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Abstract: First of all, the smelting equipment is the most important component of a foundry’s main
production process and therefore requires constant reproduction. This is ensured by timely and
high-quality maintenance and repair, the cost of which is 8–12% of the total costs. The technical and
economic conditions of the enterprise itself depend on this, as the productivity of workers during
production is directly related to the technical condition of the equipment and its downtime for repairs.
An important factor in ensuring a melting furnace’s reproduction is a replacement of the worn lining,
which leads to downtime of the smelting furnace and reduces the efficiency of its operation. The
amount of torque required depends directly on the compound used. The quality of the manufacturing
and sintering process of the lining, which provides the necessary durability, is affected by the heat
capacity of the materials used when they are affected by the melting temperature of the alloys.
In the present work, using the BRUKER D8 ADVANCE diffractometer, the Shimadzu XRF-1800
spectrometer and the STA 449 F1 Jupiter synchronous thermal analyzer, we probed the changes in
the heat capacity of quartzite and PKMVI-3 under the action of temperatures of 200–1550 ◦C. This
technology allows the manufacture of a lining that maintains high stability during operations at
1550–1600 ◦C melting modes.

Keywords: induction furnace; synthetic iron; quartzite; lining; alloy smelting; heat capacity; melting
furnace operation efficiency
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1. Introduction

The manufacturing of castings is the most common process in forming part blanks
due to its low cost and versatility of application. It makes it possible to obtain workpieces
as close as possible to the profile of the future part and provide the necessary requirements
for mechanical, physical, technical and special properties that are specified in the technical
conditions [1]. This process can be applied to both individual and mass production. As of
2020, in Russia, various alloys and smelting equipment have been used for the production
of castings, as shown in Figure 1.
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Cast iron is the most common alloy, and induction furnaces are the most common
furnace. Of the total number of induction crucible furnaces, about 18% are high-frequency
induction furnaces designed for smelting alloy steel, and the rest are medium-frequency
furnaces that can be used for smelting any alloy. The bulk of these are industrial-frequency
induction crucible furnaces (ICFs), which have been in use since the middle of the last
century [2–4].

First of all, the smelting equipment is the most important component of the foundry’s
production base and requires constant reproduction. For this reason, a great deal of
attention is being paid to improving the use of fixed assets, primarily related to the growth
of return funds through improving the utilization of the equipment, improving the structure
of fixed assets, modernization through improving the equipment and technology, and
implementation of organizational and technical measures [5]. An important aspect of
ensuring the functionality of a melting furnace is to replace the worn lining. Therefore,
increasing the reliability of the smelter is one of the main tasks that ensures the necessary
degree of reproduction of the main production facilities in order to comply with the
following parameters of the aggregate: versatility in smelting alloys, performance, high
lining durability, energy efficiency and maintenance costs [6]. Increased efficiency in the
use of equipment is ensured by the adoption of new technologies that reduce downtime
and reduce material inputs. The quality of the manufacturing process and the sintering of
the lining affects its durability and, consequently, the efficiency of the melting furnace.

The main purpose of induction furnaces is the smelting of synthetic iron based on the
use of scrap steel in the form of sheet trimmings, shavings and other metal waste with a
small volume and weight. Figure 2 shows an image of an induction furnace at the moment
of loading, with the main components labeled.
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To make the furnace lining, the designers intended to use an acidic quartzite-based
lining as the cheapest option, as its price is four–six times lower than the basic and
neutral equivalents. The operation of these furnaces proved to be very robust, namely,
300–350 melts. The smelting of synthetic pig iron in these furnaces reduces its cost by
25–39% compared with the secondary smelting of iron [7–9]. This is particularly relevant
in the current context, where all countries are facing the effects of the pandemic and the
ensuing energy crisis [10].

The use of quartzite in the composition of refractory masses began in the second half
of the 18th century for the manufacture of dyno products, which consisted of the linings
of various heating and smelting furnaces [11–14]. Different types of quartzite differ in
their mineral composition and content of elemental impurities (especially manganese, iron,
aluminum, titanium, boron and phosphorus), the presence and concentration of which
determine their industrial application and the possibility of further enrichment [15–18].

