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Abstract: Friction stir welding (FSW) is regarded as an important joining process for the next
generation of aerospace aluminum alloys. However, the performance of the FSW process often suffers
from low precision and a long test cycle. In order to overcome these problems, a machine learning
model based on a backpropagation neural network (BPNN) was developed to optimize the FSW of
2195 aluminum alloys. A four-dimensional mapping relationship between welding parameters and
mechanical properties of joints was established through the analysis and mining of FSW data. The
intelligent optimization of the welding process and the prediction of joint properties were realized.
The weld formation characteristics at different welding parameters were analyzed to reveal the
metallurgical mechanism behind the mapping relationship of the process-property obtained by the
BPNN model. The results showed that the prediction accuracy of the method proposed could reach
92%. The welding parameters optimized by the BPNN model were 1810 rpm, 105 mm/min, and 3 kN
for the rotational speed, welding speed, and welding pressure, respectively. Under these conditions,
the tensile strength of the joint was found to be 415 MPa, which deviated from the experimental value
by 3.71%.

Keywords: friction stir welding; aluminum alloy; neural network; machine learning

1. Introduction

Friction stir welding (FSW) was first invented by TWI (The Welding Institute, Cam-
bridge, UK) in 1991. It is a solid-state joining technology whereby the heat is generated by
friction between the rotational tool and the workpiece. The local materials of the workpiece
are softened by this heat, and a dense solid-state joint is formed under the force of the tool
and the workpiece when the tool passes along the joint line [1–3]. Compared to fusion
welding, problems such as cracking, porosity, and oxidation caused by high heat input can
be avoided, which makes FSW very suitable for aluminum alloy welding [4–6]. At present,
FSW is commonly used in aerospace engineering, the automotive industry, and other fields
of application [7,8].

In the FSW process, the match among the process parameters determines the joint weld
quality [9]. However, the combinations of process parameters are typically random and
uncertain. In general, the rotational speed (R), welding speed (V), and welding pressure (N)
are the key process parameters in FSW [10,11]. Meanwhile, the relationship between the
welding parameters and the mechanical properties of the joints is highly non-linear [12,13].
Therefore, exploring the correlation between them via traditional trial and error tools is a
challenge. To address this issue, approaches such as the Taguchi method [14], Response
Surface Methodology (RSM) [15], and Analysis of Variance (ANOVA) [16] are currently
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applied by researchers for experimental design and process parameter optimization. For
example, Yuvaraj K.P et al. [17] used the Taguchi method to optimize the process parameters
for welding dissimilar AA7075-T651 and AA6061 aluminum alloys. The best process
parameter was the square profile tool pin with a tool offset of about 0.9 mm and a tool
tilt at about a 2-degree angle. Furthermore, ANOVA analysis results have illustrated
that the inclination angle exerts a significant effect on most of the mechanical properties
of the joints. Lakshman Singh et al. applied Taguchi and ANOVA methods to design
FSW experiments for AA5083 aluminum alloys and optimize the process parameters.
The results revealed that the tensile strength of the joint increased with the increase in
rotational speed, and a value of 130.8 MPa was achieved in the optimized process [18]. R
Saravanakumar et al. [19] examined the effects of RSM-based grey relational methods on
the optimization of underwater friction stir welding (UWFSW) procedural characteristics.
The result revealed that the mechanical properties of the AA5083 UWFSW joint were greatly
improved. However, the above methods possess some limitations concerning welding
optimization. The Taguchi method emphasizes ignoring the interaction between variables
during the experiment, whereas the RSM approach has a more rigorous mathematical
derivation and logical relation than the Taguchi approach. However, it is often limited to
second-order models, especially when there is an unambiguous relationship between the
FSW parameters and the mechanical properties [20]. This problem is more prominent in
welding robots. The interaction of weak stiffness, unstable welding pressure, and other
factors of the welding robot leads to the highly non-linear welding process [21].

