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Abstract: The accurate detection of Cd2+ and Pb2+ in soils by square-wave anodic stripping voltam-
metry (SWASV) faces great challenges because the interaction between multiple heavy metal ions
(HMIs) interferes seriously with their SWASV signals. To detect Cd2+ and Pb2+ by SWASV with high
accuracy, an overlooked but informative signal, i.e., stripping current peak area, was employed and
combined with chemometric methods to suppress the above mutual interference. An easy-to-prepare
electrode, i.e., in-site electroplating bismuth film modified glassy carbon electrode, was used to sense
the multiple HMIs. Two machine learning algorithms, including SVR and PLSR, were used to estab-
lish the detection models of Cd2+ and Pb2+. In addition, this study developed a homemade algorithm
to automatically acquire the stripping peak heights and stripping peak areas of Zn2+, Cd2+, Pb2+, Bi3+,
and Cu2+, which acted as the inputs of machine learning models. Then, the detection performance of
various SVR and PLSR models were compared based on the R2 and RMSE values of the validation
dataset. Results showed that the SVR detection models established by the algorithmically acquired
peak areas presented the best stability and accuracy for detecting both Cd2+ and Pb2+ concentrations
under the existence of Zn2+ and Cu2+. The R2 and RMSE values of the SVR models built using the
peak heights of HMIs acquired by electrochemical workstation control software (Imanu-SVR) were
0.7650 and 5.3916 µg/L for Cd2+, and 0.8791 and 20.0015 µg/L for Pb2+, respectively; the R2 and
RMSE values of the SVR models built using the peak area automatically acquired by the developed
algorithm (Aalgo-SVR) were 0.9204 and 2.9906 µg/L for Cd2+, and 0.9756 and 13.1574 µg/L for Pb2+,
respectively. More importantly, the detection results of the proposed method in real soil extracts for
Cd2+ and Pb2+ concentrations were close to those of ICP-MS, verifying its practicability. This study
provides a new solution for the accurate detection of targeted heavy metals under the co-existence of
multiple HMIs by the SWASV method.

Keywords: SWASV; chemometrics; machine learning; electrochemistry; soil extracts; interference factors

1. Introduction

Pb2+ and Cd2+ in soils can accumulate in the human body through the food chain,
eventually posing a serious threat to human health [1–3], which has become the focus of
attention. Therefore, the accurate detection of the concentrations of Pb2+ and Cd2+ in soil
is of great necessity for evaluating the levels of heavy metal pollution. Compared with
conventional spectroscopic techniques for the detection of Cd2+ and Pb2+, the square-wave
anodic stripping voltammetry (SWASV) technique as an electrochemical analysis technique
has been considered a promising method due to its advantages of high sensitivity, easy
operation, rapid response, and cost-effectiveness, as well as the simultaneous detection
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of multiple heavy metals [4–8]. However, the accurate detection of Cd2+ and Pb2+ in soil
using SWASV still has problems to be solved such as the interactive interference between
multiple heavy metal ions (HMIs).

Soil contains multiple heavy metals, such as Zn2+, Cu2+, Pb2+, Cd2+, Ag+, and
As3+/As5+. Among them, the content of Cu2+ and Zn2+ are highly enriched in soil com-
pared to Pb2+ and Cd2+ [9,10]. Serious interactions between multiple ions (such as forming
complex and various alloys) occur in electrochemical analysis, which will severely interfere
with the detection accuracy of SWASV to Cd2+ and Pb2+ in soils. It was reported [5,11,12]
that the peak currents of Cd2+ firstly decreased and, then, leveled off with the increase in
the externally added Pb2+, however, it decreased sharply or even disappeared in spite of
encountering the same concentration of Cu2+ [13]. The above phenomenon may be because
of two aspects. On one hand, Pb2+ and Cu2+ compete for the active sites on the surface of
the working electrode with Cd2+, which decreases the electro-deposited amount of Cd2+.
On the other hand, multiple ions can form the Cd–Pb, Cd–Cu, and Cd–Pb–Cu alloys on
the surface of the working electrode during the electrochemical deposition process, which
inhibits the stripping of Cd2+ to obtain the stripping peak currents [14,15]. In addition, the
existence of low concentration Zn2+ is beneficial to the determination of Cd2+ by forming
the favorable Cd–Zn intermetallic film [11,16], but high-concentration Zn2+ suppresses the
peak current of Cd2+ [17]. In our previous work, two-dimensional correlation spectroscopy
was used to explore the interactive interference characteristics of multiple heavy metal
ions (HMIs), which showed that Cu2+ was the most serious interference ion on the peak
currents of Cd2+ and Pb2+, followed by Zn2+, while Cd2+ and Pb2+ would interfere with
each other [18]. In summary, the interactive interference of various HMIs is a momentous
problem in the detection of Cd2+ and Pb2+ concentrations in soil by SWASV.

To overcome the interactive interference between HMIs, some studies [19–23] prepared
complex biochemical materials to modify the working electrode. However, the electrode
modified using specific recognition materials required expensive costs, complicated steps,
and harsh storage conditions. In comparison, other studies [5,24,25] established machine
learning models, which took the manually acquired stripping peak currents of each heavy
metal as the input and the Cd2+ and Pb2+ concentrations as the output. Model inputs, after
all, needed to be acquired manually, which was time-consuming, had large human error,
and could not satisfy automated detection. Therefore, characteristic stripping currents
(i.e., multiple stripping currents selected by machine learning algorithms) were proposed
to act as input variables, which offered more comprehensive information about the interac-
tions among Zn2+, Cd2+, Pb2+, and Cu2+ [18]. However, the stripping potential of SWASV
would drift due to the difference in detection environments or the reference electrodes,
leading to the disability of the characteristic stripping currents [5]. The peak area of the
stripping currents is defined as the integral value of the stripping current on the scale of
stripping potential time, which physically represents the amount of charges. Theoretically,
the peak area of the stripping current directly reflects the number of stripping HMIs under
a fixed electrode surface area. Therefore, building a machine learning model using the peak
area instead of peak current as the input may be a good approach to improve the SWASV
detection accuracy of Cd2+ and Pb2+ under interactive interference between multiple HMIs.

