rate 1 × 105 to 1 × 10−1

Decay 1 × 105 to 1 × 10−1

Learning rate 1 × 105 to 1 × 10−1

SGD
Momentum 1 × 105 to 1 × 10−1

Learning rate 1 × 105 to 1 × 10−1

Table 4. Optimal values of Adam optimizer.

Adam Optimizer CNN1 CNN2 CNN3 DNN RNN

Learning Rate 0.039 0.0205 0.0287 0.0978 0.0148
Decay 0.026 0.0333 0.0593 0.0539 0.0384

The performance of CNN1 model in terms of prediction accuracy and error rates is
assessed by R2, MAE, and MAPE. The R2 value for the CNN1 is 0.8873 (Figure 4) indicating
12% of the conditions deviate from the ideal prediction line (shown by a red line). In other
words, if scatter points are closer to the diagonal line, the model holds a high R2 value,
whereas if predictions are dispersed away from the diagonal line, the model shows weaker
goodness of fit with low R2 values [37]. Similarly, the MAE and MAPE of the CNN1 are
inversely proportional to R2 values and result in 1.9553 and 1.3047, respectively (Table 5).

5.2.2. Conventional Neural Network with Two and Three Convolutional Layers (CNN2
and CNN3)

The number of convolutional layers, dense layers, filters, and units isincreased, as
illustrated in Figure 3b,c, in order to enhance prediction accuracy and to decrease errors [38].
The Optuna optimizer framework, as in the previous case, determines the quantity of
filter units and their optimal level, which are displayed in Table 6. Most of the trials in
CNN2 were achieved in the region of low objective values via hyperparameter adjustment
(Figure 5), demonstrating that the Adam optimizer yields better performance.
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Table 5. Performance metrics.

Model R2 MAE MAPE

CNN1 0.8873 1.9553 1.3047
CNN2 0.8963 1.7454 1.2249
CNN3 0.8523 2.3172 1.7123
DNN 0.9519 1.0552 0.7286
RNN 0.9146 1.4708 1.0406

Table 6. Hyperparameters for CNN2 and CNN3.

Models Parameters Range Optimal Value

CNN2

No. of convolution blocks 1 to 4 1
No. of filters in layer 1 4 to 1024 21
No. of filters in layer 2 4 to 1024 415
No. of dense layers 1 to 4 2
No. of units in layer 1 4 to 1024 907
No. of units in layer 2 4 to 1024 774

CNN3

No. of convolution blocks 1 to 4 1
No. of filters in layer 1 4 to 1024 11
No. of filters in layer 2 4 to 1024 24
No. of filters in layer 3 4 to 1024 32
No. of dense layers 1 to 4 4
No. of units in layer 1 4 to 1024 58
No. of units in layer 2 4 to 1024 403
No. of units in layer 3 4 to 1024 871
No. of units in layer 4 4 to 1024 246

The performance metrics of the CNN2 and CNN3 models are presented in Table 5.
From Table 5, it is inferred that increasing the convolutional layer from 1 to 2 enhances
the accuracy (R2 = 0.8963) by 1% and reduces the error in predictions (MAE = 1.7454 and
MAPE = 1.2249). This phenomenon is similar to the reports of Kim et al. [39], who predicted
the mechanical behavior of composites. A further increase in convolutional (2 to 3) and
dense layers leads to a reduction in R2 value and augments the error (Table 5). The decline
in R2 value is due to the overfitting of the model to the data. Bilgin and Gunestas reported
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a reduction in R2 value owing to overfitting of the model, consistent with the present
study [40]. Figures 6 and 7, respectively, display the linear regression graphs for the CNN2
and CNN3 models. The testing data in CNN2 aremore accurate than the conventional
model (CNN1) in making the optimal prediction. On the other hand, 15% deviation from
the ideal predictions is seen in the linear regression plot of CNN3 (Figure 6).

Metals 2023, 13, 373 11 of 20 
 

 

Table 6. Hyperparameters for CNN2 and CNN3. 