To obtain a lining with a high stability, it is necessary to use quartzite with a minimal
number of impurities and a humidity of no more than 0.3%. However, manufacturers use
wet enrichment to remove impurities. This includes washing operations, scrubbing, gravity,
magnetic separation and flotation, resulting in a humidification of up to 2–3%. Therefore,
the preparation of the lining of the induction furnace requires pre-drying with a further
generation of the tridymite and cristobalite phases [19–22]. The tridymite produced during
the drying of the quartzite and the subsequent sintering of the lining has been shown to
maintain a constant volume at 840–1470 ◦C for a long time and thus provides the lining
with a high resistance.

Based on the specificity conditions of service, the following basic requirements apply
to the lining of the induction tiger furnaces, which are set out in the work [23].

When these requirements are met, three layers are formed in the lining after sintering,
as shown in Figure 2.

Despite the fact that during the drying and sintering process the refractory materials
undergo significant changes in their properties, after this process, the following three zones
in the lining should be obtained: monolithic (sintered), semi-sintered and loose (Figure 3).
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The boundaries of the transition from one zone to another are rather conventional,
but in terms of their phase composition and thermophysical parameters, they all differ
significantly from each other [24].

The phase composition of each zone is significantly influenced by the heat capacity of
the formed elemental cells of the quartzite, which depend on the chemical and mineralogical
composition of the initial material [25].

Traditional synthetic iron smelting technology requires a 30-degree liquid residue
(bog) after discharge of 35% of the finished melting and melting temperatures not exceeding
1450 ◦C. The content limit of steel scrap is justified by its melting point since the melting
point of carbon steel scrap is, depending on the chemical composition, 1400–1600 ◦C.

2. The Problem

At present, however, the situation in the market for cast iron castings has changed
dramatically, as follows: cast iron scrap is virtually non-existent, and the cost of cast iron
has increased dramatically, as has the cost of shipping it. This has led to the fact that
synthetic cast iron can only be smelted in ICFs using increased amounts of steel scrap,
carburizers and ferroalloys. However, to do this, it is necessary to raise the melting point
above the allowable temperature for the furnace.

There is also a problem related to the persistence of the acid lining. The practice
has shown that if the alloy is smelted at 1550 ◦C, the lining’s resistance decreases to
180 melts [26]. Replacing the acidic lining with a basic or neutral lining that can withstand
this temperature causes it to cost 4–6 times more. The use of finished liner masses is
advisable in medium-frequency furnaces where the inductor is fixed and the lining is not
deformed. In ICFs, it is free and deformed during cyclic smelting modes and has been
shown to be able to grow up to 50 mm by the end of the cycle, despite the periodicity of
the tightening pins tightening the inductor’s turns. This type of deformation negatively
affects the stability of the basic and neutral linings. In addition, the durability of the lining
is affected by defects, which can be caused by a multitude of factors in its manufacture [27],
sintering and slag mode [28]. This is influenced by the quality of the quartzite used and the
manufacturing process of the lining mass.

As early as 1912, C. N. Fenner [29] established phase transformations in the quartzite
when it was heated, in the form of a diagram scheme, according to which the tridymite
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phase is first and then the cristobalite phase. This was reflected in other studies [30,31].
Later, many studies disproved this pattern, which was explained by the emergence of the
method of X-ray and the development of physico-chemical methods in the final 60–70 years
of the last century. For this reason, since 1961, in studies of the phase transformations
of quartzite when heated, tridymite has not been detected [32–35]. Spiker proposed a
variant of the modified SiO2 diagram when heated to 1550 ◦C [36]. In addition, some
studies have highlighted the regularity of the appearance of cristobalite first and then
tridymite [37–42]. It was then established that the transformation to cristobalite begins at
a prolonged temperature of 1000 ◦C, and at 1250–1450 ◦C, the process is intensified [43].
This process is also influenced by impurities in the source material [44]. Other studies have
established the obligatory presence of a mineralizer to obtain the tridymite phase [45,46].