The accurate acquisition of SWASV signals, including the stripping peak currents
and the stripping current peak areas of HMIs, is crucial for the detection of heavy metal
concentrations. The peak current signals of Cd2+ and Pb2+ were acquired, under the
premise that the background currents of Cd2+ and Pb2+ are the same, by development
algorithms [26]. These algorithms cannot automatically acquire the SWASV signals of
multiple HMIs and are helpless for overlapping peak signals. Therefore, developing an
algorithm that can accurately acquire the stripping current peak areas of Zn2+, Cd2+, Pb2+,
Bi3+, and Cu2+ is of great significance for the automatic and accurate detection of Cd2+ and
Pb2+ concentrations by SWASV. In addition, the stripping current peak heights of HMIs are
also acquired to highlight the advantages of stripping current peak areas in modeling.
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In this paper, a combination of chemometrics, machine learning, and homemade
algorithms was used to improve the detection accuracy of Cd2+ and Pb2+ concentrations
under the interaction interference of Zn2+ and Cu2+. On the one hand, this study attempted
to build machine learning models for accurately detecting the concentrations of Cd2+ and
Pb2+ by using a simple bismuth-film modified electrode, which not only saves financial,
material, and human resources [8,19,20,23], but also avoids secondary pollution caused
by modified materials to the environment. On the other hand, this study investigated the
difference between the HMIs peak area and the traditionally used peak height as the model
inputs for the accurate detection of Cd2+ and Pb2+. Importantly, the practicality of the
selected optimal detection models was tested using real soil samples.

2. Materials and Methods
2.1. Reagents and Apparatus

All chemical reagents were of an analytical grade. The working solutions of Zn2+,
Cd2+, Pb2+, Bi3+, and Cu2+ were prepared from 1 mg/mL of standard stock solutions
of Zn(NO3)2, Cd(NO3)2, Pb(NO3)2, Bi(NO3)3, and Cu(NO3)2, respectively. Acetic acid
acted as the electrolyte buffer for the electrochemical measurement of HMIs. Millipore–Q
water (18.2 MΩ·cm) was used for diluting reagents and the cleaning of containers for
all experiments.

A three-electrode system including an Ag/AgCl reference electrode, a platinum wire
counter electrode, and a Bi/GCE working electrode was used to collect the stripping
currents of Zn2+, Cd2+, Pb2+, Bi3+, and Cu2+. SWASV measurements were performed using
the EmStat3 electrochemical workstation from PalmSens (PSTrace 5.9, EmStat3, Houten,
The Netherlands).

2.2. Preparation of the Bi/GCE

The Bi(NO3)3 was used to prepare the in-site electroplating bismuth film-modified
glassy carbon electrode (Bi/GCE) as a working electrode because bismuth possessed
excellent electrocatalysis ability towards Cd2+ and Pb2+ [27–29]. The specific preparation
of the Bi/GCE electrode is presented in the Supplementary Materials.

2.3. SWASV Measurement

The optimal experimental conditions for the detection of Cd2+ and Pb2+ concentra-
tions using Bi/GCE by SWASV had been explored in our previous study [24]; the optimal
concentration of Bi3+ was 300 µg/L, the optimal pH value was 5.0, the optimal deposition
potential was −1.3 V, and the optimal deposition time was 180 s. In addition, the repeatabil-
ity, stability and electroanalytical performance of Bi/GCE had been validated, as presented
in the Supplementary Materials, which demonstrated that the obtained SWASV dataset
was reliable to build machine learning detection models.

Before performing SWASV measurements, dissolved oxygen was removed from the
test solution by blowing N2 gas for 2 min. The main steps of SWASV were as follows.
The HMIs were electro-deposited into the GCE surface for 180 s at the potential of −1.3 V,
accompanied by stirring at a speed of 300 r/min. After an equilibration period for 10 s,
the deposited HMIs were stripped off from the GCE surface by applying a square-wave
excitation potential in the range of −1.4 to 0.2 V to obtain stripping currents. The square-
wave frequency, potential amplitude, and potential increment of the excitation potential
were 25 Hz, 25 mV, and 5 mV, respectively. A total of 320 data points were collected in the
stripping potential range of −1.4 to 0.2 V for one SWASV data curve due to the potential
increment of 5 mV.

The detailed steps of the SWASV measurements are described in the Supplementary
Materials.
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2.4. Establishment of Experimental Datasets

To explore the interactive influence of multiple HMIs on the SWASV signals of Cd2+

and Pb2+, eight concentration gradients of four kinds of HMIs were set. The Zn2+ and Cu2+

acted as the interference ions, their concentration gradients started from 0 µg/L. Specifically,
the Zn2+ concentrations included 0, 50, 100, 150, 200, 250, 300, and 350 µg/L, while the Cu2+

concentrations included 0, 25, 50, 75, 100, 125, 150, and 175 µg/L, the Pb2+ concentrations
included 5, 25, 50, 75, 100, 125, 150, and 175 µg/L, and the Cd2+ concentrations included
2, 5, 10, 15, 20, 25, 30, and 35 µg/L. The orthogonal experimental method was adopted to
conduct the experiment’s design on the SPSS software (SPSS 26, IBM SPSS, Chicago, IL,
USA). A total of 64 experiments were designed according to the L64(84) orthogonal table
under four factors and eight levels. The 64 sets of orthogonal experiments were listed in
Table S1. Namely, 64 sets of SWASV data were collected to develop the algorithm for the
automatic acquisition of peak heights and peak areas of multiple HMIs and to establish
the models for the accurate detection of Cd2+ and Pb2+ concentrations under the existence
of multiple HMIs. The SWASV measurement of each sample was repeated three times to
guarantee the reliability of the dataset.

2.5. Development of Peak Height and Peak Area Acquisition Algorithms

First, each SWASV curve was pre-processed and divided into several segments accord-
ing to the extremum points. Then, the homemade algorithm was used to obtain the peak
high and peak area of each segment. Finally, the type of each HMI was identified according
to the position of the stripping potential corresponding to the peak current.

2.5.1. Segmentation of SWASV Curves

The Savitzky-Golay (S-G) algorithm was used to smooth the SWASV curve as shown
in Figure 1A. The extreme points in the SWASV curve after S-G smoothing were accurately
identified by the peakdet function. The strategy of the peakdet function was to look for
the highest point, around which there were lower points on both sides. It was defined
as the extreme point in the SWASV curve by finding the closest point in the data points
to the voltage value of the extreme point in the SWASV curve after S-G smoothing, as
shown in Figure 1B. It is worth noting that the number of local minimum points should
be one more than the number of local maximum points to ensure the existence of local
minimum points on the left and right of each local maximum. However, one point located
at the end or front of the SWASV curve could not be detected as the local minimum point
using the peakdet function. Thus, it was set as the minimum point to ensure that every
segment of the SWASV curve contained one local maximum and two local minimum
points, as shown in Figure 1C. Assuming that the coordinates of 320 data points were
(V1, I1), (V2, I2) . . . (V320, I320), among them, the coordinates of the local maximum points
were

(
Vmaxy, Imaxy

)
, and the coordinates of the local minimum points were (Vminz, Iminz).

The y and z were the number of local maximum and minimum points, respectively. Then,
each SWASV curve was divided into several segments according to the minimum points,
as shown in Figure 1D.