Models Parameters Range Optimal Value 

CNN2 

No. of convolution 
blocks 1 to 4 1 

No. of filters in layer 1 4 to 1024 21 
No. of filters in layer 2 4 to 1024 415 

No. of dense layers 1 to 4 2 
No. of units in layer 1 4 to 1024 907 
No. of units in layer 2 4 to 1024 774 

CNN 3 

No. of convolution 
blocks 1 to 4 1 

No. of filters in layer 1 4 to 1024 11 
No. of filters in layer 2 4 to 1024 24 
No. of filters in layer 3 4 to 1024 32 

No. of dense layers 1 to 4 4 
No. of units in layer 1 4 to 1024 58 
No. of units in layer 2 4 to 1024 403 
No. of units in layer 3 4 to 1024 871 
No. of units in layer 4 4 to 1024 246 

 
Figure 5. Hyperparameters tuning for CNN2 model. Figure 5. Hyperparameters tuning for CNN2 model.

Metals 2023, 13, 373 12 of 20 
 

 

 
Figure 6. Linear regression plots for CNN2. 

 
Figure 7. Linear regression plots for CNN3. 

5.3. Prediction Using Deep Neural Networks 
The deep neural network (Figure 8) was trained using the standardized data and has 

three nodes (tensile and shear strengths) in the output layers and four nodes (loading ra-
tio, standoff distance, preset angle, and types of grooves) in the input layers. By changing 
the number of hidden layers, the number of neurons in the hidden layers, and the opti-
mizers, numerous models were constructed (Adam, RMSprop, and SGD). 

The optimal values and hyperparameter ranges are shown in Table 7. The efficiency 
of the Adam optimizer is superior compared to the other two optimizers (RMSprop and 
SGD), as seen in Figure 9. The Optuna optimizer framework delivered the final model 
with the highest prediction accuracy. 

The performance metrics of the DNN model are displayed in Table 5. The DNN 
model holds a 6% improvement in accuracy (R2 = 0.9519) over the CNN model while the 
prediction error is also reduced (MAE = 1.0552 and MAPE = 0.7286). The improved pre-
diction performance of DNN is attributed to high-level learning in the early stages. The 

Figure 6. Linear regression plots for CNN2.



Metals 2023, 13, 373 11 of 18

Metals 2023, 13, 373 12 of 20 
 

 

 
Figure 6. Linear regression plots for CNN2. 

 
Figure 7. Linear regression plots for CNN3. 

5.3. Prediction Using Deep Neural Networks 
The deep neural network (Figure 8) was trained using the standardized data and has 

three nodes (tensile and shear strengths) in the output layers and four nodes (loading ra-
tio, standoff distance, preset angle, and types of grooves) in the input layers. By changing 
the number of hidden layers, the number of neurons in the hidden layers, and the opti-
mizers, numerous models were constructed (Adam, RMSprop, and SGD). 

The optimal values and hyperparameter ranges are shown in Table 7. The efficiency 
of the Adam optimizer is superior compared to the other two optimizers (RMSprop and 
SGD), as seen in Figure 9. The Optuna optimizer framework delivered the final model 
with the highest prediction accuracy. 

The performance metrics of the DNN model are displayed in Table 5. The DNN 
model holds a 6% improvement in accuracy (R2 = 0.9519) over the CNN model while the 
prediction error is also reduced (MAE = 1.0552 and MAPE = 0.7286). The improved pre-
diction performance of DNN is attributed to high-level learning in the early stages. The 

Figure 7. Linear regression plots for CNN3.

5.3. Prediction Using Deep Neural Networks

The deep neural network (Figure 8) was trained using the standardized data and has
three nodes (tensile and shear strengths) in the output layers and four nodes (loading ratio,
standoff distance, preset angle, and types of grooves) in the input layers. By changing the
number of hidden layers, the number of neurons in the hidden layers, and the optimizers,
numerous models were constructed (Adam, RMSprop, and SGD).
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The optimal values and hyperparameter ranges are shown in Table 7. The efficiency
of the Adam optimizer is superior compared to the other two optimizers (RMSprop and
SGD), as seen in Figure 9. The Optuna optimizer framework delivered the final model with
the highest prediction accuracy.

Table 7. Hyperparameters for DNN.