However, it must be considered that phase transformations occur with the release of
heat and are accompanied by the emergence of a sparser aggregate state; that is, an increase
in the volume and a reduction in the density due to the expansion of the crystal lattice [47].
In addition, phase transformations can be accompanied by both reductions in volume and
heat release. The thermal stability of the melting furnace is estimated by the number of
melts, and each melting (in the case of a 2.5 t furnace) is the heating of the lining after
sintering to 1550 ◦C, then the melting mode occurs at 1550–1600 ◦C, and the temperature
drops to 1450–1470 ◦C to drain the first portion of the alloy. After this, the second batch
of metal is drained; during this time, the temperature of the lining layer is released when
draining the first batch of metal reaches 1025 ◦C. After all the metal has been drained, the
fresh metal filling is loaded, and the temperature of the lining is 800–900 ◦C. Everything is
repeated until the lining has been completely worn. Under these conditions, changes in
the structure of the quartzite are significantly influenced by the heat capacity of the initial
material used, which is directly dependent on the resulting phase state.

The quantitative content of the different phases in the quartzite, when exposed to the
repeated heating and cooling temperatures necessary for melting, affects the heat capacity
of the lining itself and its durability.

Therefore, the study of changes in the heat capacity of the quartzite, which affects
the stability of the applied lining when the melting temperatures are above 1450 ◦C, is an
urgent task.

3. Materials and Methods

The study was carried out for quartzite (PKMVI-3V brand), with a humidity of 3.5%,
supplied by JSC “DINUR”. According to the supplier, the finished product mainly contains
quartz but also includes impurities of chalcedony, carbonates, opals and clay minerals,
with a low concentration of iron oxides and high dispersion. The company, according
to TU 1511-022-00190495-2003, guarantees the chemical composition presented in Table 1
(the contents of the remaining impurities are not given). In addition, the following grain
composition is guaranteed, in mass proportions: remaining on grid No. 2, 6–15 inclusive;
remaining on grid No. 3.2, not more than 5; passing through grid No. 0.5, 50–59 inclusive;
passing through grid No. 0.1, 31–41.

Table 1. Chemical composition of PKMVI-3B quartzite.

Chemical Composition of
PKMVI-3B Quartzite

Content (%)

SiO2 Al2O3 CaO MgO TiO2 Fe2O3 P2O5 MnO Na2O K2O

According to TU 97.5 1.1 - - - 0.6 - - - -
Spectrometry of material

dried at 200 ◦C 96.54 0.982 0.189 0.025 0.205 0.93 0.014 0.031 0.105 0.374

The Shimadzu XRF-1800 X-ray fluorescence spectrometer (Shimadzu, Japan) was used
to determine the chemical composition. The device was equipped with collimators and a
built-in digital camera. The rotation speed of the sample was 60 rev/min.
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Phase composition studies were carried out using the BRUKER D8 ADVANCE diffrac-
tometer (Bruker, Germany). The copper anode X-ray tube was used, and the diffraction
spectrum was recorded by the VÅNTEC-1 high-speed positional detector.

The STA 449 F1 Jupiter (NETZSCH, Germany) was used for thermal analysis of
the quartzite.

Earlier studies of changes in the structure of the quartzite at different temperatures
used to remove the moisture in the original material showed their influence on the forma-
tion of phases under the influence of the temperatures necessary for sintering the lining [48].
For this reason, the following research methodology was adopted:

• We determined the chemical composition of the quartzite, taking the presence of
concomitant impurities into account;

• The raw quartzite portion was heated to a temperature of 800 ◦C, given an exposure
of 1 h and cooled to room temperature, then subjected to subsequent heating with
exposure at each test point to remove the card and determine the parameters of the
crystal lattice at uniform temperatures suitable for sintering and operating melting;

• The next batch of raw quartzite was heated to a temperature of 200 ◦C, given an
exposure of 1 h and cooled to room temperature. We then performed the same heating
mode as in Step 2;

• We investigated the change in the heat capacity of the quartzite using different mois-
ture removal technologies (as in Steps 2 and 3), followed by heating corresponding to
the sintering temperatures of the lining and several melting cycles.