2.5.2. Calculation of Valid Data Segments

The valid data segment needed to be extracted from the segmented curve due to the
presence of background currents in the SWASV curve. The core principle was to calculate
the secant line of the segmented curve with only two intersections, which were located to
the left and right of the local maximum point. As an example, the valid data segment i of
the SWASV curve was calculated based on Section 2.5.1, as follows.
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Figure 1. Schematic representation of the SWASV curve smoothed by S-G algorithm (A), the extreme
points identified by the peakdet function (B), the end of the SWASV curve set as the minimum point
(C), and the segmentation of SWASV curve (D). (SWASV response curve of 150 µg/L Zn2+, 35 µg/L
Cd2+, 175 µg/L Pb2+, 300 µg/L Bi3+, and 100 µg/L Cu2+).

Firstly, the slope matrix KL1, i.e., Equation (1), was calculated by the slope between
every coordinate point from the local maximum point (Vmaxi, Imaxi) to the local mini-
mum point

(
Vmin(i+1), Imin(i+1)

)
and the local minimum point (Vmini, Imini) as shown

in Figure 2A.

KL1 =



k10
k11

...
k1u

...
k1p


(1)

where p =
Vmin(i+1)−Vmaxi

0.005 is the number of elements in KL1, i.e., the data points number from
the local maximum point to the right local minimum point, k1u =

Imaxi+u−Imini
Vmaxi+u−Vmini

(u ∈ [0, p])
is the u-th element in KL1, and k1m = min{KL1} is the global minimum value in KL1.

The coordinate Pi1(Vmaxi+1m, Imaxi+1m) was acquired by k1m.
Secondly, the slope matrix KR1, i.e., Equation (2), was calculated by the slope between

every coordinate point from the local maximum point (Vmaxi, Imaxi) to the local minimum
point (Vmini, Imini) and Pi1(Vmaxi+1m, Imaxi+1m) as shown in Figure 2B.
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Figure 2. Schematic representation of the calculation of valid data segments (A,B). (The i-th segment
of the SWASV response curve for 150 µg/L Zn2+, 35 µg/L Cd2+, 175 µg/L Pb2+, 300 µg/L Bi3+, and
100 µg/L Cu2+).

KR1 =



k10
k11

...
k1v

...
k1q


(2)

where q = Vmaxi−Vmini
0.005 is the number of elements in KR1, i.e., the data points number from

the local maximum point to the left local minimum point, k1v =
Imaxi−v−Imini

Vmaxi−v−Vmini
(v ∈ [0, q]) is

the v-th element in KR1, and k1n = max{KR1} is the global maximum value in KR1.
The coordinate Qi1 (Vmaxi−1n, Imaxi−1n) was acquired by k1n.
Then, the slope matrix KL2 was calculated by the slope between every coordinate point from

the local maximum point (Vmaxi, Imaxi) to Pi1(Vmaxi+1m, Imaxi+1m) and Qi1(Vmaxi−1n, Imaxi−1n)
to acquire the coordinate Pi2(Vmaxi+2m, Imaxi+2m). Therefore, the above calculations were re-
peatedly iterated until the conditions in Equation (3) were satisfied. Finally, the coordinates
of Pis(Vmaxi+sm, Imaxi+sm) and Qis(Vmaxi−sn, Imaxi−sn) (s was the final number of iterations)
were obtained. The segment between Pis and Qis was the valid data segment that this
study required. {

Pism = Pi(s−1)m

Qisn = Qi(s−1)n

(3)

2.5.3. Acquirement of Peak Heights and Peak Areas

The straight line li from points Pism to Qisn and the curve Ci fitted to the data points
between points Pism and Qisn could be determined. The area between the straight line li
and the curve Ci was the peak area Si, which could be calculated by Equation (4). The
line connected by the local maximum point, (Vmaxi, Imaxi) and (Vmaxi, 0), had an intersec-
tion, Di(Vmaxi, Iinti), with li. Thus, the peak height (hi) could be calculated with the local
maximum points and Di according to Equation (5). An example is given in Figure 3.

Si =
∫ Pism

Qisn

Ci − lidv (4)

hi = Imaxi − Iinti (5)



Metals 2023, 13, 270 7 of 19

Metals 2023, 13, x FOR PEER REVIEW 7 of 19 
 

 

of −1.2 to −0.85 V，Cd2+ corresponded to a potential range of −0.85 to −0.65 V, Pb2+ corre-

sponded to a potential range of −0.65 to −0.35 V，Bi3+ corresponded to a potential range 

of −0.35 to −0.1 V, and Cu2+ corresponded to a potential range of −0.1 to 0.1 V.  

 

Figure 3. Schematic representation of peak area (A) and peak height (B) calculation. (The i−th seg-

ment of the SWASV response curve for 150 μg/L Zn2+, 35 μg/L Cd2+, 175 μg/L Pb2+, 300 μg/L Bi3+, 

and 100 μg/L Cu2+). 

2.6. Detection Models 

A total of 64 SWASV curves were collected, which corresponded to the 64 groups of 

concentration combinations of Zn2+, Cd2+, Pb2+, and Cu2+. For each SWASV curve, there 

were four kinds of variables, which were the stripping current peak heights (Iauto) and 

areas (Aauto) acquired automatically by the homemade algorithm, and the stripping cur-

rent peak heights (Imanu) and areas (Amanu) acquired manually using electrochemical work-

station control software. The dataset (64 samples) was divided into a calibration set (48 

samples) and a validation set (16 samples) according to the ratio of 3:1 by sample set par-

titioning based on joint x–y distance (SPXY) [30–33], which is described in the Supplemen-

tary Materials. In addition, partial least squares regression (PLSR) and support vector re-

gression (SVR) were employed in this study to build detection models of Cd2+ and Pb2+ 

concentrations. 

The PLSR algorithm is a widely used linear regression method, which can solve mul-

ticollinearity questions among multiple variables [34–37]. PLSR was used to project pre-

dictors and observed variables into a new space to find a linear regression model. How-

ever, the interference between HMIs was complex and nonlinear. The SVR, as a kind of 

machine learning algorithm about nonlinear regression, had recently become popular to 

model small size samples [25,38]. The use of the SVR kernel function could fit the nonlin-

ear relationship into a linear or a nearly linear regression hypersurface in the high-dimen-

sional feature space. Compared with other functions, the radial basis function (RBF), 

which was a kind of kernel function, had better performance due to its strong relationship 

between input and output. The SVR penalty parameter c and the kernel function param-

eter g could greatly influence the performance of the SVR regression [39]. Therefore, the 

particle swarm optimization (PSO) algorithm was used to automatically optimize the pa-

rameters of c and g in the SVR model. The optimization results of parameters c and g are 

presented in the Supplementary Materials.  

2.7. Evaluation Parameters of Data and Model Performance 

The Imanu, Ialgo, Amanu, and Aalgo of five HMIs were obtained from 64 samples. The cosine 

similarity (cos 𝜃) [40,41] and determination coefficient ( 2R
) were used to evaluate the dif-

ferences between the peak heights and peak areas obtained by the homemade algorithm 

and those acquired manually by the electrochemical workstation control software. 