Parameters Range Optimal Value

No. of dense layers 1 to 4 2
No. of units in layer 1 4 to 1024 791
No. of units in layer 2 4 to 1024 795

The performance metrics of the DNN model are displayed in Table 5. The DNN
model holds a 6% improvement in accuracy (R2 = 0.9519) over the CNN model while
the prediction error is also reduced (MAE = 1.0552 and MAPE = 0.7286). The improved
prediction performance of DNN is attributed to high-level learning in the early stages. The
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R2 value for the DNN model is 0.9519, which indicates that less than 5% of the data falls
away from the straight line (Figure 10). The testing data in the DNN model aremuch closer
to the straight line, indicating that the errors are more normally distributed than in the
CNN models, coherent with the reports of Bilali et al. [41].
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5.4. Prediction Using Recurrent Neural Networks

The RNN having four inputs and three outputs is shown in Figure 11. The number of
recurrent layers, hidden layers, and neurons in the hidden layers and the optimizers (Adam,
RMSprop, and SGD) were altered to obtain numerous models. The hyperparameters (filters,
dense layer, units in each layer) withranges attempted are shown in Table 8. The optimal
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values of the hyperparameters are obtained while employing Adam optimizer, which
performs better than the others (RMSprop and SGD), as presented in Table 4 and Figure 12
respectively.
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Table 8. Hyperparameters for RNN.

Parameters Range Optimal Value

No. of filters in recurrent layer 4 to 1024 430
No. of dense layers 1 to 4 3
No. of units in layer 1 4 to 1024 307
No. of units in layer 2 4 to 1024 210
No. of units in layer 3 4 to 1024 843
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The prediction performance of the RNN model is better than the CNN model but
less accurate than the DNN model (Table 5). Due to the vanishing gradient problem,
the RNN performs less effectively in terms of prediction than the DNN, whereas the
ability of the RNN to memorize previous inputs results in a better prediction than CNN
models. Fei et al. [42] reported increase in error in RNN is owing to the vanishing gradient,
consistent with this study. The mechanical strength of the dissimilar explosive clads
predicted by RNN is 4% less accurate than the DNN model (R2-0.9146). The reduction in
R2 value increases the prediction error (MAE-1.4708 and MAPE-1.0406) compared tothe
DNN model. As shown in the linear regression plots (Figure 13), less than 9% of the
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data in the RNN model deviates from the mean value. The testing data in the RNN
model aresignificantly closely aligned with the straight line compared tothe CNN models,
indicating that errors are distributed more consistently. Saravanan and Gajalakshmi [43]
opined that, in a linear regression plot, the closer the testing points, the fewer the errors.
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Of the attempted models, CNN3 shows higher MAE and MAPE values, which results
in lower R2 values. The DNN model exhibit higher accuracy in attempted deep learning
models, with the lowest MAE and MAPE values and a higher R2 value. The DNN model,
with 791 and 795 neurons in the first and second layers (Table 7 and Figure 8), effectively
predicts the tensile and shear strengths of the Al 6061-SS 304 explosive clads. The optimal
parametric conditions determined by the DNN model to attain maximum tensile and shear
strengths are R-0.845, D-7.6 mm, A-6◦, and G-‘V’. The experimental and predicted tensile
and shear strengths for the optimal parametric conditions are exhibited in Table 9. For
the same condition, the prediction values obtained by the other attempted models are
also shown.

Table 9. Experimental and predicted strengths.

Tensile Strength (MPa)

R D A G Exp CNN1 CNN2 CNN3 DNN RNN

0.6 5 0 No 344 340.35 341.41 339.54 342.98 341.26
0.6 9 0 No 346 350.76 342.55 352.71 344.96 348.84
0.6 9 0 V 362 359.98 363.62 359.49 363.92 361.71
1 9 0 Dovetail 370 367.45 368.35 371.45 369.65 370.55

0.8 7 5 V 392 389.04 390.37 388.07 393.78 390.93
0.845 7.6 6 V 393 389.02 390.02 386.86 391.04 388.84

Shear Strength (MPa)

R D A G Exp CNN1 CNN2 CNN3 DNN RNN

0.6 5 0 No 220 221.55 221.55 222.23 221.05 221.25
0.6 9 0 No 222 223.48 223.63 224.14 222.99 223.36
0.6 9 0 V 232 229.78 231.28 229.38 231.68 231.38
1 9 0 Dovetail 243 245.36 242.06 240.33 244.56 244.71

0.8 7 5 V 262 259.61 259.98 258.81 261.06 260.64
0.845 7.6 6 V 264 262.07 261.65 260.06 263.03 261.58
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5.5. Confirmation Experiments

Confirmation experiments were performed to cross validate and confirm the accuracy
of the developed models. The tensile and shear strengths for the experimental conditions
are presented in Table 9. In addition, the predicted values of the attempted deep learning
models are presented as well. The errors between the experimental and predicted strengths
are given in Table 10. The maximum error (6.71 MPa) is obtained for CNN3 model while the
better prediction with the lowest error (0.32 MPa) resulted from theDNN model. However,
the maximum error is less than 7 MPa, which indicates that the deep learning techniques
can effectively be employed for predicting the mechanical strengths of the explosive clads.
Among the five deep learning models, the DNN model predicts the mechanical strength of
the explosive clads more closely to the experimental value.