The temperatures selected for this study were based on the following:

• Between 200 and 800 ◦C, the approximate temperature for removing free moisture;
• 600 ◦C, intensive phase conversion with heat release, applied during operation [49];
• 1550–1600 ◦C, melting mode, for carburizing, alloying and modifying operations;
• 1450–1470 ◦C, first alloy discharge;
• 1025 ◦C, temperature of the released lining layer after the first discharge (at this time

the second portion of the alloy is drained);
• 800–900 ◦C, the temperature of the lining after discharging all the metal, when fresh

metal filling is loaded.

4. Results and Discussion

Since the process of phase formation under temperature is affected by the number
of impurities in the quartzite itself, the chemical composition of the quartzite was first
analyzed using the Shimadzu XRF-1800X-ray fluorescent wave dispersion spectrometer. As
a result of this analysis, it was found that the quantity of SiO2 was 96.54% instead of 97.5%,
the quantity of Al2O3 was 0.982% instead of 1.1%, the CaO content was 0.189% instead
of 0.089%, and Fe2O3 amounted to 0.93%, which is significantly more than declared, and
the number of uncharged impurities was 0.638%. The results of the analysis are shown in
Table 1.

The study of changes in the structure of the quartzite was carried out with the BRUKER
D8 ADVANCE diffractometer, equipped with a Bragg–Brentano focus and an HTK 16 high-
temperature chamber. The imaging took place at the angles of 2Θ = 10–90◦ in increments
of 0.007; the duration of the imaging was 1 h.

Figure 4 shows the structure of a quartzite lattice at 1550 ◦C, pre-treated to remove
moisture at 800 ◦C.

The diffractogram of quartzite pre-treated at 200 ◦C and subsequently heated to
1550 ◦C is shown in Figure 5.

To decipher the results of the study of the changes in the structure of the quartzite, the
available databank was used in the form of cards of elementary cells with their characteris-
tics (Table 2).
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Figure 4. The structure of the quartzite consists of elementary cells of cristobalite, marked with purple
color (card 01-085-0621); tridymite, marked with yellow (card 00-018-1170) and cells of quartzite,
marked in red (card 01-071-0911).

Figure 5. The structure of quartzite consists of elementary cells of cristobalite (colored purple, cards
00-011-0695) and quartzite (colored red, cards 01-071-0911).

Table 2. Characteristics of elementary cell cards used in the research process.

Indicators

No.

00-012-
0708

01-071-
0911

00-005-
0490

01-083-
2187

01-070-
7344

02-002-
0278

01-011-
0695

01-085-
0621

01-071-
0032

00-018-
1170

a (Å) 4.994 5 4.913 4.965 4.915 7.12 4.971 7.16 18.494 18.504

b (Å) 5.438 5.49 5.405 5.424 5.406 - - - 4.991 5.006

Mol.
weight
(g/mol)

60.08 52.87 60.08 60.08 60.08 60.08 60.08 60.08 60.08 60.08

Volume
(Å3) 117.45 118.86 112.98 115.79 113.09 360.94 170.95 367.06 2110.15 2215.08

Dx (g/cm3) 2.548 2.216 2.649 2.58 2.647 2.211 2.335 2.174 2.270 2.254

c (Å) - - - - - - - - 26.832 23.845

The parameters of the changes in the structure of the quartzite that occurred during
the rise of the set temperatures were determined as follows. All the diffractograms taken
counted the total number of crystalline phases, the content of which was not less than 5%
and 100% were selected. The fraction of each crystalline phase was then determined, and
its mean values were calculated, where davg is the average intergloss distance, Davg is the
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average density, Vavg is the average volume and Mavg is the average molecular mass of
the lattice.