Taking the above shortcomings into consideration, machine learning has been intro-
duced into welding. The approach was developed by Arthur Same in 1959 to solve complex
higher-order problems caused by the interaction between multiple factors, thereby avoiding
the issues posed by RSM. At the same time, Artificial Neural Network (ANN) models have
been proposed to solve the Credit Assignment Problem (CAP) in machine learning. Its
natural “black box” characteristics account for many varying factors during the experiment,
thus being a good alternative to the Taguchi method. In view of the above, P. S. Effertz et al.
established a prediction model to determine the maximum tensile shear force (ULSF) of
refill stir friction spot welds (RFSSWs) by using a second-order MPR algorithm [22]. The
authors found that the trained machine learning model could predict the ULSF accurately,
wherein the R2 value of the regression analysis was 88%. V.D. Manvatkar et al. [23] used
the ANN tool to predict the peak temperature, torque, lateral force, and equivalent force of
the stirring pin. Their result showed that the differences between the predicted and real
values were within ±2.5% for the peak temperature and ±7.5% for the torque, indicating
that the network model was effective in predicting the trend of the experimental data.
In addition, some researchers compared the RSM-optimized experimental results with
those involving ANNs [24,25]. For instance, C. Rathinasuriyan et al. [26] employed the
RSM and ANN models to predict the average grain size in the nugget zone of the FSW
welded AA6061-T6 alloy. The authors established that the mean prediction error of the
RSM was 5.814%, while that of ANN was 3.72%, thereby revealing the higher accuracy
of the ANN model relative to the RSM model. Therefore, ANNs were proved to be an
effective strategy method for the FSW process. However, in most studies, the ANN was
seen as a prediction and optimization tool, while the correlation between the model and
the metallurgical mechanism was ignored.

In this regard, the optimized FSW process of 2195 aluminum alloy robots was carried
out in the present work by using an ANN. Specifically, a BPNN-based machine learning
model was established to simulate the potential relationship between the mechanical
properties and the welding parameters of joints. The sought-for correlation was revealed
by combining the microstructure data and the mechanical properties predicted under the
specific FSW conditions.
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2. Experimental Materials and Methods

A rolled 2195-T8 aluminum alloy plate (200 mm× 50 mm× 3 mm, Alcoa, Guangzhou,
China) was used as the base material (BM) whose chemical composition and mechanical
properties are shown in Tables 1 and 2.

Table 1. Chemical composition of 2195-T8 Al-Li alloy (wt.%).

Cu Li Ag Mg Zr Fe Al

4.00 1.00 0.40 0.44 0.11 0.05 Bal.

Table 2. Mechanical properties of 2195-T8 Al-Li alloy (wt.%).

Ultimate Yield Strength Ultimate Tensile Strength Elongation Hardness

519 MPa 525 MPa 3.5% 145 HV

The welding equipment was a KUKA KR 1000 Titan robot (GWI, Self-developed,
Guangzhou, China) with an S7-1500 PLC system, which can realize the constant pressure
control of the welding process with a stirring pin speed limit of 6000 rpm, maximum
welding pressures up to 12 kN, and a top welding speed of up to 2 m/min. Before being
welded, the aluminum plate was polished with 400-grit sandpaper and cleaned with
anhydrous ethanol to remove the oxide layer. Welding was then performed in a single pass
under constant pressure using a butt weld so that the load was applied perpendicular to
the rolling direction. The FSW tool consisted of a clamping zone, a shaft shoulder, and
a stirring pin. The size of the clamping zone was determined by the welding robot, the
shaft shoulder had a diameter of 10 mm [18], and the stirring pin was a 3-mm-long taper
with threads at a 15-degree angle. The overall material of the FSW tools was H13 steel.
The samples were subjected to interfacial metallographic analysis and mechanical property
testing. Prior to the characterization, the plates were ground with a 2000 mesh silicon
carbide sandpaper, then mechanically polished using a 1.5 µm diamond suspension, and
etched with Keller’s reagent (1% HF + 1.5% HCL + 2.5% HNO3 + 95% H2O) for 30 s [19].
The microstructural analysis was carried out using an optical microscope (OM, Axio
Imager M2m, Carl Zeiss AG, Guangzhou, China). The yield strength, tensile strength, and
elongation of the joints were measured by means of a DNS200 universal testing machine
(CMT5105, MTS Systems Company, Guangzhou, China) at a tensile rate of 1 mm/min and
were tested at room temperature.