Table 10. Error between experimental and predicted strengths.

Tensile Strength (MPa)

R D A G Exp CNN1 CNN2 CNN3 DNN RNN

0.6 5 0 No 344 3.65 2.59 4.46 1.02 2.74
0.6 9 0 No 346 −4.76 3.45 −6.71 1.04 −2.835
0.6 9 0 V 362 2.02 −1.62 2.51 −1.92 0.295
1 9 0 Dovetail 370 2.55 1.65 −1.45 0.35 −0.55

0.8 7 5 V 392 2.96 1.63 3.93 −1.78 1.075
0.845 7.6 6 V 393 3.98 2.92 6.14 1.96 4.16

Shear Strength (MPa)

R D A G Exp CNN1 CNN2 CNN3 DNN RNN

0.6 5 0 No 220 −1.55 −1.55 −2.23 −1.05 −1.25
0.6 9 0 No 222 −1.48 −1.63 −2.14 −0.99 −1.36
0.6 9 0 V 232 2.22 0.72 2.62 0.32 0.62
1 9 0 Dovetail 243 −2.36 0.94 2.67 −1.56 −1.71

0.8 7 5 V 262 2.39 2.02 3.19 0.94 1.36
0.845 7.6 6 V 264 1.93 2.35 3.94 0.97 2.42

6. Conclusions and Future Recommendation

1. It is recommended to employ a ‘V’ grooved base plate with a loading ratio of R = 0.845,
a standoff distance of D = 7.6 mm, and a preset angle of A = 6 degrees to attain higher
Al 6061–SS 304 clad strengths.

2. In predicting the mechanical strengths of the explosive clads, the DNN model per-
formed better than the other models. High-level learning at the initial stages of DNN
is the basis of the enhanced efficiency. With an MAE of 1.0552 and a MAPE of 0.7286,
the DNN model had the fewest prediction errors and the highest prediction accuracy
of 0.9519.

3. The prediction performance of RNN is 4% less than that of DNN dueto the diminishing
gradient during training.

4. The CNN model becomes more accurate when the number of convolutional layers is
increased from one to two. Further increasing the convolutional layers, the accuracy
decreases as a result of the model being overfitted to the data.

5. The prediction performance of the RNN model is superior to the CNN models due to
their ability to memorize previous inputs and the presence of internal memory.

6. The model prediction accuracy and modeling errors of all five deep learning models
were improved using the Adam optimization technique. These results supported
the recommendations of the DNN model for predicting the mechanical strength of
explosive clads.

Future research might compare and contrast the performance of the CNN model
with other hybrid models, such as CNN+SVR models, or hyperparameter tune alternative
hybrid models.
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Nomenclatures

Preset angle A
Aluminum Al
Artificial neural network ANN
Bidirectional LSTM BiLSTM
Conventional neural network CNN
Conventional Neural Network with single convolutional layer CNN1
Conventional Neural Network with two convolutional layers CNN2
Conventional Neural Network with three convolutional layers CNN3
Cuckoo search CS
Standoff distance D
Deep neural network DNN
Decision tree regression DTR
Image f
Activation function f
Fibre reinforced plastic FRP
Groove in the base plate G
Genetic algorithm GA
Kernel h
Positions i, j
Linear regression LR
Long short-term memory LSTM
Mean absolute error MAE
Mean absolute percentage error MAPE
Total number of test dataset n
Polynomial regression PR
Row q
Loading ratio R
Column r
Coefficient of determination R2

Rectified linear units ReLU
Random forest regression RFR
Recurrent neural network RNN
Stochastic gradient descent SGD
Shear strength Sh. S
Single-parameter decision-theoretic rough set SPDTRS
Stainless steel SS
Support vector machine SVR
Tensile strength TS
Universal testing machine UTS
Input variables x
Measured values Yk
Predicted values yk
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