Figure 3. Schematic representation of peak area (A) and peak height (B) calculation. (The i-th segment
of the SWASV response curve for 150 µg/L Zn2+, 35 µg/L Cd2+, 175 µg/L Pb2+, 300 µg/L Bi3+, and
100 µg/L Cu2+).

The type of HMIs could be identified according to the potential corresponding to
the maximum current of every segment. In this study, Zn2+ corresponded to a potential
range of −1.2 to −0.85 V, Cd2+ corresponded to a potential range of −0.85 to −0.65 V, Pb2+

corresponded to a potential range of −0.65 to −0.35 V, Bi3+ corresponded to a potential
range of −0.35 to −0.1 V, and Cu2+ corresponded to a potential range of −0.1 to 0.1 V.

2.6. Detection Models

A total of 64 SWASV curves were collected, which corresponded to the 64 groups
of concentration combinations of Zn2+, Cd2+, Pb2+, and Cu2+. For each SWASV curve,
there were four kinds of variables, which were the stripping current peak heights (Iauto)
and areas (Aauto) acquired automatically by the homemade algorithm, and the stripping
current peak heights (Imanu) and areas (Amanu) acquired manually using electrochemical
workstation control software. The dataset (64 samples) was divided into a calibration
set (48 samples) and a validation set (16 samples) according to the ratio of 3:1 by sample
set partitioning based on joint x–y distance (SPXY) [30–33], which is described in the
Supplementary Materials. In addition, partial least squares regression (PLSR) and support
vector regression (SVR) were employed in this study to build detection models of Cd2+ and
Pb2+ concentrations.

The PLSR algorithm is a widely used linear regression method, which can solve
multicollinearity questions among multiple variables [34–37]. PLSR was used to project
predictors and observed variables into a new space to find a linear regression model.
However, the interference between HMIs was complex and nonlinear. The SVR, as a kind
of machine learning algorithm about nonlinear regression, had recently become popular to
model small size samples [25,38]. The use of the SVR kernel function could fit the nonlinear
relationship into a linear or a nearly linear regression hypersurface in the high-dimensional
feature space. Compared with other functions, the radial basis function (RBF), which was
a kind of kernel function, had better performance due to its strong relationship between
input and output. The SVR penalty parameter c and the kernel function parameter g could
greatly influence the performance of the SVR regression [39]. Therefore, the particle swarm
optimization (PSO) algorithm was used to automatically optimize the parameters of c and
g in the SVR model. The optimization results of parameters c and g are presented in the
Supplementary Materials.

2.7. Evaluation Parameters of Data and Model Performance

The Imanu, Ialgo, Amanu, and Aalgo of five HMIs were obtained from 64 samples. The
cosine similarity (cos θ) [40,41] and determination coefficient (R2

θ ) were used to evaluate the
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differences between the peak heights and peak areas obtained by the homemade algorithm
and those acquired manually by the electrochemical workstation control software.

cos θ =
∑n

i=1 αiβi√
∑n

i=1 α2
i

√
∑n

i=1 β2
i

(6)

R2
θ = 1− ∑n

i=1
(
αi − β∗i

)2

∑n
i=1(αi − α)2 (7)

where αi and βi refer to the five manually acquired HMI signals (Imanu or Amanu) and
algorithmically acquired HMI signals (Ialgo or Aalgo) for sample i, respectively, and α is the
average value of the five manually acquired HMI signals (Imanu or Amanu) for n samples.
The n is 64 in this study. The closer the values of cos θ and R2

θ are to 1, the difference
between the algorithm and the manually acquired values is smaller.

The calibration set (48 samples) was used to build the detection model, and the
validation set (16 samples) was used to validate the model performances. The stability
and accuracy of the detection model were evaluated separately using the determination
coefficient (R2) and the root−mean−square error (RMSE) of the validation set.

R2 = 1− ∑
j
i=1

(
yi − y∗i

)2

∑
j
i=1(yi − y)2

(8)

RMSE =

√
∑

j
i=1

(
yi − y∗i

)2

j
(9)

where yi and y∗i refer to the actual and detected concentrations of HMIs (Cd2+ or Pb2+) for
the i-th sample, respectively, and y is the average value of actual concentrations of HMIs
(Cd2+ or Pb2+) for the j-th validation set sample. A value of R2 close to 1 indicated the high
stability of the model, and the small value of RMSE indicated the high detection accuracy
of the model.

2.8. Preparation of Real Soil Extracts

Soil samples (National sharing platform of reference materials, China) were collected
from two different provinces in China. Detailed information about the soil samples was
presented in Table S2. Bioavailable HMIs were extracted during sample preparation
procedures, which include ion-exchange, carbonate-bound, and soluble humus-bound
fractions. The detailed preparation procedures of the two soil extracts is described in the
Supplementary Materials.

3. Results and Discussion
3.1. Analysis of SWASV Signals and Input Variables
3.1.1. Analysis of Interactive Interference of Multiple HMIs by SWASV Signals

The 64 SWASV curves were plotted by the concentration of Cd2+ and Pb2+, as shown
in Figure 4. In Figure 4A, the stripping voltammetry signals of Cd2+ showed different
shapes at the same concentration, which suggested that Cd2+ could be interfered with
by different types and concentrations of HMIs. In addition, although it was interfered
with by different concentrations of non-target ions, the stripping voltammetry signals of
Cd2+ also gradually increased with the increase in Cd2+ concentration. In Figure 4B, it
could be observed that Pb2+ possessed the same situation as Cd2+, which indicated that the
SWASV signals of both Cd2+ and Pb2+ could be interfered with by other HMIs. That was
also consistent with our previous research [24]. Therefore, the SWASV signals of Cd2+ and
Pb2+ were severely interfered with by the interaction of Zn2+, Cd2+, Pb2+, and Cu2+. It was
necessary to inhibit the interactive interferences between multiple HMIs for the accurate
detection of Cd2+ and Pb2+ concentrations.
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Figure 4. The SWASV curves of 64 experiments sorted by Cd2+ (A) and Pb2+ (B) concentration.

