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Abstract: In this study, a low-cost refractory high-entropy alloy (RHEA) with obvious macroscopic
tensile ductility was designed. The evolution of the microstructures and fundamental mechanical
properties with the TiZr concentration in arc-melted (TiZr)x(NbTaV)1−x (x = 0.4, 0.6, and 0.8) high-
entropy alloys (HEAs) were investigated. The alloys (TiZr)0.4(NbTaV)0.6 and (TiZr)0.6(NbTaV)0.4

had a single body-centered cubic solid solution phase. Two phases were confirmed in the as-cast
(TiZr)0.8(NbTaV)0.2 alloy using X-ray diffraction and scanning electron microscopy. All three al-
loys had dendritic structures with severe element segregation. (TiZr)0.4(NbTaV)0.6 had a high yield
strength of 1300 MPa with a compressive fracture strain of 16%. (TiZr)0.8(NbTaV)0.2 showed excep-
tional compressive plasticity but a low yield strength. (TiZr)0.6(NbTaV)0.4 had a relatively uniform
yield strength and compressive fracture plasticity (950 MPa and 35%). In addition, (TiZr)0.8(NbTaV)0.2

also had a tensile ductility of 7% at room temperature.

Keywords: high-entropy alloys; refractory; design; multiphase; tensile plasticity

1. Introduction

With the advancement of modern industry, high-performance materials with high
strength, ductility, and thermal stability are in high demand in a variety of applications [1].
Conventional alloys are composed of one main element and a few minor alloying elements
to improve the mechanical characteristics of the materials. Over the past decade, a new
alloy design and optimization philosophy called multiprincipal-element or high-entropy
alloys (HEAs) have drawn increasing attention [2,3]. Generally speaking, such kinds
of alloys have five or more elements with equimolar or near-equimolar ratios, but now,
the definition of HEAs is more extensive, i.e., composing of at least five major elements,
each with an atomic percentage (at.%) between 5% and 35%. It is worth mentioning
that the atomic percentage of each minor element, if any, is even smaller than 5% [4].
In HEAs, the low Gibbs free energy caused by high configurational entropy ensures the
formation of simple solid solutions rather than intermetallics, usually including typical
face-centered cubic (FCC) [2], body-centered cubic (BCC) [5], and hexagonal close-packed
(HCP) [6]. Specifically, some BCC HEAs have shown unusual properties, such as high
phase stability at elevated temperatures [7]. Up to now, commonly developed Ni-based
superalloys can not meet the demands of the fast-growing aerospace industry. New
kinds of refractory metals and alloys that have higher melting points are badly needed
as alternatives. However, refractory metallic materials face two main problems: low
ductility for easy processing at room temperature and poor oxidation resistance at elevated
temperatures [8]. Combining the concepts of high entropy and refractory alloys, refractory
high-entropy alloys (RHEAs) have been designed to solve these problems. Because high
configurational entropy usually leads to high-temperature stability with low Gibbs free
energy at high temperatures, this would be one of the advantages of RHEAs [5]. Although
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many RHEAs show high compressive strength and large plasticity at ambient temperatures,
tensile ductility has not often been achieved in the developed RHEAs up to now [9].

At present, there are two kinds of RHEAs with tensile ductility; one is the single-
phase BCC NbTaHfZrTi alloy, with tensile ductility close to 10% after cold rolling and heat
treatment [10]. It is a classical refractory high-entropy alloy and one of the components that
have been studied extensively at present. The excellent tensile properties of this alloy can
be attributed to the excellent ductility of Hf. The other is the TaxHfZrTi series alloy. All
alloys of this series have good room-temperature tensile ductility, and the tensile ductility
of the Ta0.5HfZrTi alloy reaches 30% [11]. These alloys adopt the metastable design concept
of titanium alloys. By reducing the content of the Ta element, new phases appear in the
alloy so as to improve the mechanical properties of the alloy.

The elements used in TaxHfZrTi series alloys are high-cost, and this is very disadvan-
tageous to the application prospect of the alloys. To alleviate this problem, here, we tried to
replace the most expensive Hf element with the V element of the same subfamily. Another
disadvantage is that the yield strength of these alloys is relatively low. Our ultimate goal
was to develop a novel RHEA with high strength and toughness at room temperature.