2.1. Data Collection

The rotational speed, welding speed, and welding pressure are the primary process
parameters that affect the mechanical properties of the welded joints. Thirty different
groups of parameters were set up for the experiments, each corresponding to three tensile
specimens (according to ASTM E8 American Standard). The process parameters and the
mean values obtained from the mechanical property testing are shown in Table 3. The image
of the fracture specimen and stress-strain curves are provided in the form of supplementary
materials (Figures S1 and S2). Because of the wide range of the parameters (Table 4), as well
as to ensure that the parameter values were within the same metric scale and to improve the
iteration speed of the network and prevent data overfitting, the results were pre-processed
via the normalization method [27] as follows:

x =
x− xmin

xmax − xmin
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Table 3. Experimental data of FSW.

No.
Rotational

Speed
(rpm)

Welding
Speed

(mm/min)

Welding
Pressure

(N)

Yield
Strength

(MPa)

Tensile
Strength

(MPa)

Elongation
(%)

1 800 100 3500 232 285 2.1
2 1200 100 3500 323 367 3.4
3 1200 150 3500 279 319 3.12
4 1500 150 3500 246 294 3.02
5 1500 300 3500 122 125 0.6
6 1600 100 3500 347 371 5.9
7 1600 150 3500 323 367 5.4
8 1600 200 3500 322 369 5.4
9 1800 100 3500 356 390 6.2

10 2000 100 3500 371 385 6.1
11 2000 200 3500 336 351 5.1
12 2400 100 3500 351 370 5.94
13 1200 200 3500 160 247 2.12
14 1800 150 3500 356 378 5.8
15 1800 200 3500 347 371 5.7
16 2000 150 3500 262 328 2.31
17 2200 150 3500 185 267 1.96
18 1200 100 3000 290 325 3.35
19 1800 100 2000 211 236 1.56
20 1800 100 2500 339 366 5.3
21 1800 100 2700 348 382 5.6
22 1800 100 3000 414 414 6.3
23 2400 200 3500 176 272 2.15
24 2000 100 3000 398 420 5.72
25 1400 100 3000 304 346 3.75
26 2200 100 3000 383 412 3.7
27 2400 100 3000 290 372 2.8
28 1200 100 2000 255 271 1.5
29 2000 100 2500 292 389 5.2
30 1400 200 2000 161 225 1

Table 4. The upper and lower limitation of FSW process parameters.

Process Parameters The Upper Limitation The Lower Limitation

Rotational speed 2400 rpm 800 rpm
Welding speed 100 mm/min 300 mm/min

Welding pressure 2000 N 3500 N

2.2. Models and Algorithms

In this study, a BPNN machine learning model was established based on an input
layer, an output layer, and three hidden layers. The input layer consisted of three nodes,
namely rotational speed, welding speed, and welding pressure. Three nodes in the output
layer were ascribed to yield strength, tensile strength, and elongation. The whole model
network structure is shown in Figure 1. According to the BP chain rule, fully connected
layers were used in the model, and the difference between the desired layer output and
the actual data was minimized by adjusting the weights of the neurons in the front and
back layers during the model learning. The number of hidden layers and neurons was
determined by conforming with Hierarchical Analysis (AHP) and Hyperparameter Tuning.
The Glorot normal function was adopted to initialize the network weight, and the hidden
layers were regularized using the Dropout function to enhance the generalization of the
model. The hyperparameters of the network are listed in Table 5.
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Table 5. Model parameter information.

Hyperparameter Value Hyperparameter Value

Batch-size 3 optimizer Nadam
Hidden dim 50 Learn rate 0.001

epochs 8000 loss mse
Kernel_initializer Glorot_normal Regularization Dropout

The elements in the xi propagate forward through the network, accomplishing a
series of weighted summations and non-linear activations by the weight coefficient ma-
trix w, bias vector b, and activation function. The computation is performed layer by
layer from the input, hidden, and output layers until the result is output. The definition
for the main parameters is as follows: network layer L, weight matrix w, bias vector
b, activation function σ(z), the input xi, and output yo consist of m training samples:
((x1, y1), (x2, y2) · · · (xm, ym)). The number of neurons in the input layer Li is defined as
ni, and that in the hidden layer Lh is defined as nh. The linear coefficients w and the bias
vector b in the layer respectively constitute the weight matrix w(l) and the one-dimensional
vector b(l). The inactivated linear output z in the layer is composed of z(l), and the output α
of each layer consists of α(l). First, the weight matrix w and the bias matrix b are initialized
randomly, and the inputs of the model are set to xi so that the network is then calculated
according to the following equation:

αl = σ(z(l)) = σ(W(l)α(l−1) + b(l)) (2)

The activation function (ReLU) is defined as follows:

f (x) = max(0, x) (3)

In view of the above, a series of hidden layers can be described as:

α
(2)
1 = σ(z(2)1 ) = σ(w(2)

11 x1 + w(2)
12 x2 + w(2)

13 x3 + b(2)1 )

α
(2)
2 = σ(z(2)2 ) = σ(w(2)

21 x1 + w(2)
22 x2 + w(2)

23 x3 + b(2)2 )

α
(2)
3 = σ(z(2)3 ) = σ(w(2)

31 x1 + w(2)
32 x2 + w(2)

33 x3 + b(2)3 )

(4)
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and the output layers are presented by the set of equations below:

α
(3)
1 = σ(z(3)1 ) = σ(w(3)

11 α1
(2) + w(3)

12 α
(2)
2 + w(2)

13 α
(2)
3 + b(3)1 )

α
(3)
2 = σ(z(3)2 ) = σ(w(3)

21 α1
(2) + w(3)

22 α
(2)
2 + w(2)

23 α
(2)
3 + b(3)2 )

α
(3)
3 = σ(z(3)3 ) = σ(w(3)

31 α1
(2) + w(3)

32 α
(2)
2 + w(3)

33 α
(2)
3 + b(3)3 )

(5)

In the Formulas (4) and (5), the superscripts represent the number of layers, and the
subscripts correspond to the number of bits. The backpropagation obeys the chain rule of
derivation, which is defined as follows:

dz
dx

=
dz
dy

dy
dx

(6)

In the Formula (6), y and z are the functions that map from real number to real
number. The gradient of the mse (mean square error) loss function is determined from the
backpropagation of the error e, and the mse is defined as follows:

C(W, b) =
1
2
‖αl − y‖2

2 (7)

where α(l) is the output and y is the actual value of the training sample, respectively.
The training data in the model were divided into batches. The gradient descent and
optimization were performed through the Nadam method to obtain the best weight and
bias. The model randomly used neurons in the hidden layer to update for weight and
bias values during the training. After the iteration ended, the model was reverted to
its original form, and the loss function was minimized. The Nadam [28] method is an
extension of the adaptive motion estimation (Adam) optimization algorithm, which uses
Nesterov accelerated gradient (NAG) instead of vanilla momentum, combining Adam and
NAG algorithms with an attenuation step (α) and a first-order moment hyperparameter to
improve performance.

In this respect, the output layer gradient is as follows:

∂C(W,b)
∂w(l) = ∂C(W,b)

∂α(l)
∂α(l)

∂z(l)
∂z(l)

∂w(l) =
(

α(l) − y
)
� σ′

(
z(l)
)

α(l−1)

∂C(W,b)
∂b(l)

= ∂C(W,b)
∂α(l)

∂α(l)

∂z(l)
∂z(l)

∂b(l)
=
(

α(l) − y
)
� σ′

(
z(l)
) (8)

In the Formula (8), � denotes the Hadamard product (the multiplication of the corre-
sponding elements of the two matrices A and B of the same dimension). The common part
of Equation (8) is denoted as δ:

δ(l) =
∂C(W, b)

∂α(l)
∂α(l)

∂z(l)
=
(

α(l) − y
)
� σ′

(
z(l)
)

(9)

The hidden layer gradient can be derived using mathematical induction as follows:

δ(l) =
(

W(l+1)
)T

δ(l+1) � σ′
(

z(l)
)

(10)

The corresponding gradients of w(l) and b(l) can be found as follows:

∂C(W,b)
∂w(l) = δ(l)α(l−1)

∂C(W,b)
∂b(l)

= δ(l)
(11)
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An update of the weights w and bias b for each layer with a batch size of 3 can be
calculated as follows:

w(l) = w(l) − α
∂C(w,b)

∂w(l)

b(l) = b(l) − α
∂C(w,b)

∂b(l)

(12)

If all w and b values are less than the stop iteration threshold ε, the iteration should
be stopped to display the linear relationship coefficient matrix w(l) and bias vector b(l) for
each hidden and output layer.