The results of the average characteristics of the parameters of the quartzite (including
the phase composition) exposed to different temperatures for the removal of moisture and
at the temperatures specified in the study are presented in Table 3.

Table 3. Average parameters and phase composition of the quartzite crystal lattice.

Lattice Parameter
Temperature (◦C)

25/30 Dry 200 600 870 1000 1470 1550

davg (Å)
2.814/ 2.8340/ 2.7913/ 2.9277/ 2.9796/ 3.0384/ 3.2619/
2.7574 2.9012 3.0066 3.0545 3.1048 3.156 3.2156

Vavg (Å3)
119.1/ 116.55/ 117.47/ 125.86/ 124.06/ 124.04/ 143.65/
114.83 115.41 647.47 1653.02 1722.83 1742.69 1606.96

Davg (g/cm3)
2.5971/ 2.552/ 2.333/ 2.292/ 2.291/ 2.229/ 2.227/

2.601 2.592 2.502 2.2685 2.266 2.265 2.258

Mavg (g/mol) 60.08/ 60.08/ 55.16/ 53.91/ 53.66/ 53.66/ 54.41/
60.08 60.08 60.08 58.38 58.63 58.79 58.79

Phase composition Quartzite Quartzite
Quartzite/
tridymite
quartzite

Quartzite
cristobalite/

tridymite
quartzite

Quartzite
cristobalite/

tridymite
quartzite

Quartzite
cristobalite/

tridymite
quartzite

Quartzite
cristobalite/

tridymite
cristobalite
Quartzite

In the numerator, values are given for quartzite treated at 200 ◦C; the denominator
gives the values for quartzite treated at 800 ◦C. davg is the average interval–skeleton
distance, Davg is the average density, Vavg is the average volume and Mavg is the average
molecular mass of the grid.

The study of changes in the thermal capacity of quartzite was carried out on the
NETZSCH STA 449C Jupiter instrument during thermal analysis. The heating rate was
10 K/min, and the collection speed of the points was 100 p/min. Two corundum crucibles
were used for the measurements, one of which contained an experimental specimen and
the other was used as a reference. High measurement accuracy ensured the maximum
uniform distribution of the examined material in the crucible [50].

The aim was to study changes in the heat capacity of the quartzite at the temperatures
experienced by the lining during the melting cycles immediately after the sintering process
(three melting cycles were investigated). As a result, the thermograms were obtained
(Figures 6 and 7).

The heat capacity values are summarized in Table 4.

Table 4. Heat capacity (∆Cp) values of quartzite at the operating temperatures of melting cycles:
No. 1, quartzite treated at 200 ◦C; No. 2, quartzite treated at 800 ◦C J/K.
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Figure 8. Thermal temperature dependence graph: a, quartzite treated at 200 °C; b, quartzite treated 
at 800 °C. 

The values of the heat capacity in each melting cycle were selected, and graphs of 
their changes were constructed. These are presented as fragments of thermograms in Fig-
ures 9–14 for each type of quartzite. 

Figure 8. Thermal temperature dependence graph: a, quartzite treated at 200 ◦C; b, quartzite treated
at 800 ◦C.

The values of the heat capacity in each melting cycle were selected, and graphs of
their changes were constructed. These are presented as fragments of thermograms in
Figures 9–14 for each type of quartzite.
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On the presented fragments of the first smelting cycle shown in Figures 9 and 10, it is
evident that the heat capacity of the quartzite with pre-treatment of 200 ◦C is 2 times lower.

On the presented fragments of the second melting cycle, shown in Figures 11 and 12, it
is evident that the heat capacity of the quartzite with a preliminary temperature treatment
of 200 ◦C is 2.3 times lower.

On the presented fragments of the third melting cycle, shown in Figures 13 and 14, it
is evident that the heat capacity of the quartzite with a preliminary temperature treatment
of 200 ◦C is lower by 1.5 times.

All the thermograms have different colors for the cooling and heating periods
during imaging.