In this work, we tried to adapt a similar strategy to the TaNbVZrTi RHEA to increase
its toughness. The content of (TiZr) was gradually increased with the formation of the
secondary phase in the HEA system (TiZr)x(NbTaV)1−x. The ultimate goal was to design a
relatively inexpensive RHEA with room-temperature tensile ductility. Furthermore, solid
solution strengthening (SSS) is significant in strengthening a wide range of alloys, including
HEAs, and contributes to increased yield strength in HEAs. Therefore, we also investigated
the role of solution strengthening in this series of alloys.

2. Materials and Methods

By vacuum arc melting in a Ti-gettered argon atmosphere, the alloys (TiZr)x(NbTaV)1−x
(x = 0.4, 0.6, and 0.8) (compositions in at.%) were created. The weight percentage purity
of the pure metals was higher than 99.9%. To achieve a homogeneous distribution of
elements in the alloys, all ingots were remelted at least five times. Each ingot had a weight
of about 30 g. The crystal structures of the as-cast ingots were characterized by an X-ray
diffractometer (XRD) using Cu K-alpha radiation through the 2θ range between 20◦ and
80◦, and the scanning rates were 9 2θ/min in all tests. The XRD equipment model is Aeris
(PANalytical B.V., Alemlo, The Netherlands). Using a scanning electron microscope (SEM)
equipped with a backscatter electron (BSE) mode, we investigated the microstructures and
structural evolution of the as-cast (TiZr)x(NbTaV)1−x alloys. The distribution of elements
in all samples was further studied by energy dispersive spectroscopy (EDS). The SEM
and EDS tests used the same equipment, model is PhenomWorld(Phenom, Eindhoven,
The Netherlands).

For compression tests, as-cast ingots were cut into cylindrical specimens. Each sample
measured 3 mm in diameter and 6 mm in height. At room temperature, the compression
samples were tested at a strain rate of 5 × 10−4 s−1. For tensile tests, the ingots were cut
into slabs with a thickness of 2 mm, cold-rolled to a final thickness of 1.6 mm, and then
subjected to 10 min of stress-relief annealing at 1237 K. Then, the specimens for the tensile
tests were cut into dog-bone shapes from the slabs and as-cast ingots by electrical discharge
machining. The tensile samples had gauge lengths and widths of 15 and 5 mm, respectively.
Tensile tests were performed at room temperature using an Instron 5969 universal testing
machine. At least five tensile tests were performed on each alloy.

3. Results
3.1. Phases

Figure 1 shows the XRD patterns of the as-cast ingots of (TiZr)x(NbTaV)1−xRHEAs
(x = 0.4, 0.6, and 0.8). The XRD diffraction peaks of the (TiZr)0.4(NbTaV)0.6 alloy were
represented by a single BCC phase. As the TiZr content was increased to 0.6, with a
composition of (TiZr)0.6 (NbTaV)0.4, the structure was still single-phase BCC. By contrast,
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when the content increased to 0.8, the (TiZr)0.8(NbTaV)0.2 alloy had a BCC phase, but a
new secondary phase appeared. The secondary phase was preliminarily determined as an
HCP phase.
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Figure 1. X-ray diffraction patterns of as-solidified HEAs with the compositions of (TiZr)x(NbTaV)1−x

(x = 0.4, 0.6, and 0.8).

The volume fraction of the secondary phase was quite large in terms of the intensity of
the diffraction peak, which will be discussed later. The volume fraction of the BCC phase
was determined using the following equation for a material comprising dual phases, such
as quenched carbon steel [12]:

VBCC =
IBCC/RBCC

IBCC/RBCC + IHCP/RHCP
(1)

Here, I is the X-ray diffraction intensity.

R =
(

m/v2
)
|F|2LPe−2m (2)

where P is the polarization factor, F is the structure factor, v is the volume of a unit cell, m
is the multiplicity factor, and L is the Lorentz factor. All the specific data can be obtained
from the literature [12,13]. After calculation, the volume fraction of BCC and HCP phases
were 64% and 36%, respectively.