3. Results
3.1. BP Neural Network Model Accuracy

Figure 2 displays the accuracy and loss function curves of the model. It can be seen in
Figure 2a that the accuracy curve rises rapidly and remains above 0.92 after training for
more than 1000 steps. It is worth mentioning that the model converges quickly due to the
small data sample. According to Figure 2b, the loss curve of the model decreases rapidly
within 1000 steps. Meanwhile, the value of the loss function gradually decreases to 0.00043
within 1001 to 8000 steps. These results indicate that the loss function is continuously
decreasing toward the gradient, which represents the improvement in model accuracy. As
seen in Figure 3, the linear regression coefficient (K) for the model prediction data and
experimental data is 1.0331. In addition, the determination coefficient R2 is 0.8944. The
closer the value of R2 is to 1, the better the goodness of fit and the higher the accuracy of
the model. This means that the BPNN is suitable for predicting the mechanical properties
of the joint.
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3.2. Mechanical Properties Prediction and Process Optimization

The potential relationship between the process parameters and the mechanical proper-
ties of the joints can be expressed as follows:

(T, Y, E) = F(R, V, N),


800 < R < 2400
100 < V < 300
2000 < N < 3500

(13)



Metals 2023, 13, 267 8 of 14Metals 2023, 13, x FOR PEER REVIEW 8 of 15 
 

 

 
Figure 3. (a) Linear regression analysis of the predicted data and experimental data, (b) the corre-
sponding residuals of characteristic data point 

3.2. Mechanical Properties Prediction and Process Optimization 

The potential relationship between the process parameters and the mechanical prop-
erties of the joints can be expressed as follows: 

( ) ( )
800 2400

, , , , , 100 300
2000 3500

R
T Y E F R V N V

N

< <
= < <
 < <

 (13)

In the formula (13), the parameters referred to as T, Y, and E are the yield strength, 
tensile strength, and elongation of the joints, respectively; R is the rotational speed, V is 
the welding speed, and N is the welding pressure. In order to evaluate the effectiveness 
of the model, the theoretically predicted and experimentally obtained results were com-
pared. As shown in Figure 4a,d,g, the curve as a whole first exhibits an upward trend and 
then decreases. Once the rotational speed increases from 1000 rpm to 1800 rpm, the me-
chanical properties of the joints increase and reach the peak at about 1800 rpm. At this 
time, the yield strength and tensile strength both exceed 400 MPa. With the continuous 
increase of the rotational speed, the three curves show a varying degree of decline. When 
the rotational speed and welding pressure are constant, through research on the influence 
of welding speed on joint mechanical properties, it is found that as the welding speed 
varies, the overall mechanical properties of joints show a downward trend (Figure 4b,e,h). 
Before the welding speed reached 200 mm/min, the curve slightly varied. As soon as the 
welding speed exceeded 200 mm/min, the curve rapidly declined. At the constant welding 
speed and rotational speed, the effect of the welding pressure on the joint mechanical 
properties was similar to that of the rotational speed (see Figure 4c,f,i). To sum up, the 
prediction curves passed through the sample data points in a smooth trend, further show-
ing the good high-dimensional fitting “capacity” of the BPNN. 

Figure 3. (a) Linear regression analysis of the predicted data and experimental data, (b) the corre-
sponding residuals of characteristic data point.

In the Formula (13), the parameters referred to as T, Y, and E are the yield strength,
tensile strength, and elongation of the joints, respectively; R is the rotational speed, V is
the welding speed, and N is the welding pressure. In order to evaluate the effectiveness of
the model, the theoretically predicted and experimentally obtained results were compared.
As shown in Figure 4a,d,g, the curve as a whole first exhibits an upward trend and then
decreases. Once the rotational speed increases from 1000 rpm to 1800 rpm, the mechanical
properties of the joints increase and reach the peak at about 1800 rpm. At this time, the
yield strength and tensile strength both exceed 400 MPa. With the continuous increase of
the rotational speed, the three curves show a varying degree of decline. When the rotational
speed and welding pressure are constant, through research on the influence of welding
speed on joint mechanical properties, it is found that as the welding speed varies, the
overall mechanical properties of joints show a downward trend (Figure 4b,e,h). Before the
welding speed reached 200 mm/min, the curve slightly varied. As soon as the welding
speed exceeded 200 mm/min, the curve rapidly declined. At the constant welding speed
and rotational speed, the effect of the welding pressure on the joint mechanical properties
was similar to that of the rotational speed (see Figure 4c,f,i). To sum up, the prediction
curves passed through the sample data points in a smooth trend, further showing the good
high-dimensional fitting “capacity” of the BPNN.