In addition, based on the thermograms shown in Figures 6 and 7, Table 5 of the
enthalpy values for the studied quartzites has been compiled.

Studies have found that, despite the presence of 0.638% impurities in the quartzite, its
preliminary calcination at a temperature of 800 ◦C and further cooling allowed the process
of further sintering of the chalcedony lining based on it. At 1550 ◦C, we simultaneously
obtained the following three phases: hexagonal quartzite + tridymite + cristobalite. Its
structure consisted of elementary cells corresponding to 82% of the tridymite phase, 9%
of cristobalite and 9% of hexagonal quartzite, and it had an average volume of Vav of
1606.96 Å3 (Table 3).

The resulting enthalpy graph showed that at this point, the heat absorption process of
the sintered layer exceeded the heat absorbed into the next lining layer by 72%. During
subsequent melting cycles, the fraction of tridymite increased and thus the average volume
also increased, and the heat transfer process began to exceed its absorption by 1.5- to 4-fold
(Figure 15). The heat capacity graph shows that after sintering, the heat capacity of the liner



Metals 2023, 13, 337 14 of 17

(∆Cp) was 0.037 J/K, and in subsequent melting cycles, it was characterized by λ-shaped
jumps of between 0.05 and 0.045 J/K (Figure 8).

Table 5. The enthalpy values of quartzites at the operating temperatures of melting cycles. No. 1,
quartzite treated at 200 ◦C; No. 2, quartzite treated at 800 ◦C.

Enthalpy

Temperature (◦C)

Cooling Heating Cooling Heating Cooling Heating

15
50

–1
47

0

14
70

–1
02

5

10
25

–8
70

87
0–

10
25

10
25

–1
47

0

14
70

–1
55

0

15
50

–1
47

0

14
70

–1
02

5

10
25

–8
70

87
0–

10
25

10
25

–1
47

0

14
70

–1
55

0

15
50

–1
47

0

14
70

–1
02

5

10
25

–8
70

87
0–

10
25

10
25

–1
47

0

14
70

–1
55

0

Quartzite No. 1 (mJ/g)

22
63

11
17 61 −
57

−
33

3

−
14

06

22
35

76
3

23
4

−
17

1

−
36

9

−
13

22

21
87

17
81

47
3

−
36

4

−
43

5

−
12

56

Quartzite No. 2 (mJ/g)

19
47

16
80 75 −

12
2

−
22

8

−
14

02

44
6

60
4

57 −
43

−
32

2

−
24

62

17
49

14
59 56 −

11
6

−
19

0

−
27

33

Based on these data, a graph of the changes in the enthalpy of quartzites is shown in
Figure 15.
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subsequent melting cycles, the fraction of tridymite increased and thus the average vol-
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—quartzite treated at a temperature of 200 ◦C.

After completion of the sintering mode of the lining at 1550 ◦C, the structure of
the quartzite pre-processed at 200 ◦C consisted of elementary cells. The corresponding
phases were 26% cristobalite and 74% hexagonal quartzite and had an average volume of
143.65 Å3 (Table 3). The resulting enthalpy graph shows that at this point, the heat absorp-
tion process of the sintered layer exceeded the heat absorbed into the next lining layer
by 62%. In subsequent melting cycles, the fraction of cristobalite increased, and thus, the
average volume also increased, and the absorption process is 59% (second cycle) and 57%
(third cycle). The heat capacity graph shows that after sintering, the heat capacity of the
liner (∆Cp) was 0.018 J/K; in subsequent melting cycles, the liner was characterized by
λ-shaped jumps of between 0.04 and 0.02 J/K (Figure 8).

The results of the changes in the heat capacity of the quartzite with different tempera-
ture treatments are shown in Figures 9–14. Of these, it can be seen that the quartzite with a
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temperature treatment of 200 ◦C, after each cycle, the heat capacity is significantly lower
than when processing 800 ◦C.