3.1.2. Comparison of Peak Heights and Peak Areas of Multiple HMIs Acquired by
Different Methods

Chemometrics and machine learning provided a promising platform to inhibit the
interactive interference of multiple HMIs for further accurate detection of Cd2+ and Pb2+

concentrations. Appropriate input variables could enhance the accuracy of detection
models. Therefore, the Imanu, Ialgo, Amanu, and Aalgo of Cd2+ and Pb2+ were acquired
by the homemade algorithm and the electrochemical workstation control software, as
shown in Figure 5 and Figures S3–S5. The distribution of scattered points was consistent
with the results of the analysis in Figure 4A,B, and indirectly confirmed the effectiveness
of the homemade algorithm. For Imanu and Ialgo of Zn2+, Cd2+, and Pb2+, the R2

θ and
cos θ were all greater than 0.9997. For Imanu and Ialgo of Bi3+ and Cu2+, the R2

θ and cos θ

were all greater than 0.9980. For Mmanu and Malgo of Zn2+, Cd2+, and Pb2+, the R2
θ and

cos θ were all greater than 0.9999. For Mmanu and Malgo of Bi3+ and Cu2+, the R2
θ and

cos θ were all greater than 0.9970. Detailed information about R2
θ and cos θ values was

presented in Table S3. Compared with Zn2+, Cd2+, and Pb2+, the peak heights and peak
areas of manually acquired Bi3+ and Cu2+ differed significantly from those acquired by the
homemade algorithm, which was attributed to the overlapping peaks between Bi3+ and
Cu2+. It was prone to human errors when manually obtaining the peak height and area of
overlapping peaks.
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Figure 5. Imanu (A,E), Ialgo (B,F), Amanu (C,G), and Aalgo (D,H) of Cd2+ and Pb2+ acquired from the
SWASV curves of 64 experiments. (Diamond scatters represent the peak heights or peak areas of
Cd2+, circular scatters represent the peak heights or peak areas of Pb2+. Blue scatters represent the
Imanu, green scatters represent the Ialgo, red scatters represent the Amanu, orange scatters represent
the Aalgo).
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3.2. Detection of Cd2+ and Pb2+ Concentrations by Peak Heights

The peak heights of Zn2+, Cd2+, Pb2+, Bi3+, and Cu2+ obtained by manual acquisition
(Imanu) and algorithmic acquisition (Ialgo) were used as input for PLSR and SVR models
to detect the concentrations of Cd2+ and Pb2+. The performance of the above models was
compared using the RMSE and R2 values of the validation set. All results of the calibration
set were presented in Figure S6. Detailed information about the PLSR and SVR models was
presented in Table S4.

3.2.1. PLSR Models Established Using Peak Heights

The PLSR models built using the Imanu and Ialgo of the HMIs were named Imanu-PLSR and
Ialgo-PLSR, respectively. As shown in Figure 6A,B, the Imanu-PLSR model (RMSE = 5.4663 µg/L,
R2 = 0.7375) had close accuracy to the Ialgo-PLSR model (RMSE = 5.4838 µg/L, R2 = 0.7323) for
the detection of Cd2+ concentrations. However, the Imanu-PLSR model (RMSE = 19.2392 µg/L,
R2 = 0.8645) presented a smaller RMSE and a larger R2 value than Ialgo-PLSR model
(RMSE = 21.9047 µg/L, R2 = 0.7766) for detecting Pb2+ concentrations, as shown in Figure 6C,D.
Although the accuracy and stability of Ialgo-PLSR model was inferior to that of the Imanu-
PLSR model for both Cd2+ and Pb2+, the discrepancies between them were not significant,
which illustrated the developed algorithm could accurately acquire the peak heights.
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However, the PLSR models established using peak heights had the larger RMSE
values for Cd2+ and Pb2+ concentrations and needed to be further improved. This might be
because PLSR could not be adequate for resolving the interactive interference among HMIs.
Hence, it became a possibility to use of a nonlinear model to improve the model detection
accuracy of Cd2+ and Pb2+.

3.2.2. SVR Models Established Using Peak Heights

The SVR models built using the Imanu and Ialgo of the HMIs were named Imanu-SVR and
Ialgo-SVR, respectively. As shown in Figure 7A,B, for the detection of Cd2+ concentration,
the RMSE and R2 values of the Imanu-SVR model were 5.3916 µg/L and 0.7650, respectively,
and that of the Ialgo-SVR model were 3.9922 µg/L and 0.8424, respectively. As shown
in Figure 7C,D, for the detection of Pb2+ concentration, the RMSE and R2 values of the
Imanu-SVR model were 20.0015 µg/L and 0.8791, respectively, and that of the Ialgo-SVR
model were 21.3431 µg/L and 0.8229, respectively. Compared with the Imanu-SVR model,
the Ialgo-SVR model had a lower RMSE value for the detection of Cd2+ concentrations.
However, for the Pb2+ concentrations, the RMSE values of the Imanu-SVR and the Ialgo-SVR
models were approximate, which illustrated that the homemade algorithm could accurately
acquire the peak heights of HMIs.
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In addition, for Cd2+ concentration, the Imanu-SVR model had a lower RMSE value of
0.0547 µg/L than the Imanu-PLSR model and a higher R2 value of 0.0275, while the Ialgo-SVR
model had a lower RMSE value of 1.4916 µg/L and a higher R2 value of 0.1101 than the
Ialgo-PLSR model. The SVR model built using algorithm-acquiring peak heights (Ialgo) as
its input significantly improved the detection accuracy of Cd2+ concentration. This was
because the signal of Cd2+ was much weaker than Pb2+ due to the low concentration of
Cd2+, which caused the large relative errors of Cd2+ peak heights acquired manually by
the electrochemical control software, while the homemade algorithm in this study could
exactly capture the weak Cd2+ peak heights.

For Pb2+ concentration, the Imanu-SVR model had a higher RMSE value of 0.7623 µg/L
and a higher R2 value of 0.0146 than the Imanu-PLSR model, while the Ialgo-SVR model had a
lower RMSE value of 0.5616 µg/L and a higher R2 value of 0.0463 than the Ialgo-PLSR model.
However, the increase in detection accuracy of Pb2+ concentrations was either negligible or
failed by the SVR and algorithm-acquired peak heights (Ialgo). A more important reason
for the above results was that the peak heights contained too little information to reflect
the serious interaction between multiple HMIs. Therefore, the stripping current peak areas
were employed as the inputs of SVR and PLSR models in the next section in expectation of
improving the detection accuracy of Cd2+ and especially Pb2+ concentrations.

3.3. Detection of Cd2+ and Pb2+ Concentrations by Peak Areas

Same as Section 3.2, the peak areas of Zn2+, Cd2+, Pb2+, Bi3+, and Cu2+ obtained by
manual acquisition (Amanu) and algorithmic acquisition (Aalgo) were used as input for the
PLSR and SVR models to detect the concentrations of Cd2+ and Pb2+. The performance of
the above models was compared the RMSE and R2 values of the validation set. All of the
results of the calibration set were presented in Figure S7. Detailed information about the
PLSR and SVR models was presented in Table S5.