Figure 5 depicts the 2195 aluminum alloy process window predicted by the model
based on sample data. The maximum predicted tensile strength was 415 MPa, and the pink
curved surface was used to represent all process parameters corresponding to the maximum
predicted tensile strength (shown by the red arrows in Figure 5). The process parameters
corresponding to the pink surface included the rotational speed between 1650 rpm and
1850 rpm, the welding speed between 100 mm/min and 110 mm/min, and the welding
pressure between 2.9 kN and 3 kN. These process parameters were extracted from the
above parameter ranges for experimental verification (Table 6). According to the results,
the most optimal process parameter obtained from the validation tests were the values of
1810 rpm, 105 mm/min, and 3 kN for the rotational speed, welding speed, and welding
pressure, respectively, at which the tensile strength of the joint reached 431 MPa, 82% of
that of the base material. The difference between the predicted and experimental values
was 3.71% (Figure 6). It is worth noting that the optimal tensile strength of the joint,
established via machine learning, was higher than that from any set of previously collected
data (Table 3). This indicates that the method used in this study has a significant advantage
in process optimization.
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Table 6. Comparison of experiment and predicted results.

No.
Set of Optimal

Solutions
(rpm-mm/min-N)

Predicted Results
(MPa)

Experimental
Results (MPa)

A 1650-105-2900 415 372
B 1710-107-2940 415 385
C 1770-105-2970 415 425
D 1810-105-3000 415 431
E 1850-104-3000 415 369
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4. Discussion
4.1. Relevance Analysis of Weld Forming and Joint Mechanical Property Prediction Results

Given the limitation of the “black box” characteristic of the BPNN, it is difficult to
explain the changes in curves through a single data analysis. Therefore, in this study, the
implied metallurgical mechanisms of the predicted mechanical properties of joints have
been revealed by analyzing the joints forming characteristics. As shown in Figure 7, when
the welding speed and welding pressure are constant, the low rotational speed can cause
the emergence of a hole defect in a section of the joint (highlighted with a red square in
Figure 7a). This is due to the fact that insufficient heat input at low rotational speed may
result in poor material fluidity. The phenomenon explains why the above predictive curves
demonstrated the decrease in the mechanical properties of the joints at lower rotational
speeds (see Figure 4a,d,g). A further increase in the rotational speed leads to an increase in
the heat input and the fluidity of the material, making the defects disappear (Figure b,c).
Therefore, the mechanical properties of the joints have been improved. However, the
heat input caused by the increase in rotational speed to 2500 rpm resulted in serious
softening of the material, and the mechanical properties of the joint were rapidly reduced
(Figure 4a,d,g). Similarly, when the rotational speed and welding pressure are constant,
the hole defects can form at a welding speed of more than 250 mm/min (see the area
highlighted with a red square in Figure 7f). This is owing to excessive welding speed,
which yields insufficient welding heat input and material flow performance. Thus, the
predicted curves of mechanical properties (Figure 4b,c,h) rapidly declined after the welding
speed exceeded 200 mm/min. At a constant rotational speed and welding speed, the too-
low welding pressure can induce the emergence of surface groove defects in the joint (see
the red square in Figure 7g). The defects vanish with an increase in the welding pressure
(Figure 7h,i). At this time, the yield strength, tensile strength, and elongation all show an
increasing trend in varying degrees, with the increasing trend of yield strength being the
most obvious (Figure 4c,f,i).
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4.2. Influence of Process Parameter Changes on Mechanical Properties