Thus, changes in the heat capacity and heat transfer and absorption were influenced
by phase changes in the quartzite under the influence of temperature. Quartzite is known
to be stable at 870–1470 ◦C, has a density of 2.3 g/cm3 and a hardness of 6.5 units on the
Mohs scale. Cubic cristobalite is stable at a temperature of 1470–1715 ◦C, has a hardness of
7.25 units and has a density of 2.27 g/cm2 [51]. The greater hardness of the lining makes it
more resistant to intense melting movement at elevated melting temperatures.

Based on this technology, in the foundry of a machine-building enterprise equipped
with industrial frequency induction smelters of 1 and 2.5 tons, the process of smelting
synthetic iron on one steel scrap was developed, including the manufacture of the lining
itself with reference to existing equipment. Work during the month showed a positive
result—the resistance of the lining on all p-hours was 320–340 melts. Based on this, the
technology was adopted as the main one, and the results during the year showed that
the resistance of the lining on the smelting furnaces, stable, amounted to 320–360 melts.
An analysis of the use of raw materials was carried out and compared with the previous
technology. For metal filling containing 30% of steel scrap, the following materials were
purchased: 15% (150 kg) of cast iron at 40 rubles/kg at 6000 rubles; 1% (10 kg) of ferro-
manganese and ferrosilization at 50 rubles/kg at 500 rubles; 30% (300 kg) steel scrap at a
price of 10 rubles/kg in the amount of 3000 rubles and 0.6% (0.6 kg) carburizer at a price of
3 rubles/kg in the amount of 1.8 rubles.

The rest of the metal residue consisted of the return of production and the liq-
uid residue in the kiln, the notional cost of 1 ton, which is 50% for the liquid residue
and for the return of 80% SCH20 (Grey Cast Iron, GG-20 in Germany)—70 rubles/kg
(330 · 35 = 11,500 rubles and 200 · 56 = 11,200 rubles).

The total cost amounted to 32,201.8 rubles/t liquid. For the smelting of 1 ton of liquid,
when used in the meteor mill 88% of steel scrap, the costs amounted to the following: 1.5%
ferrosile in the amount of 750 rubles; 100 kg liquid residue at the price of 5000 rubles; 88%
of scrap steel in the amount of 8800 rubles and 2% carburizer in the amount of 6 rubles.
The total cost of buying fresh materials amounted to 14,556 rubles. The calculation uses the
market value of the materials as of 2018–2019.

5. Conclusions

According to these results, the sintered lining layer consisting of cristobalite and
hexagonal quartzite, compared with a similar layer consisting mainly of tridymite, had a
smaller average volume, its heat capacity at 1550 ◦C during the second and third melting
cycles was 1.2–2 times lower, and the heat absorption process exceeded the heat transfer
from the sintered to the semi-finished layer by 50%. In a sintered layer consisting of
tridymite and quartzite, the process of heat transfer exceeded its absorption by 1.5–4 times,
resulting in a more intensive change in the structure of the layers by accelerating the
conversion of the half-melted material into filaments. This reduced the thickness of the
lining, speeding up wear and thus reducing its durability.

Thus, research has shown that the acid lining, which has a lower heat capacity, has
a higher hardness and, therefore, increased resistance to the intense movement of the
melt, which will allow it to maintain its high resistance at melting temperatures up to
1470–1570 ◦C. This ensures the possibility of use in metal filling 90% or more, one steel
scrap, reduces material and energy costs and increases productivity by reducing the down-
time associated with the furnace. Based on the results of the research, the technology
for manufacturing such a lining has been developed and proposed, including the main
operations described below.

For the operation of removing moisture from the original raw material, it is necessary
to make it use a temperature of 200 ◦C with subsequent cooling. The sintering process must
be finished at a temperature of 1550–1570 ◦C with an exposure of 2 h. The first 3–5 melts
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are carried out with 1/3 of the capacity of the crucible and only then go to the necessary
melting mode.

In this way, the efficiency of using a sheet consisting of quartzite and cristobalite,
which has a low heat capacity, allows the use of metal filling with 88% of steel scrap and
provides a 45.2% reduction in the cost of raw materials.
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