3.2. Microstructures

Figure 2 indicates the backscattered electron SEM images of the (TiZr)x(NbTaV)1−x
RHEAs. Just like typical as-cast ingots, all alloys exhibited a clearly dendritic microstructure.
At the same time, a few dark spots could be observed from the dendritic and interdendritic
regions in all these alloys. These spots were associated with casting defects. The formation
of dendrite structures indicates element segregation. The dendritic space of the three alloys
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was not significantly different, which was due to the similar cooling rates during the arc-
melting solidification. The bright areas are dendrite arms, and the interdendritic regions
appear to be dark on the SEM images. The brightness of the backscattered image depends
on the atomic number, and the higher the atomic number, the higher the brightness of
the image. This means that the elements with more electrons (such as Nb and Ta) were
enriched in the dendrite arms. On the contrary, the elements such as Ti and V, which have
smaller atomic numbers, were mainly distributed in inter-dendritic regions. The above
situation is supported by many previously reported RHEAs, such as HfNbTaTiZr [10],
NbTaTiV [14], and HfNbTiZr [15] RHEAs.
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In order to show the element segregation directly, the energy spectra of each element in
the alloy were analyzed by scanning electron microscopy. At the same time, point scanning
and surface scanning of the alloys was performed to quantitatively analyze the degree
of segregation.

Figure 3a is the energy spectrum of the electron backscatter image and the distribution
of each element in the alloys. It can be seen in the figure that the electronic signals of
the Ta and Nb elements were dense in the dendrite arm area, and the image was bright,
indicating that the element was mainly concentrated in the dendrite arm. By contrast, Zr
was primarily abundant in the dendritic area. Finally, the Ti and V elements had no specific
tendency and were relatively evenly distributed in the alloys. The element distribution of
the (TiZr)0.6(NbTaV)0.4 RHEA was similar to that of the (TiZr)0.4(NbTaV)0.6 RHEA, while
for the (TiZr)0.8(NbTaV)0.2 RHEA, the distribution of elements was changed, i.e., Ti and
Ta were mostly found in the dendrite arm areas, whereas Nb and V enrichments were
seen in the interdendritic regions (see Figure 3b for details). In addition, Zr was mainly
concentrated in the secondary phase precipitation, and Ti and Nb were also distributed in
large quantities.
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Table 1 lists the average composition of each element, the composition in the dendrite
arm, and the concentration of the intergranular composition in the three RHEAs. The
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average composition in each alloy was slightly different from the nominal composition.
This was probably caused by the volatilization and splashing of the alloy during melting
and related to error during the measurement. According to the qualitative examination
of the backscattered electron imaging (BEI) SEM pictures, the element distribution in the
as-cast alloys was inhomogeneous. Dendrite arms are abundant in heavy metals with
higher melting temperatures (Ta and Nb). Heavy metals with relatively high melting
points (Ta and Nb) were abundant in dendritic arms. On the contrary, light elements were
concentrated in the interdendrites (Zr) or distributed uniformly in the alloy (Ti and V).
Similar phenomena have been found in other RHEAs [16].

Table 1. The estimated bulk composition (Caver), the average composition of dendrite arms (Cdr),
and the average composition of interdendritic regions (Cidr) for (TiZr)x(NbTaV)1−x HEAs. The yield
strengths (σ0.2 ) of pure metals are also given [16].

Alloys Concentrations (at.%) Ti Zr Nb Ta V

(TiZr)0.4(NbTaV)0.6

Caver 24.3 26.3 16.6 18.5 14.3
Cdr 26.7 23 16.7 19.8 13.9
Cidr 26.3 35.2 11.9 12.6 14

(TiZr)0.6(NbTaV)0.4

Caver 28.3 28.8 15.1 13.5 14.4
Cdr 29.1 25.3 18.4 13.8 13.5
Cidr 28.8 33.2 12.3 11.3 14.5

(TiZr)0.8(NbTaV)0.2

Caver 35.7 34.8 11.6 9.2 8.8
Cdr 36.4 31.4 14.2 9.5 7.5
Cidr 35.2 40.2 8.8 6.9 8.9

σ0.2 (MPa) 195 280 240 345 310

3.3. Formatting of Mathematical Components

The engineering stress–strain (σ–ε) curves upon compression at room temperature
for as-cast (TiZr)x(NbTaV)1−x HEAs (x = 0.4, 0.6, and 0.8) in this study are depicted in
Figure 4. As can be seen in Figure 4, all three alloys had good strength and plasticity and
exhibited work hardening. Table 2 provides the data on the engineering yield strength and
compressive strain. The maximum error was less than 50 MPa and 2% for yield strength
and failure strain, respectively.

Table 2. The engineering yield stress and strain data for both compressive and tensile data of
(TiZr)x(NbTaV)1−x HEAs.