3.3.1. PLSR Models Established Using Peak Areas

The PLSR models built using the Amanu and Aalgo of HMIs were named Amanu-PLSR and
Aalgo-PLSR, respectively. As shown in Figure 8A,B, the Amanu-PLSR model (RMSE = 3.8996 µg/L,
R2 = 0.8828) had close accuracy to the Aalgo-PLSR model (RMSE = 3.7414 µg/L, R2 = 0. 8910)
for the detection of Cd2+ concentration. As shown in Figure 8C,D, the Amanu-PLSR model
(RMSE = 15.1333 µg/L, R2 = 0.9272) presented a larger RMSE value and a smaller R2 value
than the Aalgo-PLSR model (RMSE = 12.9264 µg/L, R2 = 0.9668) for the detection of Pb2+

concentration. For both Cd2+ and Pb2+ concentration detection, the Aalgo-PLSR model was
more stable and accurate than the Amanu-PLSR model. The use of Aalgo as a model input
contributed to the improvement of the detection accuracy and stability of the models, which
implied that the homemade algorithm could accurately acquire the peak areas of HMIs.
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In addition, for Cd2+ concentration, Amanu-PLSR model had a lower RMSE value
of 1.5467 µg/L and a higher R2 value of 0.1453 than the Imanu-PLSR model, while the
Aalgo-PLSR model had a lower RMSE value of 1.7424 µg/L and a higher R2 value of 0.1587
than the Ialgo-PLSR model. For Pb2+ concentration, the Amanu-PLSR model had a lower
RMSE value of 4.1059 µg/L and a higher R2 value of 0.0627 than Imanu-PLSR model, while
the Aalgo-PLSR model had a lower RMSE value of 8.9785 µg/L and a higher R2 value of
0.1902 than the Ialgo-PLSR model. In the case of modeling with the PLSR algorithm, using
peak areas instead of peak heights as the model input greatly improved the stability and
accuracy of the Cd2+ and Pb2+ concentration detection models. In addition, for both the
RMSE and R2 values, the improvement of the Imanu-SVR models and the Ialgo-SVRs models
over the Imanu-PLSR models and the Ialgo-PLSR models, respectively, was significantly
less than the improvement of the Amanu-PLSR models and the Aalgo-PLSR models over
the Imanu-PLSR models and the Ialgo-PLSR models, respectively. This might be related to
the fact that the peak areas contained more comprehensive SWASV information of HMIs
than the peak heights. The peak area of HMIs was defined as the integral value of the
stripping current on the scale of the stripping potential time, which physically represented
the amount of ions. The above analysis provided a new direction for the accurate detection
of Cd2+ and Pb2+ under the interactive interference of multiple HMIs, i.e., using peak areas
as a model input and building models with the SVR algorithm.

3.3.2. SVR Models Established Using Peak Areas

The SVR models built using the Amanu and the Aalgo of HMIs were named Amanu-SVR
and Aalgo-SVR, respectively. As shown in Figure 9A,B, for the detection of Cd2+ concen-
tration, the RMSE and R2 values of the Amanu-SVR model were 3.9824 µg/L and 0.8785,
respectively, and that of the Aalgo-SVR model were 2.9906 µg/L and 0.9204, respectively. As
shown in Figure 9C,D, for the detection of Pb2+ concentration, the RMSE and R2 values of
the Amanu-SVR model were 13.3444 µg/L and 0.9359, respectively, and that of the Aalgo-SVR
model were 13.1574 µg/L and 0.9756, respectively. For both Cd2+ and Pb2+ concentration
detection, Aalgo-SVR was more stable and accurate than Amanu-SVR, which again implied
that the homemade algorithm could accurately acquire the peak areas of the HMIs.

For the detection of Cd2+ concentrations, the Amanu-SVR model had a lower RMSE
value of 1.4092 µg/L and a higher R2 value of 0.1135 than Imanu-SVR model, while the
Aalgo-SVR model had a lower RMSE value of 1.0016 µg/L and a higher R2 value of 0.078
than the Ialgo-SVR model. For the detection of Pb2+ concentration, the Amanu-SVR model
had a lower RMSE value of 6.6571 µg/L and a higher R2 value of 0.0568 than the Imanu-SVR
model, while the Aalgo-SVR model had a lower RMSE value of 8.1857 µg/L and a higher
R2 value of 0.1527 than the Ialgo-SVR model. In the case of modeling with SVR algorithm,
using peak areas instead of peak heights as model input greatly improved the detection
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stability and accuracy for Cd2+ and Pb2+ concentrations. In addition, for the detection
of Cd2+ concentration, the Amanu-SVR model had a higher RMSE value of 0.0828 µg/L
and a lower R2 value of 0.0043 than the Amanu-PLSR model, while the Aalgo-SVR model
had a lower RMSE value of 0.7508 µg/L and a higher R2 value of 0.0294 than the Aalgo-
PLSR model. For the detection of Pb2+ concentration, the Amanu-SVR model had a lower
RMSE value of 1.7889 µg/L and a higher R2 value of 0.0087 than the Amanu-PLSR model,
while the Aalgo-SVR model had a higher RMSE value of 0.2310 µg/L and a higher R2

value of 0.0088 than the Aalgo-PLSR model. Compared with the models built by the PLSR
algorithm, the accuracy of the Amanu-SVR model for Cd2+ concentration detection and
the Aalgo-SVR model for Pb2+ concentration detection decreased slightly after modeling
by the SVR algorithm. Additionally, the stability and accuracy of the Aalgo-SVR model
for the detection of Cd2+ concentration and the Amanu-SVR model for detection of Pb2+

concentration were further improved. In summary, the Aalgo-SVR model was the most
stable and accurate model for detecting Cd2+ concentration as shown in Figure 8B. The
Aalgo-PLSR model was the most accurate and the Aalgo-SVR model was the most stable for
detecting Pb2+ concentration as shown in Figures 7D and 8D.
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concentrations, red scatters represent the model input as Amanu, orange scatters represent the model
input as Aalgo).