Yield strength, tensile strength, and elongation are the three most important mechani-
cal properties of the FSW joint. In this study, the welding data obtained from a machine
learning model were analyzed to reveal the influence of welding process parameters on the
mechanical properties of FSW joints, thereby guiding the joining process. Figure 8 depicts
a four-dimensional slice diagram of the mechanical properties of the joints at different
process parameters. The x-, y-, and z-axes in the diagram represent the welding pressure,
welding speed, and rotational speed, respectively. The gradient changes in color represent
the magnitudes of the yield strength, tensile strength, and elongation. The red-highlighted
area, defined for simplicity as the process window, denotes the most optimal process
parameter range. Figure 8a,d,g depict the slices of the mechanical properties of the FSW
joint at different welding speeds. It can be found from Figure 8a that with the decrease
in welding speed, the process window continues to increase, and the maximum process
window corresponding to yield strength was achieved at a welding speed of 100 mm/min.
Meanwhile, the process window is triangle-shaped, two sides of which are equal to 3500 N
and 1500 rpm, respectively. This indicates that the closer the welding pressure to 3500 N
for a fixed welding speed, the wider the range of the optional tool speed. Similarly, the
range of the optional welding pressure becomes wider as the rotational speed approaches
1500 rpm. In other words, when the welding speed is constant, the rotational speed and
welding pressure have a certain correlation with the yield strength. These results play a
decisive role in the welding process. For example, if the pressing ability of the welding
robot equipment is insufficient, the welding speed and rotational speed can be set close to
100 mm/min and 1500 rpm, respectively. In this case, the higher joint yield strength can be
obtained at a welding pressure of 2500 N. When the welding speed is constant, the changes
in the elongation with the rotational speed and welding pressure are similar to that in the
yield strength (Figure 8g). However, for the tensile strength, the process window in the slice
diagram at different welding speeds exhibits a rectangular shape (Figure 8d). This means
that when the welding speed is constant, the impacts of welding pressure and rotational
speed on the joints are independent of each other. Figure 8b,e,h display the sliced diagrams
of the mechanical properties of FSW joints at different welding pressures. The maximum
process window for the yield strength can be obtained at a welding pressure of 3500 N,
and the process window itself is dumbbell-shaped (Figure 8b). The optional welding speed
range is relatively large when the rotational speed is close to 1500 rpm. Therefore, it can be
concluded that when a higher welding efficiency is required, the rotational speed should
be close to 1500 rpm. In this case, the higher welding speed can be applied to achieve the
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satisfactory yield strength of the joint. For the tensile strength and elongation of the joint,
the changing patterns of them with rotational speed and welding speed are similar to the
yield strength (Figure 8e,h). Figure 8c,g,i depict the mechanical properties of the joints at
different welding speeds. For the yield strength, the maximum process window can be
obtained at a rotational speed of 1500 rpm. In this case, the process window possesses an
approximately triangular shape (Figure 8c). This indicates that when the rotational speed
is constant, the influence of welding speed and welding pressure on the yield strength is
correlative. In turn, the variations in the tensile strength and elongation of the joint with
the welding pressure and welding speed will be similar to that of the yield strength at the
fixed welding speed, showing a triangular trend.
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Based on the above analysis, the welding speed and welding pressure can be set closer
to 100 mm/min and 3500 N, respectively, when the rotational speed of the chief axis of the
welding robot equipment is limited. At this time, the higher yield strengths of the joints can
be obtained at lower rotational speeds. Similar assumptions are valid for tensile strength
and elongation.

5. Conclusions

The BPNN model was established to predict the mechanical properties of the friction
stir welded robot 2195 aluminum alloy joints so as to optimize their welding process. Based
on the findings, the main conclusions can be drawn as follows:

1. The accuracy of the BPNN could reach 92%, and the determination coefficient R2 was
0.8944. The optimal process parameters for achieving high tensile strength of the joints
were 1810 rpm, 105 mm/min, and 3000 N for the rotational speed, welding speed,
and welding pressure, respectively. At these values, the predicted tensile strength
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was 415 MPa, only 3.71% lower than the experimentally obtained result (431 MPa).
This indicates that the model fits the experimental data well.

2. The prediction rationality of the model was verified via the microstructural analysis
of the joints, and the latent metallurgical mechanism of the model was revealed. The
prediction of the model was based on the change in heat input and material flow
behavior caused by different welding parameters, which affected the mechanical
properties of joints.