Alloys TiZrNbTaV (TiZr)0.6(NbTaV)0.4 (TiZr)0.8(NbTaV)0.2 (TiZr)0.8(NbTaV)0.2 (Tensile)

σ0.2(MPa) 1162 878 845 847, 934 (cold rolling)
εp,% 15.5 28.7 >50 8.5, 12.6 (cold rolling)

In order to better discuss the mechanical properties of the alloys, we converted the
engineering stress–strain curve into a true stress–strain curve, as shown in Figure 5. The
yield strength and maximum compressive fracture strength for the (TiZr)0.4(NbTaV)0.6
alloy were 1300 and 1500 MPa, respectively, and its compressive strain was 13.5% before
fracture. The stress–strain curves from the compression experiments on this alloy were
not smooth. This may be related to the casting pores caused by the large melting point
difference between the constituted elements of the alloy. For the (TiZr)0.6(NbTaV)0.4 RHEA,
the yield strength was decreased to 900 MPa but exhibited about 30% compressive strain
before fracture. Clearly, the (TiZr)0.8(NbTaV)0.2 alloy had significantly improved plasticity
and slightly decreased yield strength compared with the (TiZr)0.6(NbTaV)0.4 alloy, which
had a compressive strength and strain of 1180 MPa and 50%.
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Figure 6 depicts the yield strength and plasticity obtained upon compression at room
temperature for some reported RHEAs [17–34]. Most of these alloys can be divided into
two groups: (i) strong but brittle alloys which have a high yield strength of ≥1000 MPa and
plasticity of≤20%, and (ii) ductile but soft alloys, which have a yield strength of <1200 MPa
and plasticity of more than 50%. The three RHEAs in this work are also included in this
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figure. Remarkably, the (TiZr)0.4(NbTaV)0.6 RHEA is located in a high-strength region in this
figure, where most refractory alloys are located. The alloy has extraordinarily high strength,
equivalent to that of some alloys containing W and Mo components, and good tensile
ductility. The alloy (TiZr)0.6(NbTaV)0.4 offers several benefits, including high strength and
an outstanding strength–ductility balance. The plasticity of (TiZr)0.8(NbTaV)0.2 is better
than 50%, but the strength is lower, with a value of 800MPa. Most refractory alloys in this
region have obvious room temperature tensile ductility, and this means that it is possible to
obtain tensile ductility for the (TiZr)0.8(NbTaV)0.2 alloy at room temperature.
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Because of the impressive compressive plasticity, further tensile experiments for the
(TiZr)0.8(NbTaV)0.2 alloy were carried out. In order to better display the tensile prop-
erties of the alloy, the engineering and true stress–strain (σ–ε) tensile curves for the
(TiZr)0.8(NbTaV)0.2 alloy at room temperature are presented in Figures 7 and 8. From
true stress–strain (σ–ε) tensile curves, the yield strength and plastic strains for the as-cast
samples were 850 MPa and 7%, and the samples under cold rolling (20% reduction) showed
higher yield strength (950 MPa) and plastic fracture strain (10%). These results show that
the alloy has good tensile plasticity and strength at room temperature. The performance
improvement after cold rolling may be related to the reduction in casting defects.
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4. Discussion
4.1. Phase Formation Rule

In traditional thermodynamics, it is generally believed that alloys containing a variety
of major elements will form complex and brittle intermetallic compounds. By contrast,
multicomponent HEAs promote the formation of simple solid solutions and inhibit the
generation of intermetallic compounds due to their high configurational entropy. During
HEA solidification, due to element segregation, disordered–ordered transformation, and
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amplitude modulation decomposition, the actual configuration entropy of multicomponent
alloys is lower than the ideal value. In this case, although the ideal configuration entropy of
the alloys is high, the formation of intermetallic compounds is not totally inhibited [35]. As
a result, various semi-empirical factors have been used to forecast phase development in
the current HEAs. These parameters include the thermodynamic variable, which is defined
on the basis of the entropy–enthalpy competition notion, Ω [36]; the atomic size difference,
δ [37]; electronegativity, ∆χAllen [38]; and valence electron concentration, VEC [39]. Of these
parameters, the atomic size difference δ and the thermodynamic variable Ω are the most
critical factors in deciding whether a solid solution will form. δ and Ω can be written as:

δ = 100%
√

∑n
i=1 ci

(
1− ri/ ∑n

j=1 cjrj

)
(3)

where ri and rj are the atomic radii of elements i and j, respectively, and ci and cj represent
the atomic fractions of element i and element j, respectively.
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where T denotes the melting point of an n-element alloy, ∆Smix is the mixing entropy,
and ∆Hmix is the enthalpy of mixing. According to the reported literature, a rule for
solid-solution formation in multi-component HEAs is Ω ≥ 1.1 and δ ≤ 6.6% [36].