3.4. Comparison and Analysis of Different Detection Models

To accurately detect Cd2+ and Pb2+ concentrations in the presence of multiple HMIs
interactive interference, four kinds of inputs and two modeling algorithms were used to
explore the excellent detection model. Additionally, in order to improve the acquisition
efficiency of peak heights and peak areas, and to eliminate human error, a homemade
peak heights and peak areas acquisition algorithm was designed. The performances of
various models for Cd2+ and Pb2+ concentration detection were compared by using the
RMSE and R2 values of the validation sets, as shown in Figure 10. The RMSE values
of the models detecting Cd2+ concentration decreased in the order of Ialgo-PLSR > Imanu-
PLSR > Imanu-SVR > Ialgo-SVR > Amaun-SVR > Amanu-PLSR > Aalgo-PLSR > Aalgo-SVR, and
the R2 values of those increased in the order of Imanu-PLSR > Ialgo-PLSR > Imanu-SVR >
Ialgo-SVR > Amanu-SVR > Amanu-PLSR > Aalgo-PLSR > Aalgo-SVR. The RMSE values of
the models detecting Pb2+ concentration decreased in the order of Ialgo-PLSR > Ialgo-SVR
> Imanu-SVR > Imanu-PLSR > Amanu-PLSR > Amanu-SVR > Aalgo-SVR > Aalgo-PLSR, and
the R2 values of those increased in the order of Ialgo-PLSR > Ialgo-SVR > Imanu-PLSR >
Imanu-SVR > Amanu-PLSR > Amanu-SVR > Aalgo-PLSR > Aalgo-SVR. All models for detecting
Cd2+ and Pb2+ concentrations built using peak areas as input had smaller RMSE values
and larger R2 values than those models built using peak heights as input. This suggested
that the peak areas of the HMIs could better reflect the comprehensive information of
interactive interference between multiple heavy metals. The Aalgo-SVR model had the
best stability and accuracy for the detection of Cd2+ concentration. For detecting Pb2+
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concentration, the Aalgo-SVR model had a slightly higher RMSE value of 0.231 µg/L than
the Aalgo-PLSR model. However, the difference of RMSE values between the calibration set
and the validation set of the Aalgo-PLSR and the Aalgo-SVR models were 6.9065 µg/L and
2.6930 µg/L, respectively, which suggested that Aalgo-SVR had a higher stability than Aalgo-
PLSR. As a result, Aalgo-SVR had the best detection performance toward Pb2+ concentration.
Interestingly, the change in model input (from peak heights to peak areas) greatly improved
the model accuracy compared with the change in modeling algorithm (from PLSR to SVR).
This validated the idea that peak areas as model input could significantly improve the
detection accuracy of Cd2+ and Pb2+ concentrations.
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In all models using peak heights as input, the detection ability of those models built by
Ialgo was slightly inferior to Imanu, except for Cd2+ concentration detected by Ialgo-SVR. This
might be related to the relatively lower peak heights acquired by the homemade algorithm
compared to those acquired manually by electrochemical control software, as shown in
Figure 11B. In Section 2.5.1, the extreme points in the SWASV curves were recognized
by the S-G algorithm and peakdet function. In this process, some noise points were
eliminated, such as the recognition of the local extreme points of the curve in the dotted box
in Figure 11A. Therefore, the extreme point obtained by the homemade algorithm was the
red point in Figure 11B, while the point with the largest current value in dotted box was the
point to the right of the red point. In addition, the peak heights were also influenced by the
background currents. The manually acquired peak heights might have some deviations.

Moreover, in comparison with PLSR models, SVR models enhanced the detection
performance of Cd2+ and Pb2+ concentrations. This illustrated that the interactive interfer-
ence between HMIs was perfectly nonlinear in presentation. Previous studies [5,11,12] had
reported that Zn2+, and especially Cu2+, could seriously interfere with the SWASV signals
of Cd2+ and Pb2+. The Cd2+ would not be detected by SWASV when Cu2+ concentration
exceeded a certain concentration [13], thus the peak heights and peak areas could not be
acquired by handwork or algorithms. However, the interference of Zn2+ on Cd2+ was
negligible until Zn2+ reached a relatively high concentration [18]. In addition, there was
mutual interference between Cd2+ and Pb2+, and this interference was also nonlinear [12].
The nonlinear interference of multiple HMIs might be due to the following three aspects.
(1) Although the introduction of Bi3+ could form alloys with most of the HMIs to reduce the
activation energy required for electrodeposition [27,29], the concentrations of Zn2+, Cd2+,
Pb2+, and Cu2+ were ever-changing in this study and they required different concentrations
of Bi3+. Therefore, it was unknown whether the number of alloys formed by Bi3+ and
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HMIs exhibited a linear variation with the increase in HMI concentrations. (2) During the
deposition process, the number of deposition HMIs might not be in line with the increasing
of HMI concentrations due to the limited deposition sites of GCE. (3) The alloys formed by
multiple HMIs (especially the existence of Cu2+) prevented the stripping of Cd2+ and Pb2+

off the GCE surface in the stripping process. Therefore, the detection accuracy of the PLSR
models for Cd2+ and Pb2+ concentrations was lower than that of the SVR models.
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From the above analysis, it could be concluded that the peak areas acquired by
designed algorithm and SVR model significantly improved the SWASV detection accuracy
of Cd2+ and Pb2+ concentrations by inhibiting the interactive interference of Zn2+, Cd2+,
Pb2+, and Cu2+. Previous studies were also carried out based on Bi/GEC without other
chemical or biological material modifications. Table 1 presents the comparison of this study
with previous studies that built Cd2+ and Pb2+ detection models using peak heights rather
than peak areas to suppress the interactive interference of multiple HMIs. Compared with
previous studies, the machine learning models that used peak heights as input exhibited
large RMSE values and small R2 values for Cd2+ and/or Pb2+ concentrations, or only
the interference of less than two non-target ions was resolved so that the models had
small RMSE values and larger R2 values. However, the models built in this study had
the powerful ability to inhibit the interactive interferences among multiple HMIs for the
detection of Cd2+ and Pb2+ concentrations.

Table 1. Comparison of the detection accuracy of various inputs and machine learning models for
Cd2+ and/or Pb2+ under the interference of non-target HMIs.

Target Ions
(Concentration:

µg/L)
Interference Ions (Concentration: µg/L) Inputs Models RMSE

(µg/L) R2 Reference

Cd2+ (1–35) Cu2+ (1–35), Pb2+ (1–35) Peak currents 1 SVR 0.9299 0.995 [12]

Cd2+ (1–35) Pb2+ (0–150) Peak currents PLS 5.3207 0.746 [5]SVR 4.2277 0.867

Cd2+ (2–35) Cu2+ (0–350), Zn2+ (0–175), Pb2+ (5–175) Peak currents PLS 11.281 0.361 [18]SVR 4.655 0.832
Cd2+ (2–35) Cu2+ (0–350), Zn2+ (0–175), Pb2+ (5–175) Peak areas 2 SVR 2.9906 0.9204 This work
Pb2+ (1–110) Cd2+ (0–110) Peak currents BP-ANN 1.69 0.998 [24]
Pb2+ (1–45) Cu2+ (0–25) Peak currents SVR 1.1204 0.994 [25]

Pb2+ (5–175) Cu2+ (0–350), Zn2+ (0–175), Cd2+ (2–35) Peak currents PLS 25.234 0.811 [18]SVR 25.119 0.811
Pb2+ (5–175) Cu2+ (0–350), Zn2+ (0–175), Cd2+ (2–35) Peak areas SVR 13.1574 0.9756 This work

Abbreviations: SVR, support vector regression; PLSR, partial least squares regression; BP-ANN, backpropagation-
artificial neural network. Notes: 1, Peak currents refer to the stripping peak currents of target and non-target
HMIs; 2, Peak areas refer to the stripping peak area of target and non-target HMIs.
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3.5. Application of Aalgo-SVR for Detecting Cd2+ and Pb2+ Concentrations in Soil Extract Solution

To examine the applicability of the developed Cd2+ and Pb2+ detection models, two
soil extract solution samples were prepared according to Section 2.8. As shown in Figure
S8, the SWASV measurement results indicated that both soil extract solution samples
contained Zn2+ and Cu2+.The peak areas of five HMIs were acquired by the homemade
algorithm (Section 2.5) and, then, substituted into the Aalgo-SVR model to detect Cd2+ and
Pb2+ concentrations, respectively. As shown in Table 2, the detection results of the two soil
extract solution samples showed that the model Aalgo-SVR was 0.094 µg/L and 0.0313 µg/L
lower than ICP-MS in the detection of Cd2+ concentration, respectively, and Aalgo-SVR was
0.1845 µg/L and 0.4731 µg/L lower than ICP-MS in the detection of Pb2+ concentration,
respectively. The detection error for Pb2+ was slightly larger compared to Cd2+, which
was due to the fact that there was more Pb2+ in the soil than Cd2+. However, the relative
standard deviations for Cd2+ and Pb2+ were 5.69% and 1.83%, respectively, verifying the
good practicality of the method proposed in this study.