3. The process window and the influence of process parameters on the mechanical
properties were obtained. At a constant welding speed, the effects of rotational
speed and welding pressure on the yield strength exhibited a certain correlation, and
the process window corresponding to the higher yield strength and elongation was
approximately triangular. In turn, the process window for the higher tensile strength
was rectangular so that the two influences were independent of each other. At a
constant welding pressure, the process window associated with elevated mechanical
properties was approximately dumbbell-shaped. Finally, at a fixed rotational speed,
the process window combining the high mechanical properties had a triangular-
like shape.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3
390/met13020267/s1, Figure S1: The image of the fractured specimen, Figure S2: Stress-strain curve.
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20. Baş, D.; Boyacı, I.H. Modeling and optimization I: Usability of response surface methodology. J. Food Eng. 2007, 78, 836–845.
[CrossRef]

21. You, J.; Zhao, Y.; Dong, C.; Wang, C.; Miao, S.; Yi, Y.; Su, Y. Microstructure characteristics and mechanical properties of stationary
shoulder friction stir welded 2219-T6 aluminium alloy at high rotation speeds. Int. J. Adv. Manuf. Technol. 2019, 108, 987–996.
[CrossRef]

22. Effertz, P.S.; de Carvalho, W.S.; Guimarães, R.P.M.; Saria, G.; Amancio-Filho, S.T. Optimization of Refill Friction Stir Spot Welded
AA2024-T3 Using Machine Learning. Front. Mater. 2022, 9, 864187. [CrossRef]

23. Manvatkar, V.D.; Arora, A.; De, A.; DebRoy, T. Neural network models of peak temperature, torque, traverse force, bending stress
and maximum shear stress during friction stir welding. Sci. Technol. Weld. Join. 2012, 17, 460–466. [CrossRef]

24. Lakshminarayanan, A.K.; Balasubramanian, V. Comparison of RSM with ANN in predicting tensile strength of friction stir
welded AA7039 aluminium alloy joints. Trans. Nonferrous Met. Soc. China 2009, 19, 9–18. [CrossRef]

25. Jayaraman, M.; Sivasubramanian, R.; Balasubramanian, V.; Lakshminarayanan, A.K. Application of RSM and ANN to predict the
tensile strength of Friction Stir Welded A319 cast aluminium alloy. Int. J. Manuf. Res. 2009, 4, 306–323. [CrossRef]

26. Rathinasuriyan, C.; Sankar, R.; Shanbhag, A.G.; SenthilKumar, V.S. Prediction of the Average Grain Size in Submerged Friction
Stir Welds of AA 6061-T6. Mater. Today Proc. 2019, 16, 907–917. [CrossRef]

27. Ba, J.L.; Kiros, J.R.; Hinton, G.E. Layer Normalization. arXiv 2016. [CrossRef]
28. Ruder, S. An Overview of Gradient Descent Optimization Algorithms. arXiv 2017. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.3390/met12071101
http://doi.org/10.1016/j.matdes.2015.12.005
http://doi.org/10.1007/s40194-019-00726-z
http://doi.org/10.3390/met9050573
http://doi.org/10.2307/1266632
http://doi.org/10.1161/CIRCULATIONAHA.107.654335
http://doi.org/10.1016/j.matpr.2020.02.942
http://doi.org/10.1016/j.matpr.2021.10.029
http://doi.org/10.1177/09544089221134446
http://doi.org/10.1016/j.jfoodeng.2005.11.024
http://doi.org/10.1007/s00170-019-04594-1
http://doi.org/10.3389/fmats.2022.864187
http://doi.org/10.1179/1362171812Y.0000000035
http://doi.org/10.1016/S1003-6326(08)60221-6
http://doi.org/10.1504/IJMR.2009.026576
http://doi.org/10.1016/j.matpr.2019.05.176
http://doi.org/10.48550/arXiv.1607.06450
http://doi.org/10.48550/arXiv.1609.04747

	Introduction 
	Experimental Materials and Methods 
	Data Collection 
	Models and Algorithms 

	Results 
	BP Neural Network Model Accuracy 
	Mechanical Properties Prediction and Process Optimization 

	Discussion 
	Relevance Analysis of Weld Forming and Joint Mechanical Property Prediction Results 
	Influence of Process Parameter Changes on Mechanical Properties 

	Conclusions 
	References