In addition, according to the Hume-Rothery rule, electronegativity has a major impact
on phase formation in HEAs, and the following expression can be used:

∆χ =

√
n

∑
i=1

ci(χi − χ )2 (5)

where χi is the electronegativity of element i and χ is the average electronegativity of the
elements in the alloys. Solid solutions are simple to form when the electronegativity is low.

The above three parameters can effectively determine the formation of the solid
solution phase, but the specific crystal structure of the HEAs cannot be predicted. Later,
Guo et al. [39] proposed the VEC theory to solve this problem:

VEC =
n

∑
i=1

ci(VECi) (6)

where VECi is the VEC of the ith element. The theory holds that a single FCC phase is
formed when VEC > 8.0, a single BCC phase is formed when VEC < 6.87, and both phases
coexist when the value is between them. However, the criterion for the HCP phase was
not clear at first. Recently, Yuan’s work initially solved this problem: a single HCP or BCC
phase was formed when VEC < 4.09 and VEC > 4.18, respectively, and the mixed HCP and
BCC phases were formed in between [40].

The validity of these parameters in the current alloy system was testified, as calculated
and listed in Table 3. With them, it was predicted to form a single-phase BCC solid solution
in (TiZr)x(NbTaV)1−x alloys, but this was not entirely consistent with the experimental
results. For example, the calculated VEC value for the (TiZr)0.8(NbTaV)0.2 RHEA was 4.2,
which was higher than the proposed threshold value of 4.18. This indicates that HCP and
BCC can coexist when VEC = 4.2.
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Table 3. The atomic radius (δ), enthalpy of mixing (∆Hmix), entropy of mixing (∆Smix), melting
temperature (Tm), Ω parameter, electronegativity difference (∆χ), and valence electron concentration
(VEC) of as-cast (TiZr)x(NbTaV)1−x HEAs.

Alloys ∆[%] ∆Hmix[kJ/mol] ∆Smix[J/K/mol] Tm[K] Ω ∆χ VEC

(TiZr)0.4(NbTaV)0.6 6.35 0.32 13.38 2458 102.8 7.5 4.6
(TiZr)0.6(NbTaV)0.4 6.32 0.50 12.67 2286 57.9 7.5 4.35
(TiZr)0.8(NbTaV)0.2 5.87 0.41 10.71 2181 58.4 7.3 4.2

4.2. Solid Solution Strengthening

In the compression test at room temperature, the yield strength of the alloys was in-
versely proportional to the content of TiZr. In general, the influence of elements themselves
can be judged by the rule of mixing (RoM):

p = ∑n
i=1 ci pi, (7)

where ci is the atomic fraction of the ith element, p is the yield strength of the alloy, and
pi is the mechanical property of element i (provided in Table 1). The calculated averages
σmix

0.2 of the (TiZr)x(NbTaV)1−x alloys are listed in Table 4. According to the calculation by
RoM, there was little difference in theoretical yield strength between the three alloys. The
calculated value was much less than the measured yield strength, which indicates that
some other strengthening mechanisms exist in the alloys. The change in the alloy strength
was affected little by the element itself and was highly dependent on the strengthening
mode caused by the change in element content.

Table 4. Comparison between the calculated yield strength and the experimental value; the values by
rule of mixing and compressive strain are also listed.

Alloys σ0.2 (MPa) Exp. Cal. Exp/Cal εp,%
RoM

(TiZr)0.4(NbTaV)0.6 274 1315 1515 0.87 17
(TiZr)0.6(NbTaV)0.4 259 950 1240 0.77 35
(TiZr)0.8(NbTaV)0.2 250 786 1187 0.66 >50

Considering the compositional complexity in HEAs, solid solution strengthening
(SSS) is projected to have a significant impact. The elastic interactions between dislocation
local stress fields and solute atoms cause SSS in metallic solid solutions [41,42]. The
interaction force, F, is mainly provided by two sources, i.e., the atomic size misfit parameter,
δa =(1/a)da/dc, and the modulus misfit parameter, δµ =(1/µ)dµ/dc, of the solute and
solvent elements.