Table 2. Detection results of Cd2+ and Pb2+ concentrations in soil extract solutions.

Soil Extracts
Cd2+ Detection (µg/L) Pb2+ Detection (µg/L)

Aalgo-SVR ICP-MS Aalgo-SVR ICP-MS

Sample No. 1 1.0067 1.1007 18.5140 18.6985
Sample No. 2 1.0698 1.1011 17.2347 17.7078

In summary, in situ bismuth modified GCE combined with the homemade peak area
extraction algorithm, chemometrics, electrochemistry and machine learning can replace
ICP-MS to detect Cd2+ and Pb2+ in soil. This method saves detection time, compresses
costs and is more suitable for rapid on-site detection requirements.

3.6. Limitations and Prospects

Soil is a complex environment containing multiple substances. There are many inter-
fering factors that will decrease the detection accuracy of Cd2+ and Pb2+ in soil extracts,
such as the mutual interactions of multiple HMIs and the soluble humus [6,7,42]. This study
combined simple Bi-film modified electrode and machine learning models to accurately de-
tect Cd2+ and Pb2+, which alleviated to some extent the interactive interference of multiple
HMIs. However, the concentrations of Zn2+, Cd2+, Pb2+ and Cu2+ in soil may be more or
less than the concentration ranges of the established dataset; Hg2+ and As3+ in soils also
interfere with the detection of Cd2+ and Pb2+. Therefore, the generality and universality
of the built detection models need further validation [42]. In this regard, it is necessary to
build a dataset with a wider range of HMI concentrations and more heavy metals types
for the accurate detection of Cd2+ and Pb2+ in real soil extracts, and it is hopeful to further
enhance the model detection ability by using deep learning algorithms. On the other hand,
soluble humus (such as humic acid and fulvic acid) in soil extracts will complex with heavy
metal ions and interfere with the stripping voltammetry signals of Cd2+ and Pb2+ [6,7];
thus, it is necessary to suppress the humus substance interference in further studies for
accurately determining Cd2+ and Pb2+ in real soil extracts by the SWASV method.

4. Conclusions

The purpose of this study is to investigate the low accuracy of Cd2+ and Pb2+ con-
centration detection when using peak current and SWASV to detect heavy metals in soil.
A novel algorithm based on extreme points and slopes for the automatic and accurate
acquisition of peak heights and peak areas was designed first in this study. Then, Cd2+ and
Pb2+ detection models were built by combining chemometrics and machine learning algo-
rithms. The peak heights and peak areas of the Zn2+, Cd2+, Pb2+, Bi3+, and Cu2+ acquired
by both the homemade algorithm and the electrochemical workstation software were used
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acting as input variables to establish the PLSR and SVR detection models. The results of the
modelling analysis showed that the SVR models established using algorithmically acquired
peak areas presented the highest accuracy for the detection of Cd2+ and Pb2+ concentrations.
The RMSE and R2 values of the optimal Cd2+ concentration detection model (Aalgo-SVR)
were 2.9906 µg/L and 0.9204, respectively. The RMSE and R2 values of the optimal Pb2+

concentration detection model (Aalgo-SVR) were 13.1574 µg/L and 0.9756, respectively. The
optimal Aalgo-SVR model was used for real soil extracts to verify the practicability of the
model for detecting Cd2+ and Pb2+ concentrations, respectively. This work provides a new
method in the accurate detection of Cd2+ and Pb2+ concentrations under the co-existence
of multiple HMIs in soils.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/met13020270/s1, Figure S1: CV curve of the bare GCE in the 5 mM
[Fe(CN)6]3−/4− solution with 0.1 M KCl; Figure S2: SWASV responses of (a) 20 µg/L Zn2+, Cd2+,
and Pb2+ on GCE and Bi/GCE, (b) 20 µg/L Zn2+, Cd2+, Pb2+, and Cu2+ on GCE and Bi/GCE, and
(c,d) 40 µg/L Zn2+, Cd2+, Pb2+, and Cu2+ on Bi/GCE for ten repetitive measurements; Figure S3:
Imanu (A), Ialgo (B), Amanu (C) and Aalgo (D) of Zn2+ acquired from the SWASV curves of 64 exper-
iments. (Blue scatters represent the Imanu, green scatters represent the Ialgo, red scatters represent
the Amanu, orange scatters represent the Aalgo); Figure S4: Imanu (A), Ialgo (B), Amanu (C) and Aalgo
(D) of Bi3+ acquired from the SWASV curves of 64 experiments. (Blue scatters represent the Imanu,
green scatters represent the Ialgo, red scatters represent the Amanu, orange scatters represent the
Aalgo); Figure S5: Imanu (A), Ialgo (B), Amanu (C) and Aalgo (D) of Cu2+ acquired from the SWASV
curves of 64 experiments. (Blue scatters represent the Imanu, green scatters represent the Ialgo, red
scatters represent the Amanu, orange scatters represent the Aalgo); Figure S6: PLSR models (A, B, C
and D) and SVR models (E, F, G and H) results for Cd2+ and Pb2+ concentrations detection in the
calibration dataset. (Diamond scatters represent Cd2+ concentrations, circular scatters represent Pb2+

concentrations, blue scatters represent the model input as Imanu, green scatters represent the model
input as Ialgo.); Figure S7: PLSR models (A, B, C and D) and SVR models (E, F, G and H) results for
Cd2+ and Pb2+ concentrations detection in the calibration dataset. (Diamond scatters represent Cd2+

concentrations, circular scatters represent Pb2+ concentrations, red scatters represent the model input
as Amanu, orange scatters represent Aalgo as the model input.); Figure S8: SWASV response curves of
soil extract samples;Table S1: the excogitation of 64 sets of orthogonal experiments by the L64(84)
orthogonal table; Table S2: Detailed information on real soil samples; Table S3: Detailed R2

θ and cos θ

of the peak heights and peak areas; Table S4: The R2 values and RMSE values of the models built by
peak heights; Table S5: The R2 values and RMSE values of the models.
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