F = µb2δ = µb2(δµ + βδa
)
, (8)

In this equation, µ is the alloy’s shear modulus, b is the magnitude of the Burgers
vector, a is the lattice parameter, c is the solute atom fraction, and β is a constant whose
value changes according to the kind of movable dislocation. Screw dislocations are often
assigned a value of 4. On the other hand, β ≥16 is used for edge dislocations. The value of
β was set to 9 because the common dislocation type in most alloys is a random blend of
edge and screw dislocations [43].

The solute-induced stress increases in a concentrated solid solution, ∆σ, can be de-
fined as:

∆σ = Zb−2F4/3c2/3E−1/3
L , (9)

where Z is a material constant with no dimensions, which is of the order of 0.1; c is the
solute concentration; and EL is the dislocation line tension, which is typically expressed as
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EL = µb2. Using Equations (8) and (9), the value for the SSS caused by the ith element can
be calculated from:

∆σi = AGf4/3
i c2/3

i , (10)

where A is a material-dependent dimensionless constant of the order of 0.04 [16], and the fi
parameter can be calculated as follows:

fi = 2
√

δ2
µi + β2δ2

ai (11)

For the BCC-structured single-phase HEAs, the δai and δµi (per atom pair) in the
vicinity of ith element can be calculated as the average difference of the atomic size δaij and
the atomic modulus δµij with its neighbor [43]:

δai =
9
8 ∑ cjδaij, (12)

δµi =
9
8 ∑ cjδµij, (13)

where cj is the atomic fraction of the alloy’s jth element, δaij = (ai − aj)/(ai + aj) and δµij =
(µi − µj)/(µi + µj). The alloys’ SSS is obtained by summation over ∆σi of each con-
stituent via:

∆σ =
(
∑ ∆σ3/2

i

)2/3
, (14)

Then, it is possible to roughly estimate the HEAs’ calculated yield strength:

σcal
0.2 = σmix

0.2 + ∆σ, (15)

The model-predicted values of (TiZr)x(NbTaV)1−x alloys are listed in Table 4. The
model successfully predicted the yield strength of the equal atomic ratio alloy, equal to
1515 MPa, which was slightly larger than the experimental value. However, for both
the (TiZr)0.6(NbTaV)0.4 and (TiZr)0.8(NbTaV)0.2 alloys, the SSS model is not very suitable.
Specifically, at x = 0.8, the model may not be applicable. The alloy (TiZr)0.8(NbTaV)0.2
contains two phases and may have other strengthening ways, which means that the SSS
plays a small role in this alloy. The alloy (TiZr)0.6(NbTaV)0.4 exhibits a straightforward
BCC phase with a classic dendritic structure. It also involves the contribution of various
elements. This is because as the molar ratio of TiZr increases, the elemental segregation and
microstructure heterogeneity of the alloys increase. In addition, this simple solid solution
strengthening model does not take that into account.

5. Conclusions

On the basis of TiZrNbTaHf RHEAs, relatively inexpensive (TiZr)x(NbTaV)1−x RHEAs
were designed. XRD and SEM were used to study the microstructure. Mechanical charac-
teristics were determined by performing compression and tensile tests at room temperature.
The following conclusions can be drawn:

(1) As-cast (TiZr)0.4(NbTaV)0.6 and (TiZr)0.6(NbTaV)0.4 alloys have a single BCC phase. In
addition, a mixture of HCP + BCC structure was confirmed in the as-cast (TiZr)0.8(NbTaV)0.2
alloy, which is rarely reported in refractory high entropy alloys.

(2) In the compression test, the (TiZr)0.4(NbTaV)0.6 RHEA had a yield strength of
1300 MPa with a fracture plastic strain of 16%. For (TiZr)0.6(NbTaV)0.4, the measured
yield strength and compression fracture strain were 950 MPa and 35%. In addition,
(TiZr)0.8(NbTaV)0.2 is an extremely ductile material that does not fracture until it reaches
50% strain. In tensile tests at room temperature, the alloy had a tensile plasticity of 7% and
a yield strength of 800 MPa. New evidence was provided to solve the room temperature
brittleness of refractory high entropy alloys.
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(3) The simple SSS model accurately predicts the yield strength of (TiZr)0.4(NbTaV)0.6 but
not (TiZr)0.6(NbTaV)0.4 or (TiZr)0.8(NbTaV)0.2 RHEAs. The forecast er of (TiZr)0.6(NbTaV)0.4
was not large, while (TiZr)0.8(NbTaV)0.2 had a large forecast error because it contains two
phases. This model may be more suitable for a BCC alloy with a single equal atomic ratio.
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